1
|
Farrell JD, Dobnikar J, Podgornik R, Curk T. Spool-Nematic Ordering of dsDNA and dsRNA under Confinement. PHYSICAL REVIEW LETTERS 2024; 133:148101. [PMID: 39423415 DOI: 10.1103/physrevlett.133.148101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 08/12/2024] [Indexed: 10/21/2024]
Abstract
The ability of double-stranded DNA or RNA to locally melt and form kinks leads to strong nonlinear elasticity effects that qualitatively affect their packing in confined spaces. Using analytical theory and numerical simulation we show that kink formation entails a mixed spool-nematic ordering of double-stranded DNA or RNA in spherical capsids, consisting of an outer spool domain and an inner, twisted nematic domain. These findings explain the experimentally observed nematic domains in viral capsids and imply that nonlinear elasticity must be considered to predict the configurations and dynamics of double-stranded genomes in viruses, bacterial nucleoids or gene-delivery vehicles. The nonlinear elastic theory suggests that spool-nematic ordering is a general feature of strongly confined kinkable polymers.
Collapse
Affiliation(s)
- James D Farrell
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jure Dobnikar
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Rudolf Podgornik
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | |
Collapse
|
2
|
Khaykelson D, Asor R, Zhao Z, Schlicksup CJ, Zlotnick A, Raviv U. Guanidine Hydrochloride-Induced Hepatitis B Virus Capsid Disassembly Hysteresis. Biochemistry 2024; 63:1543-1552. [PMID: 38787909 PMCID: PMC11191408 DOI: 10.1021/acs.biochem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.
Collapse
Affiliation(s)
- Daniel Khaykelson
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Roi Asor
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zhongchao Zhao
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christopher John Schlicksup
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Uri Raviv
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Raviv U, Asor R, Shemesh A, Ginsburg A, Ben-Nun T, Schilt Y, Levartovsky Y, Ringel I. Insight into structural biophysics from solution X-ray scattering. J Struct Biol 2023; 215:108029. [PMID: 37741561 DOI: 10.1016/j.jsb.2023.108029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The current challenges of structural biophysics include determining the structure of large self-assembled complexes, resolving the structure of ensembles of complex structures and their mass fraction, and unraveling the dynamic pathways and mechanisms leading to the formation of complex structures from their subunits. Modern synchrotron solution X-ray scattering data enable simultaneous high-spatial and high-temporal structural data required to address the current challenges of structural biophysics. These data are complementary to crystallography, NMR, and cryo-TEM data. However, the analysis of solution scattering data is challenging; hence many different analysis tools, listed in the SAS Portal (http://smallangle.org/), were developed. In this review, we start by briefly summarizing classical X-ray scattering analyses providing insight into fundamental structural and interaction parameters. We then describe recent developments, integrating simulations, theory, and advanced X-ray scattering modeling, providing unique insights into the structure, energetics, and dynamics of self-assembled complexes. The structural information is essential for understanding the underlying physical chemistry principles leading to self-assembled supramolecular architectures and computational structural refinement.
Collapse
Affiliation(s)
- Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yaelle Schilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
4
|
Pezzotti G, Ohgitani E, Imamura H, Ikegami S, Shin-Ya M, Adachi T, Adachi K, Yamamoto T, Kanamura N, Marin E, Zhu W, Higasa K, Yasukochi Y, Okuma K, Mazda O. Raman Multi-Omic Snapshot and Statistical Validation of Structural Differences between Herpes Simplex Type I and Epstein-Barr Viruses. Int J Mol Sci 2023; 24:15567. [PMID: 37958551 PMCID: PMC10647490 DOI: 10.3390/ijms242115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Raman spectroscopy was applied to study the structural differences between herpes simplex virus Type I (HSV-1) and Epstein-Barr virus (EBV). Raman spectra were first collected with statistical validity on clusters of the respective virions and analyzed according to principal component analysis (PCA). Then, average spectra were computed and a machine-learning approach applied to deconvolute them into sub-band components in order to perform comparative analyses. The Raman results revealed marked structural differences between the two viral strains, which could mainly be traced back to the massive presence of carbohydrates in the glycoproteins of EBV virions. Clear differences could also be recorded for selected tyrosine and tryptophan Raman bands sensitive to pH at the virion/environment interface. According to the observed spectral differences, Raman signatures of known biomolecules were interpreted to link structural differences with the viral functions of the two strains. The present study confirms the unique ability of Raman spectroscopy for answering structural questions at the molecular level in virology and, despite the structural complexity of viral structures, its capacity to readily and reliably differentiate between different virus types and strains.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Saki Ikegami
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan;
| | - Keiji Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Koichiro Higasa
- Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-3-1 Shinmachi, Hirakata 573-1191, Japan; (K.H.); (Y.Y.)
