1
|
Sekyonda Z, An R, Goreke U, Man Y, Monchamp K, Bode A, Zhang Q, El-Gammal Y, Kityo C, Kalfa TA, Akkus O, Gurkan UA. Rapid measurement of hemoglobin-oxygen dissociation by leveraging Bohr effect and Soret band bathochromic shift. Analyst 2024; 149:2561-2572. [PMID: 38501195 PMCID: PMC11056771 DOI: 10.1039/d3an02071a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/24/2024] [Indexed: 03/20/2024]
Abstract
Oxygen (O2) binds to hemoglobin (Hb) in the lungs and is then released (dissociated) in the tissues. The Bohr effect is a physiological mechanism that governs the affinity of Hb for O2 based on pH, where a lower pH results in a lower Hb-O2 affinity and higher Hb-O2 dissociation. Hb-O2 affinity and dissociation are crucial for maintaining aerobic metabolism in cells and tissues. Despite its vital role in human physiology, Hb-O2 dissociation measurement is underutilized in basic research and in clinical laboratories, primarily due to the technical complexity and limited throughput of existing methods. We present a rapid Hb-O2 dissociation measurement approach by leveraging the Bohr effect and detecting the optical shift in the Soret band that corresponds to the light absorption by the heme group in Hb. This new method reduces Hb-O2 dissociation measurement time from hours to minutes. We show that Hb deoxygenation can be accelerated chemically at the optimal pH of 6.9. We show that time and pH-controlled deoxygenation of Hb results in rapid and distinct conformational changes in its tertiary structure. These molecular conformational changes are manifested as significant, detectable shifts in Hb's optical absorption spectrum, particularly in the characteristic Soret band (414 nm). We extensively validated the method by testing human blood samples containing normal Hb and Hb variants. We show that rapid Hb-O2 dissociation can be used to screen for and detect Hb-O2 affinity disorders and to evaluate the function and efficacy of Hb-modifying therapies. The ubiquity of optical absorption spectrophotometers positions this approach as an accessible, rapid, and accurate Hb-O2 dissociation measurement method for basic research and clinical use. We anticipate this method's broad adoption will democratize the diagnosis and prognosis of Hb disorders, such as sickle cell disease. Further, this method has the potential to transform the research and development of new targeted and genome-editing-based therapies that aim to modify or improve Hb-O2 affinity.
Collapse
Affiliation(s)
- Zoe Sekyonda
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
| | - Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
| | - Karamoja Monchamp
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Qiaochu Zhang
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
| | - Yasmin El-Gammal
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cissy Kityo
- The Joint Clinical Research Center, Kampala, Uganda
| | - Theodosia A Kalfa
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ozan Akkus
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
| | - Umut A Gurkan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Shakibapour N, Asoodeh A, Saberi MR, Chamani J. Investigating the binding mechanism of temporin Rb with human serum albumin, holo transferrin, and hemoglobin using spectroscopic and molecular dynamics techniques. J Mol Liq 2023; 389:122833. [DOI: 10.1016/j.molliq.2023.122833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
|
3
|
Stepanenko T, Zając G, Czajkowski A, Rutkowska W, Górecki A, Marzec KM, Dybas J. Sulfhemoglobin under the spotlight - Detection and characterization of SHb and HbFe III-SH. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119378. [PMID: 36220452 DOI: 10.1016/j.bbamcr.2022.119378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
Sulfhemoglobinemia is an incurable disease caused by an overdose of sulfur-containing drugs with oxidizing properties. Its diagnosis remains hindered due to the similarity of symptoms to other pathological state - methemoglobinemia, as well as contradictory information on the structure and characteristics of sulfhemoglobin. Herein, we present sulfhemoglobinemia model on living functional human erythrocytes, designed to recreate processes which could take place in a patient body in order to complement missing information and highlight distinctiveness of two hemoglobin (Hb) adducts formed after interaction with sulfur donors. Employed techniques, UV-Vis absorption, Raman, Fourier transformed infrared (FT-IR) and electronic circular dichroism (ECD) spectroscopies, allowed to distinguish and characterize Hb adduct with sulfur atom bounded directly to the iron ion (HbFeIII-SH), and irreversibly connected to the porphyrin ring (SHb - sulfhemoglobin). Presented herein results provided also new evidence on formation of both these hemoglobin adducts inside functional erythrocytes under oxidative conditions and during sulfur-containing drug presence, what can be further translated into future physiological studies. Moreover, we found that sulfur attachment to the porphyrin ring altered Hb structure and lead to changes in protein packing inside RBCs, eventually. Interestingly, measurement of blood drop smear by Raman spectroscopy occurred the most accurate method to differentiate HbFeIII-SH and SHb, indicating potential of this technique in sulfhemoglobinemia diagnosis.
