1
|
Zerouki C, Chakraborty K, Kuittinen S, Pappinen A, Turunen O. Whole-genome sequence and mass spectrometry study of the snow blight fungus Phacidium infestans (Karsten) DSM 5139 growing at freezing temperatures. Mol Genet Genomics 2023; 298:1449-1466. [PMID: 37815644 PMCID: PMC10657286 DOI: 10.1007/s00438-023-02073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Phacidium infestans (synonym Gremmenia infestans) is a significant pathogen that impacts Pinus species across the northern regions of Europe and Asia. This study introduces the genome sequence of P. infestans Karsten DSM 5139 (Phain), obtained through Pacbio technology. The assembly resulted in 44 contigs, with a total genome size of 36,805,277 bp and a Guanine-Cytosine content of 46.4%. Genome-mining revealed numerous putative biosynthetic gene clusters that code for virulence factors and fungal toxins. The presence of the enzyme pisatin demethylase was indicative of the potential of Phain to detoxify its environment from the terpenoid phytoalexins produced by its host as a defense mechanism. Proteomic analysis revealed the potential survival strategies of Phain under the snow, which included the production of antifreeze proteins, trehalose synthesis enzymes, desaturases, proteins related to elongation of very long-chain fatty acids, and stress protein responses. Study of protein GH11 endoxylanase expressed in Escherichia coli showed an acidic optimum pH (pH 5.0) and a low optimum temperature (45 °C), which is reflective of the living conditions of the fungus. Mass spectrometry analysis of the methanol extract of Phain, incubated at - 3 °C and 22 °C, revealed differences in the produced metabolites. Both genomic and mass spectrometry analyses showed the ability of Phain to adapt its metabolic processes and secretome to freezing temperatures through the production of osmoprotectant and cryoprotectant metabolites. This comprehensive exploration of Phain's genome sequence, proteome, and secretome not only advances our understanding of its unique adaptive mechanisms but also expands the possibilities of biotechnological applications.
Collapse
Affiliation(s)
- C Zerouki
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland.
| | - K Chakraborty
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - S Kuittinen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - A Pappinen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - O Turunen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| |
Collapse
|
2
|
Tribelhorn K, Twarużek M, Kosicki R, Straubinger RK, Ebel F, Ulrich S. A Chemically Defined Medium That Supports Mycotoxin Production by Stachybotrys chartarum Enabled Analysis of the Impact of Nitrogen and Carbon Sources on the Biosynthesis of Macrocyclic Trichothecenes and Stachybotrylactam. Appl Environ Microbiol 2023:e0016323. [PMID: 37338364 PMCID: PMC10370337 DOI: 10.1128/aem.00163-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023] Open
Abstract
Stachybotrys chartarum (Hypocreales, Ascomycota) is a toxigenic fungus that is frequently isolated from water-damaged buildings or improperly stored feed. The secondary metabolites formed by this mold have been associated with health problems in humans and animals. Several authors have studied the influence of environmental conditions on the production of mycotoxins, but these studies focused on undefined or complex substrates, such as building materials and media that impeded investigations of the influence of specific nutrients. In this study, a chemically defined cultivation medium was used to investigate the impact of several nitrogen and carbon sources on growth of S. chartarum and its production of macrocyclic trichothecenes (MTs) and stachybotrylactam (STLAC). Increasing concentrations of sodium nitrate were found to positively affect mycelial growth, the level of sporulation, and MT production, while ammonium nitrate and ammonium chloride had an inhibitory effect. Potato starch was the superior and most reliable carbon source tested. Additionally, we observed that the level of sporulation was correlated with the production of MTs but not with that of STLAC. In this study, we provide a chemically well-defined cultivation medium suitable for standardized in vitro testing of the capacity of S. chartarum isolates to produce macrocyclic trichothecenes. IMPORTANCE Macrocyclic trichothecenes (MTs) are highly toxic secondary metabolites that are produced by certain Stachybotrys chartarum strains, which consequently pose a risk for animals and humans. To identify hazardous, toxin-producing strains by analytical means, it is important to grow them under conditions that support MT production. Nutrients determine growth and development and thus the synthesis of secondary metabolites. Complex rich media are commonly used for diagnostics, but batch differences of supplements pose a risk for inconsistent data. We have established a chemically defined medium for S. chartarum and used it to analyze the impact of nitrogen and carbon sources. A key finding is that nitrate stimulates MT production, whereas ammonium suppresses it. Defining nutrients that support MT production will enable a more reliable identification of hazardous S. chartarum isolates. The new medium will also be instrumental in analyzing the biosynthetic pathways and regulatory mechanisms that control mycotoxin production in S. chartarum.
