1
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Elfellaki N, Berrouch S, Biary A, Goïta S, Rafi H, Lachkar H, Dehhani O, de Rougemont A, Bourlet T, Hafid JE. Comparison of four concentration methods of adenovirus, norovirus and rotavirus in tap water. J Virol Methods 2024; 330:115013. [PMID: 39209160 DOI: 10.1016/j.jviromet.2024.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Human enteric viruses, as adenovirus (HAdV), norovirus (HuNoV) and rotavirus (RVA) are significant causes of gastroenteritis associated with consumption of contaminated water worldwide. Various methods have been described for their detection and monitoring in water. The aim of this study was to compare the performance of four conditions for concentrating HAdV, HuNoV and RVA from water matrices, in order to develop a single protocol that could simultaneously concentrate all target viruses from tap water. The tested conditions were based on the adsorption-elution using electronegative filters, in which we evaluated cation-coated filtration by MgCl2 with or without acid rinse by H2SO4 and two elution buffers, namely NaOH and tris-glycine-beef extract. Genomic material was extracted and amplified by real-time PCR and real-time RT-PCR using commercial kits. Based on the statistical analysis of amplification results (cycles of quantification), the condition involving cation-coated filtration by MgCl2 using electronegative filters with acid rinse by H2SO4 combined with NaOH elution allowed efficient recovery of both HAdV, HuNoV and RVA from tap water compared to the other conditions. These findings confirm the effectiveness of the approach used to monitor three major enteric viruses in tap water.
Collapse
Affiliation(s)
- Nouhaila Elfellaki
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Salma Berrouch
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco; Higher School of Technology of El Kelâa des Sraghna, Cadi Ayyad University, El Kelâa des Sraghna, Morocco
| | - Abdelkader Biary
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Simeon Goïta
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Houda Rafi
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Hibatallah Lachkar
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Oussama Dehhani
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon Bourgogne, France
| | - Thomas Bourlet
- Infectious Agents and Hygiene Department, University Hospital of Saint Etienne, Saint-Etienne, France
| | - Jamal Eddine Hafid
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
3
|
Smithers JP, Sheu J, Richardson B, Hayes MA. NanoRidge filters: Fabrication strategies and performance optimization for nano-scale microfluidic particle filtration. BIOMICROFLUIDICS 2024; 18:054102. [PMID: 39247800 PMCID: PMC11379496 DOI: 10.1063/5.0210149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Filters with high throughput, minimal dead volume, and greater sensitivity to particle size are needed, which traditional benchtop filtration cannot provide. Leveraging microfabrication techniques developed by the electronics and optics industries, the filters presented here feature a unique serpentine "NanoRidge" structure, offering a continuous filtration gap spanning over three meters on a compact 4 × 14.5 mm2 footprint. This design provides more precise size filtration cut-offs and consistent flow paths compared to traditional membrane filtration systems. Despite challenges associated with glass substrate deformation impacting uniform filter gap sizes, the study provides valuable insights into the development of NanoRidge filters (NRFs) for enhancing filtration efficiency in preparatory techniques and sample analysis. This study describes the fabrication and testing of these new filter types and directly compares the performance to traditional membrane filters using the metrics of particle size cut-off (the smallest difference in particle size which can be filtered vs passed) and particle loss. The NanoRidge filters were characterized using imaging (during fabrication, post-fabrication and use, fluorescent particles captured and small molecule dye), pressure and flow measurements, and a series of particle sizes "filter or pass" studies. Particle capacity (100-250 nm) ranged from 5 × 108 to 7 × 109 in 1 ml samples at a flow rate of 100 μl/min with backpressure in the range of 1-3 Bar. The optimized fabrication procedure for the 150 nm NRF yielded a small particle recovery of 95% while also achieving a large particle filtration of 73%. High filtration efficiency was also proven in the final 60 and 80 nm NRF fabrication procedures at 96% and 91%, respectively.
