1
|
Górska A, Trubalski M, Borowski B, Brachet A, Szymańczyk S, Markiewicz R. Navigating stem cell culture: insights, techniques, challenges, and prospects. Front Cell Dev Biol 2024; 12:1435461. [PMID: 39588275 PMCID: PMC11586186 DOI: 10.3389/fcell.2024.1435461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Stem cell research holds huge promise for regenerative medicine and disease modeling, making the understanding and optimization of stem cell culture a critical aspect of advancing these therapeutic applications. This comprehensive review provides an in-depth overview of stem cell culture, including general information, contemporary techniques, encountered problems, and future perspectives. The article begins by explaining the fundamental characteristics of various stem cell types, elucidating the importance of proper culture conditions in maintaining pluripotency or lineage commitment. A detailed exploration of established culture techniques sheds light on the evolving landscape of stem cell culture methodologies. Common challenges such as genetic stability, heterogeneity, and differentiation efficiency are thoroughly discussed, with insights into cutting-edge strategies and technologies aimed at addressing these hurdles. Moreover, the article delves into the impact of substrate materials, culture media components, and biophysical cues on stem cell behavior, emphasizing the intricate interplay between the microenvironment and cell fate decisions. As stem cell research advances, ethical considerations and regulatory frameworks become increasingly important, prompting a critical examination of these aspects in the context of culture practices. Lastly, the article explores emerging perspectives, including the integration of artificial intelligence and machine learning in optimizing culture conditions, and the potential applications of stem cell-derived products in personalized medicine. This comprehensive overview aims to serve as a valuable resource for researchers and clinicians, fostering a deeper understanding of stem cell culture and its key role in advancing regenerative medicine and biomedical research.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Adam Brachet
- Student Scientific Association, Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Renata Markiewicz
- Occupational Therapy Laboratory, Chair of Nursing Development, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
3
|
Kenworthy AK. What's past is prologue: FRAP keeps delivering 50 years later. Biophys J 2023; 122:3577-3586. [PMID: 37218127 PMCID: PMC10541474 DOI: 10.1016/j.bpj.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) has emerged as one of the most widely utilized techniques to quantify binding and diffusion kinetics of biomolecules in biophysics. Since its inception in the mid-1970s, FRAP has been used to address an enormous array of questions including the characteristic features of lipid rafts, how cells regulate the viscosity of their cytoplasm, and the dynamics of biomolecules inside condensates formed by liquid-liquid phase separation. In this perspective, I briefly summarize the history of the field and discuss why FRAP has proven to be so incredibly versatile and popular. Next, I provide an overview of the extensive body of knowledge that has emerged on best practices for quantitative FRAP data analysis, followed by some recent examples of biological lessons learned using this powerful approach. Finally, I touch on new directions and opportunities for biophysicists to contribute to the continued development of this still-relevant research tool.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
4
|
Shi Q, Zheng L, Na J, Li X, Yang Z, Chen X, Song Y, Li C, Zhou L, Fan Y. Fluid shear stress promotes periodontal ligament cells proliferation via p38-AMOT-YAP. Cell Mol Life Sci 2022; 79:551. [DOI: 10.1007/s00018-022-04591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
|
5
|
Tan L, Liu X, Dou H, Hou Y. Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment — specific factors involved in the regulation of MSC plasticity. Genes Dis 2022; 9:296-309. [PMID: 35224147 PMCID: PMC8843883 DOI: 10.1016/j.gendis.2020.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs), multipotent stromal cells, have attracted extensive attention in the field of regenerative medicine and cell therapy due to the capacity of self-renewal, multilineage differentiation, and immune regulation. MSCs have different cellular effects in different diseases, and even have markedly different curative effects with different tissue sources, indicating the plasticity of MSCs. The phenotypes, secreted factors, and proliferative, migratory, differentiating, and immunomodulatory effects of MSCs depend on certain mediators present in their microenvironment. Understanding microenvironmental factors and their internal mechanisms in MSC responses may help in subsequent prediction and improvement of clinical benefits. This review highlighted the recent advances in MSC plasticity in the physiological and pathological microenvironment and multiple microenvironmental factors regulating MSC plasticity. It also highlighted some progress in the underlying molecular mechanisms of MSC remodeling in the microenvironment. It might provide references for the improvement in vitro culture of MSCs, clinical application, and in vivo induction.
