1
|
Zhou H, Pan S, Tan H, Yang Y, Guo T, Zhang Y, Ma L. A novel high-sensitive indirect competitive chemiluminescence enzyme immunoassay based on monoclonal antibody for tenuazonic acid (TeA) detection. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03905-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
2
|
Arrua AA, Arrúa PD, Moura-Mendes J, Cazal C, Ferreira FP, Grabowski CJ, Lopez-Nicora HD, Fernández Rios D. Presence of Aflatoxin M1 in Commercial Milk in Paraguay. J Food Prot 2021; 84:2128-2132. [PMID: 34324667 DOI: 10.4315/jfp-21-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The presence of aflatoxin M1 (AFM1) in milk is a public health concern because milk is a significant part of human diets worldwide. In economies where AFM1 monitoring is low or nonexistent, the possibility of AFM1 contamination might be increased. Our study was conducted to detect and quantify AFM1 in fluid milk and milk drinks of various brands, fat concentrations, packages, and heat treatments sold in the Metropolitan Area of Asunción, Paraguay. Eighty samples were collected from supermarkets in the Metropolitan Area of Asunción following a nonprobability sampling method. An enzyme-linked immunosorbent assay for AFM1 (25 to 500 ppt) was used to quantify the toxin, and results were analyzed with nonparametric methods. All samples were positive values for AFM1 (above the detection limit of 25 ng/kg); 85% of the samples had 30 to 50 ng/kg, and 15% had >500 ng/kg. No significant difference in AFM1 concentration was found based on fat concentration, heat treatment, or type of packaging of these milk products; however, significant differences were found between brands. HIGHLIGHTS
Collapse
Affiliation(s)
- Andrea Alejandra Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Pablo David Arrúa
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Cinthia Cazal
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Francisco Paulo Ferreira
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | | | - Danilo Fernández Rios
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| |
Collapse
|
3
|
Chen A, Mao X, Sun Q, Wei Z, Li J, You Y, Zhao J, Jiang G, Wu Y, Wang L, Li Y. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7817-7830. [PMID: 34250809 DOI: 10.1021/acs.jafc.1c03007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The genus Alternaria is widely distributed in the environment. Numerous species of the genus Alternaria can produce a variety of toxic secondary metabolites, called Alternaria mycotoxins. In this review, natural occurrence, toxicity, metabolism, and analytical methods are introduced. The contamination of these toxins in foodstuffs is ubiquitous, and most of these metabolites present genotoxic and cytotoxic effects. Moreover, Alternaria toxins are mainly hydroxylated to catechol metabolites and combined with sulfate and glucuronic acid in in vitro arrays. A more detailed summary of the metabolism of Alternaria toxins is presented in this work. To effectively detect and determine the mycotoxins in food, analytical methods with high sensitivity and good accuracy are also reviewed. This review will guide the formulation of maximum residue limit standards in the future, covering both toxicity and metabolic mechanism of Alternaria toxins.