Collapse
Affiliation(s)
- Jared P. Smithers
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85282, USA
| | - Jerry Sheu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85282, USA
| | - Brian Richardson
- Imagine TF, LLC, 1350 Dell Ave. #102, Campbell, California 95008, USA
| | - Mark A. Hayes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85282, USA
| |
Collapse
|
4
|
Stoufer S, Soorneedi AR, Kim M, Moore MD. Sample Processing and Concentration Methods for Viruses from Foods and the Environment Prior to Detection. Annu Rev Food Sci Technol 2024; 15:455-472. [PMID: 38277693 DOI: 10.1146/annurev-food-072023-034431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Viruses are the leading cause of foodborne illness globally. Concentration of viruses from samples is important for detection because viral contamination of foods often occurs at low levels. In general, virus concentration methods can be classified as either nonspecific, exploiting the relatively homogeneous physicochemical properties of the virus to separate/concentrate it from the sample matrix, or specific, relying on recognition elements such as antibodies to specifically capture and separate viruses from foods. Numerous nonspecific and specific techniques for virus concentration have been reported, each with its own advantages and limitations. Factors to consider can include reagent and equipment costs, time-to-result, ease of use, and potential to eliminate matrix-associated inhibitors. The purpose of this review is to survey the different foodborne virus concentration techniques and their efficacy in various food and environmental matrices as well as discuss some emerging techniques for purification and concentration of viral pathogens from food samples.
Collapse
Affiliation(s)
- Sloane Stoufer
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Anand R Soorneedi
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
5
|
Combination of iron flocculation and qPCR for quantitative evaluation of virus-shedding intensity of goldfish Carassius auratus infected with cyprinid herpesvirus 2 in the water and the effect of sodium chlorite powder in blocking waterborne horizontal viral transmission. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Sangkham S. A review on detection of SARS-CoV-2 RNA in wastewater in light of the current knowledge of treatment process for removal of viral fragments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113563. [PMID: 34488114 PMCID: PMC8373619 DOI: 10.1016/j.jenvman.2021.113563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
The entire globe is affected by the novel disease of coronavirus 2019 (COVID-19 or 2019-nCoV), which is formally recognised as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The World Health Organisation (WHO) announced this disease as a global pandemic. The presence of SARS-CoV-2 RNA in unprocessed wastewater has become a cause of worry due to these emerging pathogens in the process of wastewater treatment, as reported in the present study. This analysis intends to interpret the fate, environmental factors and route of transmission of SARS-CoV-2, along with its eradication by treating the wastewater for controlling and preventing its further spread. Different recovery estimations of the virus have been depicted by the detection of SARS-CoV-2 RNA in wastewater through the viral concentration techniques. Most frequently used viral concentration techniques include polyethylene glycol (PEG) precipitation, ultrafiltration, electronegative membrane, and ultracentrifugation, after which the detection and quantification of SARS-CoV-2 RNA are done in wastewater samples through quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The wastewater treatment plant (WWTP) holds the key responsibility of eliminating pathogens prior to the discharge of wastewater into surface water bodies. The removal of SARS-CoV-2 RNA at the treatment stage is dependent on the operations of wastewater treatment systems during the outbreak of the virus; particularly, in the urban and extensively populated regions. Efficient primary, secondary and tertiary methods of wastewater treatment and disinfection can reduce or inactivate SARS-CoV-2 RNA before being drained out. Nonetheless, further studies regarding COVID-19-related disinfectants, environment conditions and viral concentrations in each treatment procedure, implications on the environment and regular monitoring of transmission need to be done urgently. Hence, monitoring the SARS-CoV-2 RNA in samples of wastewater under the procedure of wastewater-based epidemiology (WBE) supplement the real-time data pertaining to the investigation of the COVID-19 pandemic in the community, regional and national levels.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao, 56000, Thailand.
| |
Collapse
|
7
|
Horve PF, Dietz L, Northcutt D, Stenson J, Van Den Wymelenberg K. Evaluation of a bioaerosol sampler for indoor environmental surveillance of Severe Acute Respiratory Syndrome Coronavirus 2. PLoS One 2021; 16:e0257689. [PMID: 34780482 PMCID: PMC8592464 DOI: 10.1371/journal.pone.0257689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has ubiquitously impacted many aspects of life. As vaccines continue to be manufactured and administered, limiting the spread of SARS-CoV-2 will rely more heavily on the early identification of contagious individuals occupying reopened and increasingly populated indoor environments. In this study, we investigated the utility of an impaction-based bioaerosol sampling system with multiple nucleic acid collection media. Heat-inactivated SARS-CoV-2 was utilized to perform bench-scale, short-range aerosol, and room-scale aerosol experiments. Through bench-scale experiments, AerosolSense Capture Media (ACM) and nylon flocked swabs were identified as the highest utility media. In room-scale aerosol experiments, consistent detection of aerosol SARS-CoV-2 was achieved at an estimated aerosol concentration equal to or greater than 0.089 genome copies per liter of room air (gc/L) when air was sampled for eight hours or more at less than one air change per hour (ACH). Shorter sampling periods (75 minutes) yielded consistent detection at ~31.8 gc/L of room air and intermittent detection down to ~0.318 gc/L at (at both 1 and 6 ACH). These results support further exploration in real-world testing scenarios and suggest the utility of indoor aerosol surveillance as an effective risk mitigation strategy in occupied buildings.