Collapse
|
6
|
Ene-Iordache B, Campiglio CE, Raimondi MT, Remuzzi A. Characterization of the Microflow Through 3D Synthetic Niche Microenvironments Hosted in a Millifluidic Bioreactor. Front Bioeng Biotechnol 2021; 9:799594. [PMID: 34976990 PMCID: PMC8718690 DOI: 10.3389/fbioe.2021.799594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Development of new medicines is a lengthy process with high risk of failure since drug efficacy measured in vitro is difficult to confirm in vivo. Intended to add a new tool aiding drug discovery, the MOAB-NICHOID device was developed: a miniaturized optically accessible bioreactor (MOAB) housing the 3D engineered scaffold NICHOID. The aim of our study was to characterize the microflow through the 3D nichoid microenvironment hosted in the MOAB-NICHOID device. Methods: We used computational fluid dynamics (CFD) simulations to compute the flow field inside a very fine grid resembling the scaffold microenvironment. Results: The microflow inside the multi-array of nichoid blocks is fed and locally influenced by the mainstream flow developed in the perfusion chamber of the device. Here we have revealed a low velocity, complex flow field with secondary, backward, or local recirculation micro-flows induced by the intricate architecture of the nichoid scaffold. Conclusion: Knowledge of the microenvironment inside the 3D nichoids allows planning of cell experiments, to regulate the transport of cells towards the scaffold substrate during seeding or the spatial delivery of nutrients and oxygen which affects cell growth and viability.
Collapse
Affiliation(s)
- Bogdan Ene-Iordache
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
- *Correspondence: Bogdan Ene-Iordache, ; Manuela Teresa Raimondi,
| | - Chiara Emma Campiglio
- Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- *Correspondence: Bogdan Ene-Iordache, ; Manuela Teresa Raimondi,
| | - Andrea Remuzzi
- Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Italy
| |
Collapse
|
7
|
Lamin A/C-Dependent Translocation of Megakaryoblastic Leukemia-1 and β-Catenin in Cyclic Strain-Induced Osteogenesis. Cells 2021; 10:cells10123518. [PMID: 34944031 PMCID: PMC8700688 DOI: 10.3390/cells10123518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Lamins are intermediate filaments that play a crucial role in sensing mechanical strain in the nucleus of cells. β-catenin and megakaryoblastic leukemia-1 (MKL1) are critical signaling molecules that need to be translocated to the nucleus for their transcription in response to mechanical strain that induces osteogenesis. However, the exact molecular mechanism behind the translocation of these molecules has not been fully investigated. This study used 10% cyclic strain to induce osteogenesis in the murine osteoblast precursor cell line (MC3T3). The translocation of β-catenin and MKL1 was studied by performing knockdown and overexpression of lamin A/C (LMNA). Cyclic strain increased the expression of osteogenic markers such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and enhanced ALP staining after seven days of incubation. Resultantly, MKL1 and β-catenin were translocated in the nucleus from the cytoplasm during the stress-induced osteogenic process. Knockdown of LMNA decreased the accumulation of MKL1 and β-catenin in the nucleus, whereas overexpression of LMNA increased the translocation of these molecules. In conclusion, our study indicates that both MKL1 and β-catenin molecules are dependent on the expression of LMNA during strain-induced osteogenesis.