Collapse
Affiliation(s)
- Katharina Tribelhorn
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, Munich, Germany
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Reinhard K Straubinger
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, Munich, Germany
| | - Frank Ebel
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, Munich, Germany
| | - Sebastian Ulrich
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Lindemann V, Schleiner T, Maier U, Fels H, Cramer B, Humpf HU. Analysis of mold and mycotoxins in naturally infested indoor building materials. Mycotoxin Res 2022; 38:205-220. [PMID: 35900668 PMCID: PMC9356937 DOI: 10.1007/s12550-022-00461-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 10/25/2022]
Abstract
Health issues of residents of mold-infested housing are reported on a regular basis, and reasons for the arising impairments can be manifold. One possible cause are the toxic secondary metabolite produced by indoor microfungi (mycotoxins). To enable a more thorough characterization of the exposure to mycotoxins in indoor environments, data on occurrence and quantities of mycotoxins is essential. In the presented study, 51 naturally mold-infested building material samples were analyzed applying a previously developed method based on ultra-high performance liquid chromatography (UHPLC) separation in combination with triple-quadrupole mass spectrometry (TQMS) detection. A total of 38 secondary metabolites derived from different indoor mold genera like Aspergillus, Fusarium, Penicillium, and Stachybotrys were analyzed, of which 16 were detectable in 28 samples. As both the spectrum of target analytes and the investigated sample matrices showed high chemical varieties, an alternative calibration approach was applied complementary to identify potentially emerging matrix effects during ionization and mass spectrometric detection. Overall, strong alterations of analyte signals were rare, and compensation of considerable matrix suppression/enhancement only had to be performed for certain samples. Besides mycotoxin determination and quantification, the presence of 18 different mold species was confirmed applying microbiological approaches in combination with macro- and microscopic identification according to DIN ISO 16000-17:2010-06. These results additionally highlight the diversity of mycotoxins potentially arising in indoor environments and leads to the assumption that indoor mycotoxin exposure stays an emerging topic of research, which has only just commenced.
Collapse
Affiliation(s)
- Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Tim Schleiner
- Umweltlabor ACB GmbH Münster, Albrecht-Thaer-Straße 14, 48147, Münster, Germany
| | - Ulrich Maier
- Umweltlabor ACB GmbH Münster, Albrecht-Thaer-Straße 14, 48147, Münster, Germany
| | - Hubert Fels
- Umweltlabor ACB GmbH Münster, Albrecht-Thaer-Straße 14, 48147, Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany.
| |
Collapse
|
4
|
Tribelhorn K, Twarużek M, Soszczyńska E, Rau J, Baschien C, Straubinger RK, Ebel F, Ulrich S. Production of Satratoxin G and H Is Tightly Linked to Sporulation in Stachybotrys chartarum. Toxins (Basel) 2022; 14:515. [PMID: 36006177 PMCID: PMC9413001 DOI: 10.3390/toxins14080515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Stachybotrys chartarum is a toxigenic fungus that is frequently isolated from damp building materials or improperly stored forage. Macrocyclic trichothecenes and in particular satratoxins are the most potent mycotoxins known to be produced by this fungus. Exposure of humans or animals to these secondary metabolites can be associated with severe health problems. To assess the pathogenic potential of S. chartarum isolates, it is essential to cultivate them under conditions that reliably promote toxin production. Potato dextrose agar (PDA) was reported to be the optimal nutrition medium for satratoxin production. In this study, the growth of S. chartarum genotype S strains on PDA from two manufacturers led to divergent results, namely, well-grown and sporulating cultures with high satratoxin concentrations (20.8 ± 0.4 µg/cm2) versus cultures with sparse sporulation and low satratoxin production (0.3 ± 0.1 µg/cm2). This finding is important for any attempt to identify toxigenic S. chartarum isolates. Further experiments performed with the two media provided strong evidence for a link between satratoxin production and sporulation. A comparison of three-point and one-point cultures grown on the two types of PDA, furthermore, demonstrated an inter-colony communication that influences both sporulation and mycotoxin production of S. chartarum genotype S strains.