Collapse
Affiliation(s)
- Patrick Finn Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Leslie Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Dale Northcutt
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States of America
| | - Jason Stenson
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States of America
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, United States of America
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, United States of America
| |
Collapse
|
8
|
Hata A, Shirasaka Y, Ihara M, Yamashita N, Tanaka H. Spatial and temporal distributions of enteric viruses and indicators in a lake receiving municipal wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146607. [PMID: 33773350 DOI: 10.1016/j.scitotenv.2021.146607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Although lake water can be used as a source of drinking water and recreational activities, there is a dearth of research on the occurrence and fate of enteric viruses. Over a period of 14 months at six points in 2014-2015, we conducted monthly monitoring of the virological water quality of a Japanese lake. The lake receives effluent from three surrounding wastewater treatment plants and retains water for about two weeks. These features allowed us to investigate the occurrence and fate of viruses in the lake environment. Human enteric viruses such as noroviruses and their indicators (pepper mild mottle virus and F-specific RNA bacteriophage [FRNAPH] genogroups) were quantified by PCR-based assays. Additionally, FRNAPH genogroups were quantified by infectivity-based assays to estimate the degree of virus inactivation. Pepper mild mottle virus, genogroup II (GII) norovirus, and GI-FRNAPH were identified in relatively high frequencies (positive in >40% out of 64 samples), with concentrations ranging from 1.3 × 101 to 2.9 × 104 copies/L. Human enteric viruses and some indicators were not detected and less prevalent, respectively, after April 2015. Principal component analysis revealed that the virological water quality changed gradually over time, but its differences between the sampling points were not apparent. FRNAPH genogroups were inactivated during the warm season (averaged water temperature of >20 °C) compared to the cool season (averaged water temperature of <20 °C), which may have been due to the more severe environmental stresses such as sunlight and water temperature. This suggests that the infection risk associated with the use of the lake water may have been overestimated by the gene quantification assay during the warm season.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yuya Shirasaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Naoyuki Yamashita
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
9
|
Nour I, Hanif A, Alanazi F, Zakri AM, Al-Ashkar I, Alhetheel A, Eifan S. Evaluation of three different concentration and extraction methods for recovery efficiency of human adenovirus and human rotavirus virus A. J Virol Methods 2021; 295:114212. [PMID: 34126107 DOI: 10.1016/j.jviromet.2021.114212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Routine wastewater treatment plants (WWTPs) effluents monitoring is essential because of enteric viruses' low infectious dose beyond molecular detectability. In current study methods for concentration and extraction, inter-method compatibility and recovery efficiency of spiked human adenovirus (HAdV) and human rotavirus A (RVA) were evaluated. For virus concentration, polyethylene glycol precipitation (PEG), charged membrane-based adsorption/elution (CMAE), and glass wool-based concentration (GW) methods were used. Nucleic acid was extracted by PowerViral™ Environmental RNA/DNA Isolation (POW), ZymoBIOMICS™ RNA extraction (ZYMO) and Wizard® Genomic DNA Purification (WGDP) and samples were analyzed by Real-Time PCR. CMAE method yielded significantly higher concentrations for both ARQ (Armored-RNA Quant) and RVA compared to PEG (P = 0.001 and 0.003) and GW (P < 0.0001). Highest HAdV concentration was obtained by PEG (P = 0.001 and < 0.0001) in relation to CMAE and GW. ZYMO yielded a significantly higher ARQ and RVA concentrations (P = 0.03 and 0.0057), whereas significantly higher concentration was obtained by POW for HAdV (P = 0.032). CMAE × ZYMO achieved the highest recovery efficiencies for ARQ (69.77 %) and RVA (64.25, respectively, while PEG × POW present efficiency of 9.7 % for HAdV. These findings provide guidance for understanding of method-related biases for viral recovery efficiency.
