1
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
2
|
Wirtz BM, Yun AG, Wick C, Gao XJ, Mai DJ. Protease-Driven Phase Separation of Elastin-Like Polypeptides. Biomacromolecules 2024; 25:4898-4904. [PMID: 38980747 DOI: 10.1021/acs.biomac.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Elastin-like polypeptides (ELPs) are a promising material platform for engineering stimuli-responsive biomaterials, as ELPs undergo phase separation above a tunable transition temperature. ELPs with phase behavior that is isothermally regulated by biological stimuli remain attractive for applications in biological systems. Herein, we report protease-driven phase separation of ELPs. Protease-responsive "cleavable" ELPs comprise a hydrophobic ELP block connected to a hydrophilic ELP block by a protease cleavage site linker. The hydrophilic ELP block acts as a solubility tag for the hydrophobic ELP block, creating a temperature window in which the cleavable ELP reactant is soluble and the proteolytically generated hydrophobic ELP block is insoluble. Within this temperature window, isothermal, protease-driven phase separation occurs when a critical concentration of hydrophobic cleavage product accumulates. Furthermore, protease-driven phase separation is generalizable to four compatible protease-cleavable ELP pairings. This work presents exciting opportunities to regulate ELP phase behavior in biological systems using proteases.
Collapse
Affiliation(s)
- Brendan M Wirtz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Allison G Yun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Chloe Wick
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Yousaf S, Arshad M, Harraz FA, Masood R, Zia MA, Jalalah M, Faisal M. Evaluation of clinical efficacy of streptokinase by comparison with the thrombolytic agent on animal model. BRAZ J BIOL 2024; 84:e271083. [PMID: 38422281 DOI: 10.1590/1519-6984.271083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/06/2024] [Indexed: 03/02/2024] Open
Abstract
Cardiovascular disorders, including acute myocardial infarction (AMI), often lead to blood clot formation, impacting blood circulation. Streptokinase, a cost-effective and widely available thrombolytic agent, is crucial in treating thrombosis. This study aimed to produce streptokinase from Streptococcus pyogenes EBL-48 and compare its efficacy with heparin in an animal model. We evaluated the clot-lysing effectiveness of streptokinase produced from Streptococcus pyogenes EBL-48, emphasizing its low cost and ease of production. Streptokinase was produced using pre-optimized fermentation media and purified through ion exchange and gel-filtration chromatography. In vivo analysis involved inducing clots in a trial animal model using ferric chloride, comparing streptokinase with heparin. Ultrasonography assessed the clot-lysing activity of streptokinase. Streptokinase (47 kDa) effectively lysed clots, proving its low cost, easy production, and minimal adverse effects. Ultrasonography confirmed its fibrinolytic efficacy. These findings highlight potential as an affordable and easily produced thrombolytic agent, particularly relevant in resource-limited settings. Streptokinase efficacy and minimal adverse effects make it a promising option for thrombolytic therapy, especially in economically constrained regions. Future studies could optimize production techniques, explore different strains, and conduct clinical trials for human validation. Comparative studies with other thrombolytic agents would enhance understanding of their advantages and limitations.