Collapse
Affiliation(s)
- Katharina Tribelhorn
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, 80539 Munich, Germany; (K.T.); (R.K.S.); (F.E.)
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85–064 Bydgoszcz, Poland; (M.T.); (E.S.)
| | - Ewelina Soszczyńska
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85–064 Bydgoszcz, Poland; (M.T.); (E.S.)
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency Stuttgart, 70736 Fellbach, Germany;
| | - Christiane Baschien
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| | - Reinhard K. Straubinger
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, 80539 Munich, Germany; (K.T.); (R.K.S.); (F.E.)
| | - Frank Ebel
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, 80539 Munich, Germany; (K.T.); (R.K.S.); (F.E.)
| | - Sebastian Ulrich
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, 80539 Munich, Germany; (K.T.); (R.K.S.); (F.E.)
| |
Collapse
|
5
|
Ulrich S, Lang K, Niessen L, Baschien C, Kosicki R, Twarużek M, Straubinger RK, Ebel F. The Evolution of the Satratoxin and Atranone Gene Clusters of Stachybotrys chartarum. J Fungi (Basel) 2022; 8:340. [PMID: 35448571 PMCID: PMC9027890 DOI: 10.3390/jof8040340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
Stachybotrys chartarum is frequently isolated from damp building materials or improperly stored animal forage. Human and animal exposure to the secondary metabolites of this mold is linked to severe health effects. The mutually exclusive production of either satratoxins or atranones defines the chemotypes A and S. Based upon the genes (satratoxin cluster, SC1-3, sat or atranone cluster, AC1, atr) that are supposed to be essential for satratoxin and atranone production, S. chartarum can furthermore be divided into three genotypes: the S-type possessing all sat- but no atr-genes, the A-type lacking the sat- but harboring all atr-genes, and the H-type having only certain sat- and all atr-genes. We analyzed the above-mentioned gene clusters and their flanking regions to shed light on the evolutionary relationship. Furthermore, we performed a deep re-sequencing and LC-MS/MS (Liquid chromatography-mass spectrometry) analysis. We propose a first model for the evolution of the S. chartarum genotypes. We assume that genotype H represents the most ancient form. A loss of the AC1 and the concomitant acquisition of the SC2 led to the emergence of the genotype S. According to our model, the genotype H also developed towards genotype A, a process that was accompanied by a loss of SC1 and SC3.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU-Ludwig-Maximilians-University Munich, Veterinaerstr. 13, 80539 Munich, Germany; (K.L.); (R.K.S.); (F.E.)
| | - Katharina Lang
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU-Ludwig-Maximilians-University Munich, Veterinaerstr. 13, 80539 Munich, Germany; (K.L.); (R.K.S.); (F.E.)
| | - Ludwig Niessen
- Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany;
| | - Christiane Baschien
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany;
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (R.K.); (M.T.)