Collapse
Affiliation(s)
- Islam Nour
- Botany and Microbiology Department, College of Science, King Saud University, Saudi Arabia
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Saudi Arabia.
| | - Fahd Alanazi
- Botany and Microbiology Department, College of Science, King Saud University, Saudi Arabia
| | - Adel M Zakri
- Biotechnology Laboratory, Plant Production Department, Faculty of Agriculture and Food Sciences, King Saud University, Saudi Arabia
| | - Ibrahim Al-Ashkar
- Biotechnology Laboratory, Plant Production Department, Faculty of Agriculture and Food Sciences, King Saud University, Saudi Arabia
| | - Abdulkarim Alhetheel
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Saudi Arabia
| | - Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
10
|
Canh VD, Torii S, Furumai H, Katayama H. Application of Capsid Integrity (RT-)qPCR to Assessing Occurrence of Intact Viruses in Surface Water and Tap Water in Japan. WATER RESEARCH 2021; 189:116674. [PMID: 33279831 DOI: 10.1016/j.watres.2020.116674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Capsid integrity (RT-)qPCR has recently been developed to discriminate between intact forms from inactivated forms of viruses, but its applicability to identifying integrity of viruses in drinking water has remained limited. In this study, we investigated the application of capsid integrity (RT-)qPCR using cis-dichlorodiammineplatinum (CDDP) with sodium deoxycholate (SD) pretreatment (SD-CDDP-(RT-)qPCR) to detect intact viruses in surface water and tap water. A total of 63 water samples (surface water, n = 20; tap water, n = 43) were collected in the Kanto region in Japan and quantified by conventional (RT)-qPCR and SD-CDDP-(RT-)qPCR for pepper mild mottle virus (PMMoV) and seven other viruses pathogenic to humans (Aichivirus (AiV), noroviruses of genotypes I and II, enterovirus, adenovirus type 40 and 41, and JC and BK polyomaviruses). In surface water, PMMoV (100%) was more frequently detected than other human pathogenic viruses (30%-60%), as determined by conventional (RT-)qPCR. SD-CDDP-(RT-)qPCR also revealed that intact PMMoV (95%) was more common than intact human pathogenic viruses (20%-45%). In the tap water samples, most of the target viruses were not detected by conventional (RT-)qPCR, except for PMMoV (9%) and AiV (5%). PMMoV remained positive (5%), whereas no AiV was detected when tested by SD-CDDP-(RT-)qPCR, indicating that some PMMoV had an intact capsid, whereas AiV had damaged capsids. The presence of AiV in the absence of PMMoV in tap water produced from groundwater may demonstrate the limitation of PMMoV as a viral indicator in groundwater. In addition to being abundant in surface water, PMMoV was detected in tap water, including PMMoV with intact capsids. Thus, the absence of intact PMMoV may be used to guarantee the viral safety of tap water produced from surface water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shotaro Torii
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
11
|
Lu D, Huang Z, Luo J, Zhang X, Sha S. Primary concentration - The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141245. [PMID: 32768768 PMCID: PMC7382349 DOI: 10.1016/j.scitotenv.2020.141245] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 04/15/2023]
Abstract
The recent outbreak of a novel coronavirus SARS-CoV-2 has posed a significant global public health threat and caused dramatic social and economic disruptions. A new research direction is attracting a significant amount of attention in the academic community of environmental sciences and engineering, in which rapid community-level monitoring could be achieved by applying the methodology of wastewater based epidemiology (WBE). Given the fact that the development of a mass balance on the total number of viral RNA copies in wastewater samples and the infected stool specimens is the heart of WBE, the result of the quantitative RNA detection in wastewater has to be highly sensitive, accurate, and reliable. Thus, applying effective concentration methods before the subsequent RNA extraction and RT-qPCR detection is a must-have procedure for the WBE. This review provides new insights into the primary concentration methods that have been adopted by the eighteen recently reported COVID-19 wastewater detection studies, along with a brief discussion of the mechanisms of the most commonly used virus concentration methods, including the PEG-based separation, electrostatically charged membrane filtration, and ultrafiltration. In the end, two easy and well-proven concentration strategies are recommended as below, aiming to maximize the practical significance and operational effectiveness of the SARS-CoV-2 virus concentration from wastewater samples.
Collapse
Affiliation(s)
- Dingnan Lu
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Zhuangrong Huang
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Xiaoqi Zhang
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA.