Collapse
Affiliation(s)
- Anqi Chen
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Xin Mao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Qinghui Sun
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Zixuan Wei
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Juan Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yanli You
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jiqiang Zhao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, People's Republic of China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| |
Collapse
|
4
|
Wang F, Li ZF, Yang YY, Wan DB, Vasylieva N, Zhang YQ, Cai J, Wang H, Shen YD, Xu ZL, Hammock BD. Chemiluminescent Enzyme Immunoassay and Bioluminescent Enzyme Immunoassay for Tenuazonic Acid Mycotoxin by Exploitation of Nanobody and Nanobody-Nanoluciferase Fusion. Anal Chem 2020; 92:11935-11942. [PMID: 32702970 PMCID: PMC7743996 DOI: 10.1021/acs.analchem.0c02338] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The isolation of nanobodies (Nbs) from phage display libraries is an increasingly effective approach for the generation of new biorecognition elements, which can be used to develop immunoassays. In this study, highly specific Nbs against the Alternaria mycotoxin tenuazonic acid (TeA) were isolated from an immune nanobody phage display library using a stringent biopanning strategy. The obtained Nbs were characterized by classical enzyme-linked immunosorbent assay (ELISA), and the best one Nb-3F9 was fused with nanoluciferase to prepare an advanced bifunctional fusion named nanobody-nanoluciferase (Nb-Nluc). In order to improve the sensitivity and reduce the assay time, two different kinds of luminescent strategies including chemiluminescent enzyme immunoassay (CLEIA) and bioluminescent enzyme immunoassay (BLEIA) were established, respectively, on the basis of the single Nb and the fusion protein Nb-Nluc for TeA detection. The two-step CLEIA was developed on the basis of the same nanobody as ELISA, only with simple substrate replacement from 3,3',5,5'-tetramethylbenzidine (TMB) to luminol. In contrast with CLEIA, the novel BLEIA was conducted in one-step new strategy on the basis of Nb-Nluc and bioluminescent substrate coelenterazine-h (CTZ-h). Their half maximal inhibitory concentration (IC50) values were similar to 8.6 ng/mL for CLEIA and 9.3 ng/mL for BLEIA, which was a 6-fold improvement in sensitivity compared with that of ELISA (IC50 of 54.8 ng/mL). Both of the two assays provided satisfactory recoveries ranging from 80.1%-113.5% in real samples, which showed better selectivity for TeA analogues and other common mycotoxins. These results suggested that Nbs and Nb-Nluc could be used as useful reagents for immunodetection and that the developed CLEIA/BLEIA have great potential for TeA analysis.
Collapse
Affiliation(s)
- Feng Wang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Zhen-Feng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- Guangzhou Nabo Antibody Technology Co. Ltd, Guangzhou 510530, P. R. China
| | - Yuan-Yuan Yang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - De-Bin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yu-Qi Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Jun Cai
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Hong Wang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Yu-Dong Shen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Zhen-Lin Xu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem 2019; 300:125176. [DOI: 10.1016/j.foodchem.2019.125176] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022]
|
6
|
Meeting the challenge of developing food crops with improved nutritional quality and food safety: leveraging proteomics and related omics techniques. Biotechnol Lett 2019; 41:471-481. [PMID: 30820711 DOI: 10.1007/s10529-019-02655-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Eliminating malnutrition remains an imminent priority in our efforts to achieve food security and providing adequate calories, proteins, and micronutrients to the growing world population. Malnutrition may be attributed to socio-economic factors (poverty and limited accessibility to nutritional food), dietary preferences, inherent nutrient profiles of traditional food crops, and to a combination of all such factors. Modern advancements in "omics" technology have made it possible to reliably predict, diagnose, and suggest ways to remedy the low protein content and bioavailability of key micronutrients in food crops. In this review, we briefly describe how proteomics techniques can potentially be used for improving the nutrient profile of major crops, through high throughput multiplexed assays. Food safety is another important issue where proteomics and related platforms can offer solution for absolute quantitation of food allergens and mycotoxins present in the plant-based food. The purpose of the present review is to discuss the proteomic-based strategies in food crops to meet the challenges of overcoming malnutrition throughout the world.
Collapse
|
7
|
Qiao X, Yin J, Yang Y, Zhang J, Shao B, Li H, Chen H. Determination of Alternaria Mycotoxins in Fresh Sweet Cherries and Cherry-Based Products: Method Validation and Occurrence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11846-11853. [PMID: 30350977 DOI: 10.1021/acs.jafc.8b05065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sweet cherry is susceptible to disease caused by the Alternaria species and produces various Alternaria mycotoxins. Analytical methodologies based on solid-phase extraction (SPE) and LC-MS/MS to simultaneously determine five main Alternaria mycotoxins (tenuazonic acid, 1; alternariol, 2; alternariol methyl ether, 3; altenuene, 4; and tentoxin, 5) in fresh sweet cherries and cherry products were developed and validated. The limits of quantitation (LOQ) of the analytes ranged from 0.002-0.066 μg/kg. The method was successfully applied to 83 fresh cherry and cherry-related product samples. 1 and 5 were the predominant toxins with detection frequencies >50%, followed by 3 (42%), 2 (35%), and 4 (31%). Daily intakes of Alternaria mycotoxins via fresh sweet cherries were assessed preliminarily using the measured concentrations, and consumption data were obtained from a web-based dietary questionnaire ( n = 476). The maximum exposure of 1 and 3 were 4.6 and 16.7 times the threshold of the toxicological concern (TTC) value, respectively.