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (R.K.); (M.T.)
| | - Reinhard K. Straubinger
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU-Ludwig-Maximilians-University Munich, Veterinaerstr. 13, 80539 Munich, Germany; (K.L.); (R.K.S.); (F.E.)
| | - Frank Ebel
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU-Ludwig-Maximilians-University Munich, Veterinaerstr. 13, 80539 Munich, Germany; (K.L.); (R.K.S.); (F.E.)
| |
Collapse
|
6
|
Dyląg M, Spychała K, Zielinski J, Łagowski D, Gnat S. Update on Stachybotrys chartarum-Black Mold Perceived as Toxigenic and Potentially Pathogenic to Humans. BIOLOGY 2022; 11:biology11030352. [PMID: 35336726 PMCID: PMC8945704 DOI: 10.3390/biology11030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
In nature, there are many species of fungi known to produce various mycotoxins, allergens and volatile organic compounds (VOCs), as well as the commonly known etiological agents of various types of mycoses. So far, none of them have provoked so much emotion among homeowners, builders, conservators, mycologists and clinicians as Stachybotrys chartarum. This species compared to fungi of the genera Fusarium and Aspergillus is not as frequently described to be a micromycete that is toxigenic and hazardous to human and animal health, but interest in it has been growing consistently for three decades. Depending on the authors of any given review article, attention is focused either on the clinical aspects alongside the role of this fungus in deterioration of biomaterials, or aspects related to its biology, ecology and taxonomic position. On the one hand, it is well established that inhalation of conidia, containing the highest concentrations of toxic metabolites, may cause serious damage to the mammalian lung, particularly with repeated exposure. On the other hand, we can find articles in which authors demonstrate that S. chartarum conidia can germinate and form hyphae in lungs but are not able to establish an effective infection. Finally, we can find case reports that suggest that S. chartarum infection is linked with acute pulmonary hemorrhage, based on fungal structures recovered from patient lung tissue. New scientific reports have verified the current state of knowledge and note that clinical significance of this fungus is exceedingly controversial. For these reasons, understanding S. chartarum requires reviewing the well-known toxigenic features and harmful factors associated with this fungus, by gathering the newest ones into a coherent whole. The research problem related to this fungus seems to be not overly publicized, and there is still a demand to truthfully define the real threats of S. chartarum and phylogenetically related species. The most important problem, which should be fully elucidated as soon as possible, remains the clarification of the pathogenicity of S. chartarum and related species. Maybe it is urgent time to ask a critical question, namely what exactly do we know 28 years after the outbreak of pulmonary hemorrhage in infants in Cleveland, Ohio, USA most likely caused by S. chartarum?
Collapse
Affiliation(s)
- Mariusz Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
- Correspondence:
| | - Klaudyna Spychała
- Student Scientific Circle (SKN Mykobiota), Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland;
| | - Jessica Zielinski
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Dominik Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (D.Ł.); (S.G.)
| | - Sebastian Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (D.Ł.); (S.G.)
| |
Collapse
|
7
|
Köck J, Gottschalk C, Ulrich S, Schwaiger K, Gareis M, Niessen L. Rapid and selective detection of macrocyclic trichothecene producing Stachybotrys chartarum strains by loop-mediated isothermal amplification (LAMP). Anal Bioanal Chem 2021; 413:4801-4813. [PMID: 34129076 PMCID: PMC8318954 DOI: 10.1007/s00216-021-03436-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022]
Abstract
Cytotoxic macrocyclic trichothecenes such as satratoxins are produced by chemotype S strains of Stachybotrys chartarum. Diseases such as stachybotryotoxicosis in animals and the sick building syndrome as a multifactorial disease complex in humans have been associated with this mold and its toxins. Less toxic non-chemotype S strains of S. chartarum are morphologically indistinguishable from chemotype S strains, which results in uncertainties in hazard characterization of isolates. To selectively identify macrocyclic trichothecene producing S. chartarum isolates, a set of sat14 gene-specific primers was designed and applied in a loop-mediated isothermal amplification (LAMP) assay using neutral red for visual signal detection. The assay was highly specific for S. chartarum strains of the macrocyclic trichothecene producing chemotype and showed no cross-reaction with non-macrocyclic trichothecene producing S. chartarum strains or 152 strains of 131 other fungal species. The assay's detection limit was 0.635 pg/rxn (picogram per reaction) with a reaction time of 60 min. Its high specificity and sensitivity as well as the cost-saving properties make the new assay an interesting and powerful diagnostic tool for easy and rapid testing.