Collapse
Affiliation(s)
- S Yousaf
- University of Agriculture Faisalabad, Department of Biochemistry, Enzyme Biotechnology Laboratory, Faisalabad, Pakistan
| | - M Arshad
- University of Veterinary and Animal Sciences Lahore, Department of Basic Sciences, Jhang, Pakistan
| | - F A Harraz
- Najran University, Advanced Materials and Nano-Research Centre - AMNRC, Najran, Saudi Arabia
- Najran University, Faculty of Science and Arts at Sharurah, Department of Chemistry, Sharurah Saudi Arabia
| | - R Masood
- Shaheed Benazir Bhutto Women University, Department of Biochemistry, Peshawar, Pakistan
| | - M A Zia
- University of Agriculture Faisalabad, Department of Biochemistry, Enzyme Biotechnology Laboratory, Faisalabad, Pakistan
| | - M Jalalah
- Najran University, Advanced Materials and Nano-Research Centre - AMNRC, Najran, Saudi Arabia
- Najran University, College of Engineering, Department of Electrical Engineering, Najran, Saudi Arabia
| | - M Faisal
- Najran University, Advanced Materials and Nano-Research Centre - AMNRC, Najran, Saudi Arabia
- Najran University, Faculty of Science and Arts, Department of Chemistry, Najran, Saudi Arabia
| |
Collapse
|
4
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
5
|
Pichon TJ, White NJ, Pun SH. ENGINEERED INTRAVENOUS THERAPIES FOR TRAUMA. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 27:100456. [PMID: 37456984 PMCID: PMC10343715 DOI: 10.1016/j.cobme.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Trauma leading to severe hemorrhage and shock on average kills patients within 3 to 6 hours after injury. With average prehospital transport times reaching 1-6 hours in low- to middle-income countries, stopping the bleeding and reversing hemorrhagic shock is vital. First-generation intravenous hemostats rely on traditional drug delivery platforms, such as self-assembling systems, fabricated nanoparticles, and soluble polymers due to their active targeting, biodistribution, and safety. We discuss some challenges translating these therapies to patients, as very few have successfully made it through preclinical evaluation in large-animals, and none have translated to the clinic. Finally, we discuss the physiology of hemorrhagic shock, highlight a new low volume resuscitant (LVR) PEG-20k, and end with considerations for the rational design of LVRs.
Collapse
Affiliation(s)
- Trey J. Pichon
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15 Avenue NE, Box 355061, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| | - Nathan J. White
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| | - Suzie H. Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15 Avenue NE, Box 355061, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| |
Collapse
|
6
|
Tame J, Berliner L, Shaitan K, Hall D. Editors' roundup: April 2023. Biophys Rev 2023; 15:157-160. [PMID: 37113564 PMCID: PMC10091333 DOI: 10.1007/s12551-023-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The IUPAB Biophysical Reviews journal provides a regular forum, known as the "Editors' Roundup," that is available to editorial board members of any biophysics-related journal to contribute a personal recommendation of articles appearing within their publications. This latest Issue of the Editors' Roundup carries recommendations from editorial board members associated with the following journals, Cell Biochemistry and Biophysics, Biophysics, and the Biophysical Reviews journal.
Collapse
Affiliation(s)
- Jeremy Tame
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Lawrence Berliner
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA
| | | | - Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, Kanazawa, 920-1164 Japan
| |
Collapse
|
7
|
Singh R, Kumar S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2283. [PMID: 35808119 PMCID: PMC9268713 DOI: 10.3390/nano12132283] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Cancer belongs to a category of disorders characterized by uncontrolled cell development with the potential to invade other bodily organs, resulting in an estimated 10 million deaths globally in 2020. With advancements in nanotechnology-based systems, biomedical applications of nanomaterials are attracting increasing interest as prospective vehicles for targeted cancer therapy and enhancing treatment results. In this context, carbon nanotubes (CNTs) have recently garnered a great deal of interest in the field of cancer diagnosis and treatment due to various factors such as biocompatibility, thermodynamic properties, and varied functionalization. In the present review, we will discuss recent advancements regarding CNT contributions to cancer diagnosis and therapy. Various sensing strategies like electrochemical, colorimetric, plasmonic, and immunosensing are discussed in detail. In the next section, therapy techniques like photothermal therapy, photodynamic therapy, drug targeting, gene therapy, and immunotherapy are also explained in-depth. The toxicological aspect of CNTs for biomedical application will also be discussed in order to ensure the safe real-life and clinical use of CNTs.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
8
|
Hall D. Biophysical Reviews: focusing on an issue. Biophys Rev 2022; 14:413-416. [PMID: 35528037 PMCID: PMC9043064 DOI: 10.1007/s12551-022-00953-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
This Issue of Biophysical Reviews (Volume 14, Issue 2) presents a new feature known as an 'Issue Focus' - a contiguous thematic block of five articles placed within a regular Issue format. The current 'Issue Focus' is concerned with the recent developments in Costa Rican biophysical science. The regular aspect of this Issue consists of a 'Meet the Editor' piece by Sabrina Leslie, the first instalment of an ongoing Commentary feature known as the 'Editors' Roundup', and five disparate review articles covering a variety of topics.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute. Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|