Collapse
Affiliation(s)
- Tetiana Stepanenko
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland
| | - Artur Czajkowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology (BBB), 7 Gronostajowa Str., 30-387 Krakow, Poland
| | - Wiktoria Rutkowska
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Andrzej Górecki
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology (BBB), 7 Gronostajowa Str., 30-387 Krakow, Poland
| | - Katarzyna Maria Marzec
- Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
4
|
Oushani NH, Valipour M, Maghami P. Protective role of selenium on structural change of human hemoglobin in the presence of vinyl chloride. Toxicol Res 2022; 38:557-566. [PMID: 36277367 PMCID: PMC9532497 DOI: 10.1007/s43188-022-00137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vinyl chloride is a colorless gas with a pleasant odor capable of entering the body through oral or inhalation routes. Extensive studies on this compound indicated that it is a carcinogen, and Vinyl chloride exposure can result in a specific type of cancer in vinyl chloride workers. Whereas hemoglobin plays a vital role in oxygen transfer throughout the body, in a molecular aspect, the effect of vinyl chloride on human hemoglobin has not been studied. Furthermore, selenium as an antioxidant is a vital factor for the health of humans and animals. Then this research investigated the effect of the antioxidant capability of selenium at the same concentrations in blood on the interaction between vinyl chloride and hemoglobin. UV-visible, Fourier-transform infrared, chemiluminescence, and fluorescence spectroscopies were employed. The results indicated the destruction of hemoglobin structure in different concentrations of vinyl chloride. At the same time, the antioxidant effect of selenium inhibited the destructive impact of vinyl chloride on hemoglobin structure.
Collapse
Affiliation(s)
| | - Masoumeh Valipour
- Department of Biology, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Nagatomo S, Nagai M, Kitagawa T. Structural origin of cooperativity in human hemoglobin: a view from different roles of α and β subunits in the α2β2 tetramer. Biophys Rev 2022; 14:483-498. [PMID: 35528033 PMCID: PMC9043147 DOI: 10.1007/s12551-022-00945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
This mini-review, mainly based on our resonance Raman studies on the structural origin of cooperative O2 binding in human adult hemoglobin (HbA), aims to answering why HbA is a tetramer consisting of two α and two β subunits. Here, we focus on the Fe-His bond, the sole coordination bond connecting heme to a globin. The Fe-His stretching frequencies reflect the O2 affinity and also the magnitude of strain imposed through globin by inter-subunit interactions, which is the origin of cooperativity. Cooperativity was first explained by Monod, Wyman, and Changeux, referred to as the MWC theory, but later explained by the two tertiary states (TTS) theory. Here, we related the higher-order structures of globin observed mainly by vibrational spectroscopy to the MWC theory. It became clear from the recent spectroscopic studies, X-ray crystallographic analysis, and mutagenesis experiments that the Fe-His bonds exhibit different roles between the α and β subunits. The absence of the Fe-His bond in the α subunit in some mutant and artificial Hbs inhibits T to R quaternary structural change upon O2 binding. However, its absence from the β subunit in mutant and artificial Hbs simply enhances the O2 affinity of the α subunit. Accordingly, the inter-subunit interactions between α and β subunits are nonsymmetric but substantial for HbA to perform cooperative O2 binding.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003 Japan
- School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0942 Japan
| | - Teizo Kitagawa
- Graduate School of Life Science, Picobiology Institute, University of Hyogo, Kouto, Kamigori, Ako-gun Hyogo, 678-1297 Japan
| |
Collapse
|
6
|