Collapse
Affiliation(s)
- Johannes Köck
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Christoph Gottschalk
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Sebastian Ulrich
- Institute for Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinaerstraße 13, 80539, Munich, Germany
| | - Karin Schwaiger
- Institute for Food Safety, Food Technology and Veterinary Public Health, Unit of Food Hygiene and Technology, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Manfred Gareis
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Ludwig Niessen
- TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
8
|
Ulrich S, Gottschalk C, Biermaier B, Bahlinger E, Twarużek M, Asmussen S, Schollenberger M, Valenta H, Ebel F, Dänicke S. Occurrence of type A, B and D trichothecenes, zearalenone and stachybotrylactam in straw. Arch Anim Nutr 2021; 75:105-120. [PMID: 33615927 DOI: 10.1080/1745039x.2021.1877075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Straw is the main by-product of grain production, used as bedding material and animal feed. If produced or stored under adverse hygienic conditions, straw is prone to the growth of filamentous fungi. Some of them, e.g. Aspergillus, Fusarium and Stachybotrys spp. are well-known mycotoxin producers. Since studies on mycotoxins in straw are scarce, 192 straw samples (wheat n = 80; barley n = 79; triticale n = 12; oat n = 11; rye n = 12) were collected across Germany within the German official feed surveillance and screened for the presence of 21 mycotoxins. The following mycotoxins (positive samples for at least one mycotoxin n = 184) were detected: zearalenone (n = 86, 6.0-785 μg/kg), nivalenol (n = 51, 30-2,600 μg/kg), deoxynivalenol (n = 156, 20-24,000 μg/kg), 15-acetyl-deoxynivalenol (n = 34, 20-2,400 μg/kg), 3-acetyl-deoxynivalenol (n = 16, 40-340 μg/kg), scirpentriol (n = 14, 40-680 μg/kg), T-2 toxin (n = 67, 10-250 μg/kg), HT-2 toxin (n = 92, 20-800 μg/kg), T-2 tetraol (n = 13, 70-480 μg/kg). 15-monoacetoxyscirpenol (30 μg/kg) and T-2 triol (60 μg/kg) were only detected in one barley sample. Macrocyclic trichothecenes (satratoxin G, F, roridin E, and verrucarin J) were also found in only one barley sample (quantified as roridin A equivalent: total 183 μg/kg). The occurrence of stachybotrylactam was monitored for the first time in four samples (n = 4, 0.96-7.4 μg/kg). Fusarenon-X, 4,15-diacetoxyscirpenol, neosolaniol, satratoxin H and roridin-L2 were not detectable in the samples. The results indicate a non-negligible contribution of straw to oral and possibly inhalation exposure to mycotoxins of animals or humans handling contaminated straw.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Christoph Gottschalk
- Chair of Food Safety, Department of Veterinary Sciences, Veterinary Faculty, Ludwig-Maximilians-Universität Munich, Oberschleissheim, Germany
| | - Barbara Biermaier
- Bayerische Kontrollbehörde für Lebensmittelsicherheit und Veterinärwesen, Kulmbach, Germany
| | - Eunike Bahlinger
- Chair of Food Safety, Department of Veterinary Sciences, Veterinary Faculty, Ludwig-Maximilians-Universität Munich, Oberschleissheim, Germany
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Bydgoszcz, Poland
| | - Sarah Asmussen
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Hana Valenta
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Braunschweig, Germany
| | - Frank Ebel
- Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Braunschweig, Germany
| |
Collapse
|
9
|
Ekruth J, Gottschalk C, Ulrich S, Gareis M, Schwaiger K. Differentiation of S. chartarum (Ehrenb.) S. Hughes Chemotypes A and S via FT-IR Spectroscopy. Mycopathologia 2020; 185:993-1004. [PMID: 33037964 PMCID: PMC7779419 DOI: 10.1007/s11046-020-00495-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Stachybotrys (S.) chartarum is a cellulolytic mould with the ability to produce highly cytotoxic macrocyclic trichothecenes. Two chemotypes are defined according to their ability to produce either atranones or satratoxins. S. chartarum has been well known as the causative agent of the lethal disease stachybotryotoxicosis in horses. Further investigations revealed that this disease is strictly correlated with the presence of