Collapse
|
8
|
Mehrabi M, Morris TA, Cang Z, Nguyen CHH, Sha Y, Asad MN, Khachikyan N, Greene TL, Becker DM, Nie Q, Zaragoza MV, Grosberg A. A Study of Gene Expression, Structure, and Contractility of iPSC-Derived Cardiac Myocytes from a Family with Heart Disease due to LMNA Mutation. Ann Biomed Eng 2021; 49:3524-3539. [PMID: 34585335 PMCID: PMC8671287 DOI: 10.1007/s10439-021-02850-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Genetic mutations to the Lamin A/C gene (LMNA) can cause heart disease, but the mechanisms making cardiac tissues uniquely vulnerable to the mutations remain largely unknown. Further, patients with LMNA mutations have highly variable presentation of heart disease progression and type. In vitro patient-specific experiments could provide a powerful platform for studying this phenomenon, but the use of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) introduces heterogeneity in maturity and function thus complicating the interpretation of the results of any single experiment. We hypothesized that integrating single cell RNA sequencing (scRNA-seq) with analysis of the tissue architecture and contractile function would elucidate some of the probable mechanisms. To test this, we investigated five iPSC-CM lines, three controls and two patients with a (c.357-2A>G) mutation. The patient iPSC-CM tissues had significantly weaker stress generation potential than control iPSC-CM tissues demonstrating the viability of our in vitro approach. Through scRNA-seq, differentially expressed genes between control and patient lines were identified. Some of these genes, linked to quantitative structural and functional changes, were cardiac specific, explaining the targeted nature of the disease progression seen in patients. The results of this work demonstrate the utility of combining in vitro tools in exploring heart disease mechanics.
Collapse
Affiliation(s)
- Mehrsa Mehrabi
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Tessa A Morris
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Zixuan Cang
- Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Cecilia H H Nguyen
- Genetics & Genomics Division, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Yutong Sha
- Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Mira N Asad
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Nyree Khachikyan
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Taylor L Greene
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Danielle M Becker
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Michael V Zaragoza
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.,Genetics & Genomics Division, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA. .,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA. .,Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA. .,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA. .,The Henry Samueli School of Engineering, University of California, Irvine, 2418 Engineering Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Zhao G, Ge Y, Zhang C, Zhang L, Xu J, Qi L, Li W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr Pharm Des 2020; 26:2022-2037. [PMID: 32310043 DOI: 10.2174/1381612826666200420144805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.
Collapse
Affiliation(s)
- Guifang Zhao
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China
| | - Yiwen Ge
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Chenyingnan Zhang
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Leyi Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Junjie Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China.,School of Basic Medical Sciences, Department of Pathophysiology, Jilin Medical University, Jilin 132013, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
10
|
Dissecting the Effect of a 3D Microscaffold on the Transcriptome of Neural Stem Cells with Computational Approaches: A Focus on Mechanotransduction. Int J Mol Sci 2020; 21:ijms21186775. [PMID: 32942778 PMCID: PMC7555048 DOI: 10.3390/ijms21186775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
3D cell cultures are becoming more and more important in the field of regenerative medicine due to their ability to mimic the cellular physiological microenvironment. Among the different types of 3D scaffolds, we focus on the Nichoid, a miniaturized scaffold with a structure inspired by the natural staminal niche. The Nichoid can activate cellular responses simply by subjecting the cells to mechanical stimuli. This kind of influence results in different cellular morphology and organization, but the molecular bases of these changes remain largely unknown. Through RNA-Seq approach on murine neural precursors stem cells expanded inside the Nichoid, we investigated the deregulated genes and pathways showing that the Nichoid causes alteration in genes strongly connected to mechanobiological functions. Moreover, we fully dissected this mechanism highlighting how the changes start at a membrane level, with subsequent alterations in the cytoskeleton, signaling pathways, and metabolism, all leading to a final alteration in gene expression. The results shown here demonstrate that the Nichoid influences the biological and genetic response of stem cells thorough specific alterations of cellular signaling. The characterization of these pathways elucidates the role of mechanical manipulation on stem cells, with possible implications in regenerative medicine applications.