Yu Q, Li M, Chen H, Xu L, Cheng J, Lin G, Liu Y, Su Z, Yang X, Li Y, Chen J, Xie J. The discovery of berberine erythrocyte-hemoglobin self-assembly delivery system: a neglected carrier underlying its pharmacokinetics. Drug Deliv 2022; 29:856-870. [PMID: 35277093 PMCID: PMC8920379 DOI: 10.1080/10717544.2022.2036870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Berberine (BBR) has extremely low concentration and high tissue distribution. However, current pharmacokinetic studies predominantly focus on its concentration in plasma, which could hardly make a comprehensive understanding of its pharmacokinetic process. This study made a pioneering endeavor to explore the erythrocyte-hemoglobin (Hb) self-assembly system of BBR by exploring the interaction of BBR with erythrocyte and the combination of BBR with Hb. Results showed that BBR had a low bioavailability (C0 = 2.833 μg/mL via intravenous administration of 2.5 mg/kg BBR and Cmax = 0.260 μg/mL via oral administration of 400 mg/kg BBR). Besides, BBR achieved higher concentrations in erythrocytes than plasma, and the erythrocytes count and Hb content were significantly decreased after intravenous administration. Hemolysis rate indicated the BBR-erythrocyte system (with 2% erythrocytes) was relatively stable without hemolysis at the concentration of 1.00 mg/mL. And the maximum percentage of drug loading was 100% when the BBR-erythrocyte concentration was 0.185 μg/mL. Furthermore, incubation of BBR and erythrocytes resulted in internalization of the erythrocyte membrane and the formation of intracellular vacuoles. The thermodynamic parameters indicated that the binding process of bovine hemoglobin (BHB) and BBR was spontaneous. UV-vis absorption spectra, synchronous fluorescence, circular dichroism and Raman spectra collectively indicated that BBR showed strong binding affinity toward BHB and affected the molecular environment of residues like tryptophan and tyrosine in BHB, resulting in the conformational changes of its secondary and tertiary structure. Molecular docking indicated BBR interacted with Arg-141 residue of BHB via hydrogen bond with the bond length of 2.55 Å. The ΔG value of the BHB-BBR system was −31.79 kJ/mol. Molecular dynamics simulation indicated the root mean square derivation of BBR-BHB was <0.025 nm, suggestive of stable conformation. Cumulatively, there was an erythrocyte-Hb self-assembled drug delivery system after oral or intravenous administration of BBR, which conceivably gained novel insight into the discrepancy between the extremely low plasma concentration and relatively high tissue concentration of BBR.
Collapse
Affiliation(s)
- Qiuxia Yu
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanbin Chen
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lieqiang Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoshu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
7
|
Heo CE, Kim M, Son MK, Hyun DG, Heo SW, Kim HI. Ion Mobility Mass Spectrometry Analysis of Oxygen Affinity-Associated Structural Changes in Hemoglobin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2528-2535. [PMID: 34463503 DOI: 10.1021/jasms.1c00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hemoglobin (Hb) is a major oxygen-transporting protein with allosteric properties reflected in the structural changes that accompany binding of O2. Glycated hemoglobin (GHb), which is a minor component of human red cell hemolysate, is generated by a nonenzymatic reaction between glucose and hemoglobin. Due to the long lifetime of human erythrocytes (∼120 days), GHb is widely used as a reliable biomarker for monitoring long-term glucose control in diabetic patients. Although the structure of GHb differs from that of Hb, structural changes relating to the oxygen affinity of these proteins remain incompletely understood. In this study, the oxygen-binding kinetics of Hb and GHb are evaluated, and their structural dynamics are investigated using solution small-angle X-ray scattering (SAXS), electrospray ionization mass spectrometry equipped with ion mobility spectrometry (ESI-IM-MS), and molecular dynamic (MD) simulations to understand the impact of structural alteration on their oxygen-binding properties. Our results show that the oxygen-binding kinetics of GHb are diminished relative to those of Hb. ESI-IM-MS reveals structural differences between Hb and GHb, which indicate the preference of GHb for a more compact structure in the gas phase relative to Hb. MD simulations also reveal an enhancement of intramolecular interactions upon glycation of Hb. Therefore, the more rigid structure of GHb makes the conformational changes that facilitate oxygen capture more difficult creating a delay in the oxygen-binding process. Our multiple biophysical approaches provide a better understanding of the allosteric properties of hemoglobin that are reflected in the structural alterations accompanying oxygen binding.