macrocyclic trichothecenes. Furthermore, their occurrence in water-damaged buildings has been linked to adverse health effects such as the sick building syndrome. As the chemotypes cannot be characterized via phenotypic criteria, different methods such as PCR, MALDI–TOF MS, LC–MS/MS, thin-layer chromatography and cytotoxicity assays have been used so far. Fourier-transform-infrared spectroscopy (FT-IR) is commonly used for the differentiation of bacteria and yeasts, but this technique is also applicable to filamentous fungi. Hence, this study aimed at evaluating to which extent a reliable differentiation of S. chartarum chemotypes A and S is possible. Besides, another objective was to verify if the recently introduced third genotype of S. chartarum can be identified. Therefore, 28 strains including the two chemotypes and the third genotype H were cultivated on malt extract agar (MEA) and potato dextrose agar in three biological replicates. Each sample was applied to FT-IR measurements on day 7, 14 and 21 of cultivation. In this study, we achieved a distinction of the chemotypes A and S via FT-IR spectroscopy after incubation for 7 days on MEA. In terms of genotype differentiation, the PCR detecting satratoxin- and atranone-gene clusters remained the only applicable method.
Collapse
Affiliation(s)
- Julia Ekruth
- Chair of Food Safety, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.
| | - Christoph Gottschalk
- Chair of Food Safety, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Sebastian Ulrich
- Chair of Food Safety, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.,Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinaerstr. 13, 80539, Munich, Germany
| | - Manfred Gareis
- Chair of Food Safety, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Karin Schwaiger
- Chair of Food Safety, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| |
Collapse
|
10
|
Ulrich S, Schäfer C. Toxin Production by Stachybotrys chartarum Genotype S on Different Culture Media. J Fungi (Basel) 2020; 6:E159. [PMID: 32887224 PMCID: PMC7559122 DOI: 10.3390/jof6030159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Stachybotrys (S.) chartarum had been linked to severe health problems in humans and animals, which occur after exposure to the toxic secondary metabolites of this mold. S. chartarum had been isolated from different environmental sources, ranging from culinary herbs and improperly stored fodder to damp building materials. To access the pathogenic potential of isolates, it is essential to analyze them under defined conditions that allow for the production of their toxic metabolites. All Stachybotrys species are assumed to produce the immunosuppressive phenylspirodrimanes, but the highly cytotoxic macrocyclic trichothecenes are exclusively generated by the genotype S of S. chartarum. In this study, we have analyzed four genotype S strains initially isolated from three different habitats. We grew them on five commonly used media (malt-extract-agar, glucose-yeast-peptone-agar, potato-dextrose-agar, cellulose-agar, Sabouraud-dextrose-agar) to identify conditions that promote mycotoxin production. Using LC-MS/MS, we have quantified stachybotrylactam and all S-type specific macrocyclic trichothecenes (satratoxin G, H, F, roridin E, L-2, verrucarin J). All five media supported a comparable fungal growth and sporulation at 25 °C in the dark. The highest concentrations of macrocyclic trichothecenes were detected on potato-dextrose-agar or cellulose-agar. Malt-extract-agar let to an intermediate and glucose-yeast-peptone-agar and Sabouraud-dextrose-agar to a poor mycotoxin production. These data demonstrate that the mycotoxin production clearly depends on the composition of the respective medium. Our findings provide a starting point for further studies in order to identify individual components that either support or repress the production of mycotoxins in S. chartarum.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Chair of Bacteriology and Mycology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstraße 13, 80539 Munich, Germany
| | - Cornelius Schäfer
- BÜCHI Labortechnik GmbH, Altendorfer Straße 3, 45127 Essen, Germany;
| |
Collapse
|