1
|
Coroneo V, Corrias F, Brutti A, Addis P, Scano E, Angioni A. Effect of High-Pressure Processing on Fresh Sea Urchin Gonads in Terms of Shelf Life, Chemical Composition, and Microbiological Properties. Foods 2022; 11:foods11030260. [PMID: 35159412 PMCID: PMC8834343 DOI: 10.3390/foods11030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Paracentrotus lividus is a widespread sea urchin species appreciated worldwide for the taste of its fresh gonads. High-pressure processing (HPP) can provide a thermal equivalent to pasteurization, maintaining the organoleptic properties of the raw gonads. This study evaluated HPP technology’s effect at 350 MPa and 500 MPa on microbial inactivation and biochemical characteristics of P. lividus gonads. HPP at 350 MPa resulted in a higher decrease in protein and free amino acids associated with a loss of olfactory, color, and gustatory traits and a visual alteration of the texture. On the other hand, gonad samples stored for 40 days after treatments at 500 MPa showed a good organoleptic profile similar to fresh gonads. Furthermore, only 500 MPa effectively reduced mesophilic bacteria contamination among the two HPP treatments carried out. Total lipids increased during storage; however, the SAFA/PUFA rate was homogeneous during HPP trials ranging from 2.61–3.91 g/100 g. Total protein decreased more than 40% after HPP at 350 MPa, whereas, after 500 MPa, it remained stable for 20 days. The amount of free amino acid constantly decreased during storage after HPP at 350 MPa and remained constant at 500 MPa. HPP can effectively remove the bacterial flora and inactivate enzymes, maintaining the properties of the fresh sea urchin gonads.
Collapse
Affiliation(s)
- Valentina Coroneo
- Department of Medical Science and Public Health, Food Hygiene Laboratory, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy;
| | - Francesco Corrias
- Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy; (F.C.); (P.A.)
| | - Andrea Brutti
- Experimental Station for the Food Preservation Industry—Research Foundation, Viale Tanara 31/a, 43121 Parma, Italy;
| | - Piero Addis
- Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy; (F.C.); (P.A.)
| | - Efisio Scano
- Faculty of Agraria, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy;
| | - Alberto Angioni
- Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy; (F.C.); (P.A.)
- Correspondence: ; Tel.: +39-07-0675-8615; Fax: +39-07-0675-8612
| |
Collapse
|
2
|
Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Heinz V. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20:3225-3266. [PMID: 34056857 DOI: 10.1111/1541-4337.12763] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.
Collapse
Affiliation(s)
- Kemal Aganovic
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Christian Hertel
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Rudi F Vogel
- Technical University of Munich (TUM), Munich, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | | | - Henry Jäger
- University of Natural Resources and Life Sciences (BOKU), Wien, Austria
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany
| | | | - Angelika Roth
- Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany
| | - Robert Sevenich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Technical University of Berlin (TUB), Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Volker Heinz
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| |
Collapse
|
3
|
Johne R, Wolff A, Gadicherla AK, Filter M, Schlüter O. Stability of hepatitis E virus at high hydrostatic pressure processing. Int J Food Microbiol 2020; 339:109013. [PMID: 33340943 DOI: 10.1016/j.ijfoodmicro.2020.109013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/26/2023]
Abstract
Hepatitis E virus (HEV) is the causative agent of acute and chronic hepatitis in humans. The zoonotic HEV genotype 3 is the main genotype in Europe. The foodborne transmission via consumption of meat and meat products prepared from infected pigs or wild boars is considered the major transmission route of this genotype. High hydrostatic pressure processing (HPP) is a technique, which can be used for inactivation of pathogens in food. Here, preparations of a cell culture-adapted HEV genotype 3 strain in phosphate-buffered saline (PBS) were subjected to HPP and the remaining infectivity was titrated in cell culture by counting fluorescent foci of replicating virus. A gradual decrease in infectivity was found by application of 100 to 600 MPa for 2 min. At 20 °C, infectivity reduction of 0.5 log10 at 200 MPa and 1 log10 at 400 MPa were observed. Slightly higher infectivity reduction of 1 log10 at 200 MPa and 2 log10 at 400 MPa were found by application of the pressure at 4 °C. At both temperatures, the virus was nearly completely inactivated (>3.5 log10 infectivity decrease) at 600 MPa; however, low amounts of remaining infectious virus were observed in one of three replicates in both cases. Transmission electron microscopy showed disassembled and distorted particles in the preparations treated with 600 MPa. Time-course experiments at 400 MPa showed a continuous decline of infectivity from 30 s to 10 min, leading to a 2 log10 infectivity decrease at 20 °C and to a 2.5 log10 infectivity decrease at 4 °C for a 10 min pressure application each. Predictive models for inactivation of HEV by HPP were generated on the basis of the generated data. The results show that HPP treatment can reduce HEV infectivity, which is mainly dependent on pressure height and duration of the HPP treatment. Compared to other viruses, HEV appears to be relatively stable against HPP and high pressure/long time combinations have to be applied for significant reduction of infectivity.
Collapse
Affiliation(s)
- R Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - A Wolff
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - A K Gadicherla
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - M Filter
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - O Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, Germany
| |
Collapse
|
4
|
Kim SH, Shahbaz HM, Park D, Chun S, Lee W, Oh JW, Lee DU, Park J. A combined treatment of UV-assisted TiO2 photocatalysis and high hydrostatic pressure to inactivate internalized murine norovirus. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Sánchez G. Processing Strategies to Inactivate Hepatitis A Virus in Food Products: A Critical Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12154] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gloria Sánchez
- Dept. of Microbiology and Ecology; Univ. of Valencia, Dr. Moliner; 50. Burjassot Valencia Spain
- Inst. of Agrochemistry and Food Technology (IATA); Spanish Council for Scientific Research (CSIC); Agustín Escardino, 7. Paterna Valencia Spain
| |
Collapse
|