Collapse
Affiliation(s)
- Chae Eun Heo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Minji Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Sung Woo Heo
- Inorganic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Nagatomo S, Kitagawa T, Nagai M. Roles of Fe-Histidine bonds in stability of hemoglobin: Recognition of protein flexibility by Q Sepharose. Biophys J 2021; 120:2734-2745. [PMID: 34087219 DOI: 10.1016/j.bpj.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Using various mutants, we investigated to date the roles of the Fe-histidine (F8) bonds in cooperative O2 binding of human hemoglobin (Hb) and differences in roles between α- and β-subunits in the α2β2 tetramer. An Hb variant with a mutation in the heme cavity exhibited an unexpected feature. When the β mutant rHb (βH92G), in which the proximal histidine (His F8) of the β-subunit is replaced by glycine (Gly), was subjected to ion-exchange chromatography (Q Sepharose column) and eluted with an NaCl concentration gradient in the presence of imidazole, yielded two large peaks, whereas the corresponding α-mutant, rHb (αH87G), gave a single peak similar to Hb A. The β-mutant rHb proteins under each peak had identical isoelectric points according to isoelectric focusing electrophoresis. Proteins under each peak were further characterized by Sephadex G-75 gel filtration, far-UV CD, 1H NMR, and resonance Raman spectroscopy. We found that rHb (βH92G) exists as a mixture of αβ-dimers and α2β2 tetramers, and that hemes are released from β-subunits in a fraction of the dimers. An approximate amount of released hemes were estimated to be as large as 30% with Raman relative intensities. It is stressed that Q Sepharose columns can distinguish differences in structural flexibility of proteins having identical isoelectric points by altering the exit rates from the porous beads. Thus, the role of Fe-His (F8) bonds in stabilizing the Hb tetramer first described by Barrick et al. was confirmed in this study. In addition, it was found in this study that a specific Fe-His bond in the β-subunit minimizes globin structural flexibility.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan.
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan; School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
9
|
A triply modified human adult hemoglobin with low oxygen affinity, rapid autoxidation and high tetramer stability. Int J Biol Macromol 2020; 159:236-242. [DOI: 10.1016/j.ijbiomac.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
|
10
|
Girr P, Kilper J, Pohland AC, Paulsen H. The pigment binding behaviour of water-soluble chlorophyll protein (WSCP). Photochem Photobiol Sci 2020; 19:695-712. [PMID: 32338263 DOI: 10.1039/d0pp00043d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2023]
Abstract
Water-soluble chlorophyll proteins (WSCPs) are homotetrameric proteins that bind four chlorophyll (Chl) molecules in identical binding sites, which makes WSCPs a good model to study protein-pigment interactions. In a previous study, we described preferential binding of Chl a or Chl b in various WSCP versions. Chl b binding is preferred when a hydrogen bond can be formed between the C7 formyl of the chlorin macrocycle and the protein, whereas Chl a is preferred when Chl b binding is sterically unfavorable. Here, we determined the binding affinities and kinetics of various WSCP versions not only for Chl a/b, but also for chlorophyllide (Chlide) a/b and pheophytin (Pheo) a/b. Altered KD values are responsible for the Chl a/b selectivity in WSCP whereas differences in the reaction kinetics are neglectable in explaining different Chl a/b preferences. WSCP binds both Chlide and Pheo with a lower affinity than Chl, which indicates the importance of the phytol chain and the central Mg2+ ion as interaction sites between WSCP and pigment. Pheophorbide (Pheoide), lacking both the phytol chain and the central Mg2+ ion, can only be bound as Pheoide b to a WSCP that has a higher affinity for Chl b than Chl a, which underlines the impact of the C7 formyl-protein interaction. Moreover, WSCP was able to bind protochlorophyllide and Mg-protoporphyrin IX, which suggests that neither the size of the π electron system of the macrocycle nor the presence of a fifth ring at the macrocycle notably affect the binding to WSCP. WSCP also binds heme to form a tetrameric complex, suggesting that heme is bound in the Chl-binding site.