| | - Yoshiki Yasukochi
- Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-3-1 Shinmachi, Hirakata 573-1191, Japan; (K.H.); (Y.Y.)
| | - Kazu Okuma
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| |
Collapse
|
5
|
Zielinski KA, Katz AM, Calvey GD, Pabit SA, Milano SK, Aplin C, San Emeterio J, Cerione RA, Pollack L. Chaotic advection mixer for capturing transient states of diverse biological macromolecular systems with time-resolved small-angle X-ray scattering. IUCRJ 2023; 10:363-375. [PMID: 37144817 PMCID: PMC10161774 DOI: 10.1107/s2052252523003482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Advances in time-resolved structural techniques, mainly in macromolecular crystallography and small-angle X-ray scattering (SAXS), allow for a detailed view of the dynamics of biological macromolecules and reactions between binding partners. Of particular promise, are mix-and-inject techniques, which offer a wide range of experimental possibility as microfluidic mixers are used to rapidly combine two species just prior to data collection. Most mix-and-inject approaches rely on diffusive mixers, which have been effectively used within crystallography and SAXS for a variety of systems, but their success is dependent on a specific set of conditions to facilitate fast diffusion for mixing. The use of a new chaotic advection mixer designed for microfluidic applications helps to further broaden the types of systems compatible with time-resolved mixing experiments. The chaotic advection mixer can create ultra-thin, alternating layers of liquid, enabling faster diffusion so that even more slowly diffusing molecules, like proteins or nucleic acids, can achieve fast mixing on timescales relevant to biological reactions. This mixer was first used in UV-vis absorbance and SAXS experiments with systems of a variety of molecular weights, and thus diffusion speeds. Careful effort was also dedicated to making a loop-loading sample-delivery system that consumes as little sample as possible, enabling the study of precious, laboratory-purified samples. The combination of the versatile mixer with low sample consumption opens the door to many new applications for mix-and-inject studies.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Andrea M. Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - George D. Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
| | - Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
- Department of Molecular Medicine, Cornell University, Ithaca, New York USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| |
Collapse
|
6
|
Paquete-Ferreira J, Leisico F, Correia MAS, Engrola FSS, Santos-Silva T, Santos MFA. Using Small-angle X-ray Scattering to Characterize Biological Systems: A General Overview and Practical Tips. Methods Mol Biol 2023; 2652:381-403. [PMID: 37093488 DOI: 10.1007/978-1-0716-3147-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Small-angle X-ray Scattering (SAXS) is a versatile and powerful technique with applications in a wide range of fields. The continuous improvements in hardware, data analysis software, and standards for validation significantly contributed to increase its popularity and, nowadays, SAXS is a well-established method. SAXS allows to study flexible and dynamic systems (e.g., proteins and other biomolecules) in solution, providing information about their size and shape. Contrary to other structural characterization methods, SAXS has no limitations on the size of the particle under study and can be used in integrated approaches to reveal important insights otherwise difficult to obtain regarding folding-unfolding, conformational changes, movement of flexible regions, and the formation of complexes.This chapter, in addition to a concise overview on the methodology, intends to systematically enumerate the main steps involved in sample preparation and data collection, processing and analysis including useful practical notes to identify and overcome common bottlenecks. This way, a less experienced user can use the content of the chapter as a starting point to properly design and perform a successful SAXS experiment.