Collapse
|
11
|
Potekhina Y, Filatova A, Tregubova E, Mokhov D. Mechanosensitivity of Cells and Its Role in the Regulation of Physiological Functions and the Implementation of Physiotherapeutic Effects (Review). Sovrem Tekhnologii Med 2020; 12:77-89. [PMID: 34795996 PMCID: PMC8596276 DOI: 10.17691/stm2020.12.4.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 01/11/2023] Open
Abstract
Regulatory signals in the body are not limited to chemical and electrical ones. There is another type of important signals for cells: those are mechanical signals (coming from the environment or arising from within the body), which have been less known in the literature. The review summarizes new information on the mechanosensitivity of various cells of connective tissue and nervous system. Participation of mechanical stimuli in the regulation of growth, development, differentiation, and functioning of tissues is described. The data focus on bone remodeling, wound healing, neurite growth, and the formation of neural networks. Mechanotransduction, cellular organelles, and mechanosensitive molecules involved in these processes are discussed as well as the role of the extracellular matrix. The importance of mechanical characteristics of cells in the pathogenesis of diseases is highlighted. Finally, the possible role of mechanosensitivity in mediating the physiotherapeutic effects is addressed.
Collapse
Affiliation(s)
- Yu.P. Potekhina
- Professor, Department of Normal Physiology named after N.Y. Belenkov; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.I. Filatova
- Student, Faculty of Pediatrics; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.S. Tregubova
- Professor, Department of Osteopathy; North-Western State Medical University named after I.I. Mechnikov, 41 Kirochnaya St., Saint Petersburg, 191015, Russia; Associate Professor, Institute of Osteopathy; Saint Petersburg State University, 7/9 Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia
| | - D.E. Mokhov
- Head of the Department of Osteopathy; North-Western State Medical University named after I.I. Mechnikov, 41 Kirochnaya St., Saint Petersburg, 191015, Russia; Director of the Institute of Osteopathy Saint Petersburg State University, 7/9 Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia
| |
Collapse
|
12
|
Rey F, Barzaghini B, Nardini A, Bordoni M, Zuccotti GV, Cereda C, Raimondi MT, Carelli S. Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases. Cells 2020; 9:cells9071636. [PMID: 32646008 PMCID: PMC7407518 DOI: 10.3390/cells9071636] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds. In this review, recent advances in additive manufacturing techniques are presented and discussed, with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques, and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy. In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties are to be considered of great relevance for their subsequent translational applications. Moreover, this work reports numerous recent advances in neural diseases modelling and specifically focuses on pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Alessandra Nardini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| |
Collapse
|
13
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
14
|
Liu AQ, Zhang LS, Chen J, Sui BD, Liu J, Zhai QM, Li YJ, Bai M, Chen K, Jin Y, Hu CH, Jin F. Mechanosensing by Gli1 + cells contributes to the orthodontic force-induced bone remodelling. Cell Prolif 2020; 53:e12810. [PMID: 32472648 PMCID: PMC7260067 DOI: 10.1111/cpr.12810] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Gli1+ cells have received extensive attention in tissue homeostasis and injury mobilization. The aim of this study was to investigate whether Gli1+ cells respond to force and contribute to bone remodelling. Materials and methods We established orthodontic tooth movement (OTM) model to assess the bone response for mechanical force. The transgenic mice were utilized to label and inhibit Gli1+ cells, respectively. Additionally, mice that conditional ablate Yes‐associated protein (Yap) in Gli1+ cells were applied in the present study. The tooth movement and bone remodelling were analysed. Results We first found Gli1+ cells expressed in periodontal ligament (PDL). They were proliferated and differentiated into osteoblastic cells under tensile force. Next, both pharmacological and genetic Gli1 inhibition models were utilized to confirm that inhibition of Gli1+ cells led to arrest of bone remodelling. Furthermore, immunofluorescence staining identified classical mechanotransduction factor Yap expressed in Gli1+ cells and decreased after suppression of Gli1+ cells. Additionally, conditional ablation of Yap gene in Gli1+ cells inhibited the bone remodelling as well, suggesting Gli1+ cells are force‐responsive cells. Conclusions Our findings highlighted that Gli1+ cells in PDL directly respond to orthodontic force and further mediate bone remodelling, thus providing novel functional evidence in the mechanism of bone remodelling and first uncovering the mechanical responsive property of Gli1+ cells.
