1
|
Meron S, Peleg S, Shenberger Y, Hofmann L, Gevorkyan-Airapetov L, Ruthstein S. Tracking Disordered Extracellular Domains of Membrane Proteins in the Cell with Cu(II)-Based Spin Labels. J Phys Chem B 2024; 128:8908-8914. [PMID: 39231533 PMCID: PMC11421077 DOI: 10.1021/acs.jpcb.4c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In-cell electron paramagnetic resonance (EPR) spectroscopy experiments provide high-resolution data about conformational changes of proteins within the cell. However, one of the limitations of EPR is the requisite of stable paramagnetic centers in a reducing environment. We recently showed that histidine-rich sites in proteins hold a high affinity to Cu(II) ions complexed with a chelator. Using a chelator prevents the reduction of Cu(II) ions. Moreover, this spin-labeling methodology can be performed within the native cellular environment on any overexpressed protein without protein purification and delivery to the cell. Herein, we use this novel methodology to gain spatial information on the extracellular domain of the human copper transporter, hCtr1. Limited structural information on the transmembrane domain of the human Ctr1 (hCtr1) was obtained using X-ray crystallography and cryo-EM. However, these structures are missing information on the disordered extracellular domains of hCtr1. Extracellular domains are sensing or interacting with the environment outside of the cell and therefore play an essential role in any transmembrane protein. Especially in hCtr1, the extracellular domain functions as a gating mechanism for copper ions. Here, we performed EPR experiments revealing structural information about the extracellular N-terminal domain of the full-length hCtr1 in vitro and in situ in insect cells and cell membrane fragments. The comparison revealed that the extracellular domains of the in situ and native membrane hCtr1 are further apart than the structure of the purified protein. These method-related differences highlight the significance of studying membrane proteins in their native environment.
Collapse
Affiliation(s)
- Shelly Meron
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Shahaf Peleg
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Yulia Shenberger
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Lukas Hofmann
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Lada Gevorkyan-Airapetov
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Sharon Ruthstein
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| |
Collapse
|
2
|
Hirsch M, Hofmann L, Yakobov I, Kahremany S, Sameach H, Shenberger Y, Gevorkyan-Airapetov L, Ruthstein S. An efficient EPR spin-labeling method enables insights into conformational changes in DNA. BIOPHYSICAL REPORTS 2024; 4:100168. [PMID: 38945453 PMCID: PMC11298882 DOI: 10.1016/j.bpr.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Electron paramagnetic resonance (EPR) is a powerful tool for elucidating both static and dynamic conformational alterations in macromolecules. However, to effectively utilize EPR for such investigations, the presence of paramagnetic centers, known as spin labels, is required. The process of spin labeling, particularly for nucleotides, typically demands intricate organic synthesis techniques. In this study, we introduce a unique addition-elimination reaction method with a simple spin-labeling process, facilitating the monitoring of structural changes within nucleotide sequences. Our investigation focuses on three distinct labeling positions with a DNA sequence, allowing the measurement of distance between two spin labels. The experimental mean distances obtained agreed with the calculated distances, underscoring the efficacy of this straightforward spin-labeling approach in studying complex biological processes such as transcription mechanism using EPR measurements.
Collapse
Affiliation(s)
- Melanie Hirsch
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Idan Yakobov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Shirin Kahremany
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Hila Sameach
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
3
|
Yasin A, Mandato A, Hofmann L, Igbaria-Jaber Y, Shenberger Y, Gevorkyan-Airapetov L, Saxena S, Ruthstein S. The Dynamic Plasticity of P. aeruginosa CueR Copper Transcription Factor upon Cofactor and DNA Binding. Chembiochem 2024; 25:e202400279. [PMID: 38776258 DOI: 10.1002/cbic.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
Bacteria use specialized proteins, like transcription factors, to rapidly control metal ion balance. CueR is a Gram-negative bacterial copper regulator. The structure of E. coli CueR complexed with Cu(I) and DNA was published, since then many studies have shed light on its function. However, P. aeruginosa CueR, which shows high sequence similarity to E. coli CueR, has been less studied. Here, we applied room-temperature electron paramagnetic resonance (EPR) measurements to explore changes in dynamics of P. aeruginosa CueR in dependency of copper concentrations and interaction with two different DNA promoter regions. We showed that P. aeruginosa CueR is less dynamic than the E. coli CueR protein and exhibits much higher sensitivity to DNA binding as compared to its E. coli CueR homolog. Moreover, a difference in dynamical behavior was observed when P. aeruginosa CueR binds to the copZ2 DNA promoter sequence compared to the mexPQ-opmE promoter sequence. Such dynamical differences may affect the expression levels of CopZ2 and MexPQ-OpmE proteins in P. aeruginosa. Overall, such comparative measurements of protein-DNA complexes derived from different bacterial systems reveal insights about how structural and dynamical differences between two highly homologous proteins lead to quite different DNA sequence-recognition and mechanistic properties.
Collapse
Affiliation(s)
- Ameer Yasin
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Yasmin Igbaria-Jaber
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| |
Collapse
|
4
|
Igbaria-Jaber Y, Hofmann L, Gevorkyan-Airapetov L, Shenberger Y, Ruthstein S. Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy. ACS OMEGA 2023; 8:39886-39895. [PMID: 37901548 PMCID: PMC10601412 DOI: 10.1021/acsomega.3c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
In pathogens, a unique class of metalloregulator proteins, called gene regulatory proteins, sense specific metal ions that initiate gene transcription of proteins that export metal ions from the cell, thereby preventing toxicity and cell death. CsoR is a metalloregulator protein found in various bacterial systems that "sense" Cu(I) ions with high affinity. Upon copper binding, CsoR dissociates from the DNA promoter region, resulting in initiation of gene transcription. Crystal structures of CsoR in the presence and absence of Cu(I) from various bacterial systems have been reported, suggesting either a dimeric or tetrameric structure of these helical proteins. However, structural information about the CsoR-DNA complex is missing. Here, we applied electron paramagnetic resonance (EPR) spectroscopy to follow the conformational and dynamical changes that Mycobacterium tuberculosis CsoR undergoes upon DNA binding in solution. We showed that the quaternary structure is predominantly dimeric in solution, and only minor conformational and dynamical changes occur in the DNA bound state. Also, labeling of the unresolved C- terminus revealed no significant change in dynamics upon DNA binding. These observations are unique, since for other bacterial copper metalloregulators, such as the MerR and CopY families, major conformational changes were observed upon DNA binding, indicating a different mode of action for this protein family.
Collapse
Affiliation(s)
- Yasmin Igbaria-Jaber
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
5
|
Hall D. Biophysical Reviews: Publishing short and critical reviews written by key figures in the field. Biophys Rev 2022; 14:1067-1074. [PMID: 36285290 PMCID: PMC9584243 DOI: 10.1007/s12551-022-01009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
This Editorial for Issue 5 (Vol. 14 2022) of Biophysical Reviews begins with a short note of commemoration for the journal's founding chief editor Jean Garnier (1929-2022) who sadly passed away this month. Following this is a precis of the current Issue contents that begins with an introduction of the prizewinning article by Assoc. Prof. Miho Yanagisawa, winner of the 2022 Michèle Auger Award for Young Scientists' Independent Research. This Editorial concludes with a brief and somewhat subjective discussion of what features do and don't, help to make for a 'good journal'.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|