Collapse
Affiliation(s)
- João Paquete-Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Francisco Leisico
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Márcia A S Correia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Filipa S S Engrola
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Marino F A Santos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
7
|
Overview of COVID-19 Disease: Virology, Epidemiology, Prevention Diagnosis, Treatment, and Vaccines. Biologics 2021. [DOI: 10.3390/biologics1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronaviruses belong to the “Coronaviridae family”, which causes various diseases, from the common cold to SARS and MERS. The coronavirus is naturally prevalent in mammals and birds. So far, six human-transmitted coronaviruses have been discovered. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019 in Wuhan, China. Common symptoms include fever, dry cough, and fatigue, but in acute cases, the disease can lead to severe shortness of breath, hypoxia, and death. According to the World Health Organization (WHO), the three main transmission routes, such as droplet and contact routes, airborne transmission and fecal and oral for COVID-19, have been identified. So far, no definitive curative treatment has been discovered for COVID-19, and the available treatments are only to reduce the complications of the disease. According to the World Health Organization, preventive measures at the public health level such as quarantine of the infected person, identification and monitoring of contacts, disinfection of the environment, and personal protective equipment can significantly prevent the outbreak COVID-19. Currently, based on the urgent needs of the community to control this pandemic, the BNT162b2 (Pfizer), mRNA-1273 (Moderna), CoronaVac (Sinovac), Sputnik V (Gamaleya Research Institute, Acellena Contract Drug Research, and Development), BBIBP-CorV (Sinofarm), and AZD1222 (The University of Oxford; AstraZeneca) vaccines have received emergency vaccination licenses from health organizations in vaccine-producing countries. Vasso Apostolopoulos, Majid Hassanzadeganroudsari
Collapse
|
8
|
Le DT, Müller KM. In Vitro Assembly of Virus-Like Particles and Their Applications. Life (Basel) 2021; 11:334. [PMID: 33920215 PMCID: PMC8069851 DOI: 10.3390/life11040334] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are increasingly used for vaccine development and drug delivery. Assembly of VLPs from purified monomers in a chemically defined reaction is advantageous compared to in vivo assembly, because it avoids encapsidation of host-derived components and enables loading with added cargoes. This review provides an overview of ex cella VLP production methods focusing on capsid protein production, factors that impact the in vitro assembly, and approaches to characterize in vitro VLPs. The uses of in vitro produced VLPs as vaccines and for therapeutic delivery are also reported.
Collapse
Affiliation(s)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| |
Collapse
|
9
|
Pilkington CP, Seddon JM, Elani Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys Chem Chem Phys 2021; 23:3693-3706. [PMID: 33533338 DOI: 10.1039/d0cp06226j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microfluidics has been proposed as an attractive alternative to conventional bulk methods used in the generation of self-assembled biomimetic structures, particularly where there is a desire for more scalable production. The approach also allows for greater control over the self-assembly process, and parameters such as particle architecture, size, and composition can be finely tuned. Microfluidic techniques used in the generation of microscale assemblies (giant vesicles and higher-order multi-compartment assemblies) are fairly well established. These tend to rely on microdroplet templation, and the resulting structures have found use as comparmentalised motifs in artificial cells. Challenges in generating sub-micron droplets have meant that reconfiguring this approach to form nano-scale structures is not straightforward. This is beginning to change however, and recent technological advances have instigated the manufacture and manipulation of an increasingly diverse repertoire of biomimetic nano-assemblies, including liposomes, polymersomes, hybrid particles, multi-lamellar structures, cubosomes, hexosomes, nanodiscs, and virus-like particles. The following review will discuss these higher-order self-assembled nanostructures, including their biochemical and industrial applications, and techniques used in their production and analysis. We suggest ways in which existing technologies could be repurposed for the enhanced design, manufacture, and exploitation of these structures and discuss potential challenges and future research directions. By compiling recent advances in this area, it is hoped we will inspire future efforts toward establishing scalable microfluidic platforms for the generation of biomimetic nanoparticles of enhanced architectural and functional complexity.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK and Department of Chemical Engineering, Exhibition Road, Imperial College London, London, SW7 2AZ, UK.
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Exhibition Road, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Lee JH, Shim J, Kim SJ. Stunning symmetries involved in the self-assembly of the HSV-1 capsid. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2021; 78:357-364. [PMID: 33584000 PMCID: PMC7871024 DOI: 10.1007/s40042-020-00044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process. We suggest small angle X-ray scattering as a suitable method to capture the dynamics of self-assembly. Furthermore, our understanding of the viruses can be expanded by using an integrative approach that combines heterogeneous types of data, thus promoting new diagnostic tools and a cure for viral infections.