Collapse
Affiliation(s)
- An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Li-Shu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Jin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Qi-Ming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan-Jiao Li
- Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meng Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Kai Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Cheng-Hu Hu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020; 12:E905. [PMID: 32295115 PMCID: PMC7240703 DOI: 10.3390/polym12040905] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
Bone tissue is the structural component of the body, which allows locomotion, protects vital internal organs, and provides the maintenance of mineral homeostasis. Several bone-related pathologies generate critical-size bone defects that our organism is not able to heal spontaneously and require a therapeutic action. Conventional therapies span from pharmacological to interventional methodologies, all of them characterized by several drawbacks. To circumvent these effects, tissue engineering and regenerative medicine are innovative and promising approaches that exploit the capability of bone progenitors, especially mesenchymal stem cells, to differentiate into functional bone cells. So far, several materials have been tested in order to guarantee the specific requirements for bone tissue regeneration, ranging from the material biocompatibility to the ideal 3D bone-like architectural structure. In this review, we analyse the state-of-the-art of the most widespread polymeric scaffold materials and their application in in vitro and in vivo models, in order to evaluate their usability in the field of bone tissue engineering. Here, we will present several adopted strategies in scaffold production, from the different combination of materials, to chemical factor inclusion, embedding of cells, and manufacturing technology improvement.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Manuela T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| |
Collapse
|
16
|
Boeri L, Jacchetti E, Soncini M, Negro A, Albani D, Raimondi MT. Advantages and limitations of a supernegative GFP in facilitating MyoD intracellular tracking. Methods Appl Fluoresc 2020; 8:025007. [PMID: 32092706 DOI: 10.1088/2050-6120/ab797c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite intracellular molecular dynamics being fundamental to understand pathological, biomechanical or biochemical events, several processes are still not clear because of the difficulty of monitoring and measuring these phenomena. To engineer an effective fluorescent tool useful to improve protein intracellular tracking studies, we fused a supernegative green fluorescent protein, (-30)GFP, to a myogenic transcription factor, MyoD. The (-30)GFP-MyoD was able to pass the plasma membrane when complexed with cationic lipids. Fluorescence confocal microscopy showed the protein delivery in just 3 hours with high levels of protein transduction efficiency. Confocal acquisitions also confirmed the maintenance of the MyoD nuclear localization. To examine how the supernegative GFP influenced MyoD activity, we did gene expression analyses, which showed an inhibitory effect of (-30)GFP on transcription factor function. This negative effect was possibly due to a charge-driven interference mechanism, as suggested by further investigations by molecular dynamics simulations. Summarizing these results, despite the functional limitations related to the charge structural characteristics that specifically affected MyoD function, we found (-30)GFP is a suitable fluorescent label for improving protein intracellular tracking studies, such as nucleocytoplasmic transport in mechanotransduction.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
17
|
2019-A year in Biophysical Reviews. Biophys Rev 2019; 11:833-839. [PMID: 31741173 DOI: 10.1007/s12551-019-00607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
|
18
|
Ferrari A, Capitanio M, Vassalli M, Martinac B. Science by the sea: how nanoengineering met mechanobiology in Camogli. Biophys Rev 2019; 11:659-661. [PMID: 31529357 PMCID: PMC6815305 DOI: 10.1007/s12551-019-00598-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aldo Ferrari
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| | - Marco Capitanio
- LENS-European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Massimo Vassalli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, Genoa, Italy
| | - Boris Martinac
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia
| |
Collapse
|