Collapse
Affiliation(s)
- Xiaoting Qiao
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P.R. China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Bing Shao
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P.R. China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning , Beijing Center for Disease Prevention and Control , Beijing 100013 , P.R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P.R. China
| |
Collapse
|
8
|
Liu B, Ge N, Peng B, Pan S. Kinetic and isotherm studies on the adsorption of tenuazonic acid from fruit juice using inactivated LAB. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Berthiller F, Cramer B, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2016-2017. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2250] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review summarises developments in the determination of mycotoxins over a period between mid-2016 and mid-2017. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed LC-MS based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- F. Berthiller
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - B. Cramer
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149 Münster, Germany
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - R. Krska
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - S. MacDonald
- Department of Contaminants and Authenticity, Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| |
Collapse
|
10
|
Ge N, Xu J, Peng B, Pan S. Adsorption mechanism of tenuazonic acid using inactivated lactic acid bacteria. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Mochamad L, Hermanto B. High-performance liquid chromatography ultraviolet-photodiode array detection method for aflatoxin B 1 in cattle feed supplements. Vet World 2017; 10:932-938. [PMID: 28919686 PMCID: PMC5591482 DOI: 10.14202/vetworld.2017.932-938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022] Open
Abstract
AIM The objective of the current study is to determine the concentration of aflatoxin B1 using high-performance liquid chromatography (HPLC) with a photodiode array (PDA) detector. MATERIALS AND METHODS Aflatoxin B1 certified reference grade from Trilogy Analytical Laboratory dissolved acetonitrile (ACN) at 10 µg/mL was using standard assessment. HPLC instruments such as ultraviolet-PDA detector used a Shimadzu LC-6AD pump with DGU-20A5 degasser, communication module-20A, and PDA detector SPD-M20A with FRC-10A fraction collector. The HPLC was set isocratic method at 354 nm with a reverse-phase ODS C18 column (LiChrospher® 100 RP-18; diameter, 5 µm) under a 20°C controlled column chamber. Rheodyne® sample loops were performed in 20 µL capacities. The mobile phase was performed at fraction 63:26:11 H2O: methanol:ACN at pH 6.8. A total of 1 kg of feed contained 10% bread crumbs and 30% concentrated, 40% forage, and 20% soybean dregs were using commercials samples. Samples were extracted by ACN and separated with solid phase extraction ODS 1 mL than elution with mobile phase to collect at drying samples performed. The samples were ready to use after added 1 mL mobile phase than injected into the system of HPLC. RESULTS We found that the retention time of aflatoxin B1 was approximately 10.858 min. Linearity of 0.01-0.08 µg/mL aflatoxin B1 dissolved in mobile phase was obtained at R2=0.9. These results demonstrate that these methods can be used to analyze aflatoxin B1 and gain 89-99% recovery. The limit of detection of this assay was obtained at 3.5 × 10-6 µg/mL. CONCLUSION This method was easy to apply and suitable to analyzing at small concentrations of aflatoxin B1 in formulated product of feed cattle.
Collapse
Affiliation(s)
- Lazuardi Mochamad
- Department of Basic Science, Veterinary Pharmacy Subdivision, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Bambang Hermanto
- Department of Pharmacology, Medical Faculty Airlangga University, Prof. Dr. Moestopo 47, Pacar Kembang, Surabaya, Indonesia
| |
Collapse
|