Collapse
Affiliation(s)
- Joo-hyeon Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Jaehyu Shim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| |
Collapse
|
11
|
Waltmann C, Asor R, Raviv U, Olvera de la Cruz M. Assembly and Stability of Simian Virus 40 Polymorphs. ACS NANO 2020; 14:4430-4443. [PMID: 32208635 PMCID: PMC7232851 DOI: 10.1021/acsnano.9b10004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding viral assembly pathways is of critical importance to biology, medicine, and nanotechology. Here, we study the assembly path of a system with various structures, the simian vacuolating virus 40 (SV40) polymorphs. We simulate the templated assembly process of VP1 pentamers, which are the constituents of SV40, into icosahedal shells made of N = 12 pentamers (T = 1). The simulations include connections formed between pentamers by C-terminal flexible lateral units, termed here "C-terminal ligands", which are shown to control assembly behavior and shell dynamics. The model also incorporates electrostatic attractions between the N-terminal peptide strands (ligands) and the negatively charged cargo, allowing for agreement with experiments of RNA templated assembly at various pH and ionic conditions. During viral assembly, pentamers bound to any template increase its effective size due to the length and flexibility of the C-terminal ligands, which can connect to other VP1 pentamers and recruit them to a partially completed capsid. All closed shells formed other than the T = 1 feature the ability to dynamically rearrange and are thus termed "pseudo-closed". The N = 13 shell can even spontaneously "self-correct" by losing a pentamer and become a T = 1 capsid when the template size fluctuates. Bound pentamers recruiting additional pentamers to dynamically rearranging capsids allow closed shells to continue growing via the pseudo-closed growth mechanism, for which experimental evidence already exists. Overall, we show that the C-terminal ligands control the dynamic assembly paths of SV40 polymorphs.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Asor R, Schlicksup CJ, Zhao Z, Zlotnick A, Raviv U. Rapidly Forming Early Intermediate Structures Dictate the Pathway of Capsid Assembly. J Am Chem Soc 2020; 142:7868-7882. [PMID: 32233479 PMCID: PMC7242811 DOI: 10.1021/jacs.0c01092] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are ∼1030 possible intermediates on the assembly path from hepatitis B capsid protein dimers to the 120-dimer capsid. If every intermediate was tested, assembly would often get stuck in an entropic trap and essentially every capsid would follow a unique assembly path. Yet, capsids assemble rapidly with minimal trapped intermediates, a realization of the Levinthal paradox. To understand the fundamental mechanisms of capsid assembly, it is critical to resolve the early stages of the reaction. We have used time-resolved small angle X-ray scattering, which is sensitive to solute size and shape and has millisecond temporal resolution. Scattering curves were fit to a thermodynamically curated library of assembly intermediates, using the principle of maximum entropy. Maximum entropy also provides a physical rationale for the selection of species. We found that the capsid assembly pathway was exquisitely sensitive to initial assembly conditions. With the mildest conditions tested, the reaction appeared to be two-state from dimer to 120-dimer capsid with some dimers-of-dimers and trimers-of-dimers. In slightly more aggressive conditions, we observed transient accumulation of a decamer-of-dimers and the appearance of 90-dimer capsids. In conditions where there is measurable kinetic trapping, we found that highly diverse early intermediates accumulated within a fraction of a second and propagated into long-lived kinetically trapped states (≥90-mer). In all cases, intermediates between 35 and 90 subunits did not accumulate. These results are consistent with the presence of low barrier paths that connect early and late intermediates and direct the ultimate assembly path to late intermediates where assembly can be paused.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Christopher John Schlicksup
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Zhongchao Zhao
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
13
|
Hall D. A new decade for Biophysical Reviews and a look into the future of biophysics. Biophys Rev 2020; 12:1-7. [PMID: 31997161 PMCID: PMC7040127 DOI: 10.1007/s12551-020-00622-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
This Editorial for Volume 12 Issue 1 first describes the contents of the current issue before informing on a few of the developments occurring in Biophysical Reviews during 2020. Notable items include the announcement of the (i) inaugural winner of the Michèle Auger Award for Young Scientists' Independent Research and (ii) lineup of Special Issue topics for 2020. This Editorial concludes with a short forward-looking discussion piece on the future of biophysics as an increasingly important and vital sub-discipline of modern scientific research.
Collapse
Affiliation(s)
- Damien Hall
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bld. 8, Bethesda, MD, 20892-0830, USA.
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|