Collapse
Affiliation(s)
- Philipp Girr
- Institute of Molecular Physiology, Johannes Gutenberg-University Mainz, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Jessica Kilper
- Institute of Molecular Physiology, Johannes Gutenberg-University Mainz, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Anne-Christin Pohland
- Institute of Molecular Physiology, Johannes Gutenberg-University Mainz, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg-University Mainz, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.
| |
Collapse
|
11
|
Zozulia O, Korendovych IV. Semi-Rationally Designed Short Peptides Self-Assemble and Bind Hemin to Promote Cyclopropanation. Angew Chem Int Ed Engl 2020; 59:8108-8112. [PMID: 32128962 PMCID: PMC7274867 DOI: 10.1002/anie.201916712] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 11/11/2022]
Abstract
The self-assembly of short peptides gives rise to versatile nanoassemblies capable of promoting efficient catalysis. We have semi-rationally designed a series of seven-residue peptides that form hemin-binding catalytic amyloids to facilitate enantioselective cyclopropanation with efficiencies that rival those of engineered hemin proteins. These results demonstrate that: 1) Catalytic amyloids can bind complex metallocofactors to promote practically important multisubstrate transformations. 2) Even essentially flat surfaces of amyloid assemblies can impart a substantial degree of enantioselectivity without the need for extensive optimization. 3) The ease of peptide preparation allows for straightforward incorporation of unnatural amino acids and the preparation of peptides made from d-amino acids with complete reversal of enantioselectivity.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
12
|
Zozulia O, Korendovych IV. Semi‐Rationally Designed Short Peptides Self‐Assemble and Bind Hemin to Promote Cyclopropanation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oleksii Zozulia
- Department of ChemistrySyracuse University 111 College Place Syracuse NY 13244 USA
| | - Ivan V. Korendovych
- Department of ChemistrySyracuse University 111 College Place Syracuse NY 13244 USA
| |
Collapse
|
13
|
Slatinskaya OV, Luneva OG, Deev LI, Orlov SN, Maksimov GV. Conformational Changes that occur in Heme and Globin upon Temperature Variations and Normobaric Hypoxia. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Ponomarenko NS, Kokhan O, Pokkuluri PR, Mulfort KL, Tiede DM. Examination of abiotic cofactor assembly in photosynthetic biomimetics: site-specific stereoselectivity in the conjugation of a ruthenium(II) tris(bipyridine) photosensitizer to a multi-heme protein. PHOTOSYNTHESIS RESEARCH 2020; 143:99-113. [PMID: 31925630 PMCID: PMC6989566 DOI: 10.1007/s11120-019-00697-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 05/18/2023]
Abstract
To understand design principles for assembling photosynthetic biohybrids that incorporate precisely-controlled sites for electron injection into redox enzyme cofactor arrays, we investigated the influence of chirality in assembly of the photosensitizer ruthenium(II)bis(2,2'-bipyridine)(4-bromomethyl-4'-methyl-2,2'-bipyridine), Ru(bpy)2(Br-bpy), when covalently conjugated to cysteine residues introduced by site-directed mutagenesis in the triheme periplasmic cytochrome A (PpcA) as a model biohybrid system. For two investigated conjugates that show ultrafast electron transfer, A23C-Ru and K29C-Ru, analysis by circular dichroism spectroscopy, CD, demonstrated site-specific chiral discrimination as a factor emerging from the close association between [Ru(bpy)3]2+ and heme cofactors. CD analysis showed the A23C-Ru and K29C-Ru conjugates to have distinct, but opposite, stereoselectivity for the Λ and Δ-Ru(bpy)2(Br-bpy) enantiomers, with enantiomeric excesses of 33.1% and 65.6%, respectively. In contrast, Ru(bpy)2(Br-bpy) conjugation to a protein site with high flexibility, represented by the E39C-Ru construct, exhibited a nearly negligible chiral selectivity, measured by an enantiomeric excess of 4.2% for the Λ enantiomer. Molecular dynamics simulations showed that site-specific stereoselectivity reflects steric constraints at the conjugating sites and that a high degree of chiral selectivity correlates to reduced structural disorder for [Ru(bpy)3]2+ in the linked assembly. This work identifies chiral discrimination as means to achieve site-specific, precise geometric positioning of introduced photosensitizers relative to the heme cofactors in manner that mimics the tuning of cofactors in photosynthesis.
Collapse
Affiliation(s)
- Nina S Ponomarenko
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA.
| | - Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Phani R Pokkuluri
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - David M Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA.
| |
Collapse
|
15
|
Kobayashi H, Yamada Y, Kawahara N, Ogawa K, Yoshimoto C. Modern approaches to noninvasive diagnosis of malignant transformation of endometriosis. Oncol Lett 2018; 17:1196-1202. [PMID: 30655884 DOI: 10.3892/ol.2018.9721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
Endometriosis-associated ovarian cancer (EAOC) is a rare entity and has highly variable morphological presentations. Mural nodules can be seen in EAOC and benign ovarian endometrioma (OE), which causes a diagnostic dilemma. The differential diagnosis between early-stage EAOC with predominantly cystic appearances and benign OE remains a challenge for physicians. This study will summarize recent knowledge of diagnosis of malignant transformation of endometriosis that have been studied through an innovative approach based on a wide array of novel technologies. Using PubMed database, we focused on the biochemical and technical advancement in the differential diagnosis of benign and malignant endometriosis. Compared with the subjects with benign OE, cyst fluid hemoglobin and iron-related compounds levels were significantly lower in patients with EAOC. This observation opens up the possibility of early diagnosis before morphological variations are captured through ultrasonographic and magnetic resonance (MR) imaging diagnosis. The metallobiology technology offers one solution to this challenge. We discuss the noninvasive diagnosis of EAOC via various imaging methods, including electronic absorption spectroscopy, near infrared approach and MR transverse relaxometry. Special emphasis is given to recent advances in the noninvasive imaging modalities.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kenji Ogawa
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
16
|
Hall D, Takagi J, Nakamura H. Foreword to 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', a special issue in Honour of Fumio Arisaka's 70th birthday. Biophys Rev 2018; 10:105-129. [PMID: 29500796 PMCID: PMC5899743 DOI: 10.1007/s12551-018-0401-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
This issue of Biophysical Reviews, titled 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', is a collection of articles dedicated in honour of Professor Fumio Arisaka's 70th birthday. Initially, working in the fields of haemocyanin and actin filament assembly, Fumio went on to publish important work on the elucidation of structural and functional aspects of T4 phage biology. As his career has transitioned levels of complexity from proteins (hemocyanin) to large protein complexes (actin) to even more massive bio-nanomachinery (phage), it is fitting that the subject of this special issue is similarly reflective of his multiscale approach to structural biology. This festschrift contains articles spanning biophysical structure and function from the bio-molecular through to the bio-nanomachine level.
Collapse
Affiliation(s)
- Damien Hall
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
- Research School of Chemistry, Australian National University, Acton, ACT 2601 Australia
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|