| | - Sha Sha
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Hata A, Furumai H, Katayama H. Sequential treatment using a hydrophobic resin and gel filtration to improve viral gene quantification from highly complex environmental concentrates. WATER RESEARCH 2020; 174:115652. [PMID: 32135428 DOI: 10.1016/j.watres.2020.115652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Assays based on the polymerase chain reaction (PCR) are widely applied to quantify enteric viruses in aquatic environments to study their fates and potential infection risks. However, inhibitory substances enriched by virus concentration processes can result in inaccurate quantification. This study aimed to find a method for improving virus quantification by mitigating the effects of inhibitory environmental concentrates, using previous knowledge of the properties of the inhibitory substances. Performances of anion exchange resins, gel filtration, and a hydrophobic resin (DAX-8) were comparatively evaluated using poliovirus and its extracted RNA spiked into humic acid solutions. These solutions served as good representatives of the inhibitory environmental concentrates. A sequential treatment using DAX-8 resin and gel filtration produced the most favorable results, i.e., low virus losses that were stable and a reduced inhibitory effect. Furthermore, the sequential treatment was applied to another set of 15 environmental concentrates. Without the sequential treatment, serious underestimation (>4.0 log10 to 1.1 log10) of a molecular process control (murine norovirus) was measured for eight samples. With the treatment, the control was detected with <1.0 log10 underestimation for all samples. The treatment improved the quantification of seven types of indigenous viruses. In summary, the sequential treatment is effective in improving the viral quantification in various of environmental concentrates.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama, 939-0398, Japan.
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
13
|
Torii S, Hashimoto T, Do AT, Furumai H, Katayama H. Repeated pressurization as a potential cause of deterioration in virus removal by aged reverse osmosis membrane used in households. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133814. [PMID: 31421339 DOI: 10.1016/j.scitotenv.2019.133814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Reverse osmosis (RO) membrane is widely used for household water treatment in areas with limited access to safe drinking water; however, some studies documented deterioration in the quality of RO permeate. Repeated pressurization from intermittent operation in households is suspected to have an adverse effect on RO. This study aimed to evaluate virus removal by RO used in actual households as well as the water quality of permeate, and to elucidate the main cause of RO deterioration. We conducted a survey in households in Hanoi, Vietnam, to collect 27 membranes along with their usage history, where virus removal was investigated in laboratory. Of the used RO membranes, 22% did not show the protective level, >3 log10 (99.9%) virus removal, recommended by World Health Organization. The differences in virus removal among Aichi virus, MS2 and φX-174 were <0.5 log10. All membranes with estimated pressurization times of <4000 showed >3 log10 virus removal, while 17% of membranes used for <3years, the manufacturers' warranty period, did not achieve the criterion. Therefore, virus removal performance may not be assured even if the users replace the membrane following the warranty period. Furthermore, more pressurized membranes exhibited significantly lower virus removal than less pressurized ones, suggesting a major role of repeated pressurization in the deterioration of RO. Coliforms were detected from 44% of the permeate of the point-of-use devices applying RO (RO-POU), raising concerns on the extrinsic contamination and regrowth of bacteria. Consequently, RO in households may deteriorate more rapidly than the manufactures' expectation due to repeated pressurization. RO in households should be replaced based on not only membrane age but also total pressurized times (i.e., 4000 times) to keep the protective level of virus removal. The deteriorated bacterial quality in RO permeate suggested the need for installing post-treatment, such as UV irradiation.
Collapse
Affiliation(s)
- Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Takashi Hashimoto
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - An Thuan Do
- Department of Environmental Engineering, Faculty of Environment, Thuy Loi University, 175 Tay Son, Dong Da, Hanoi, Viet Nam
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Matrajt G, Naughton B, Bandyopadhyay AS, Meschke JS. A Review of the Most Commonly Used Methods for Sample Collection in Environmental Surveillance of Poliovirus. Clin Infect Dis 2018; 67:S90-S97. [PMID: 30376094 PMCID: PMC6206110 DOI: 10.1093/cid/ciy638] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We performed a review of the environmental surveillance methods commonly used to collect and concentrate poliovirus (PV) from water samples. We compared the sampling approaches (trap vs grab), the process methods (precipitation vs filtration), and the various tools and chemical reagents used to separate PV from other viruses and pathogens in water samples (microporous glass, pads, polyethylene glycol [PEG]/dextran, PEG/sodium chloride, NanoCeram/ViroCap, and ester membranes). The advantages and disadvantages of each method are considered, and the geographical areas where they are currently used are discussed. Several methods have demonstrated the ability to concentrate and recover PVs from environmental samples. The details of the particular sampling conditions and locations should be considered carefully in method selection.
Collapse
Affiliation(s)
- Graciela Matrajt
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Washington
| | | | | | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Washington
| |
Collapse
|
15
|
Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. WATER RESEARCH 2018; 135:168-186. [PMID: 29471200 DOI: 10.1016/j.watres.2018.02.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.
Collapse
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Akihiko Hata
- Integrated Research System for Sustainability Science, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Jason R Torrey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Yoshifumi Masago
- Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya-ku, Tokyo 150-8925, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam Japan University, Luu Huu Phuoc Road, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Vietnam.
| |
Collapse
|
16
|
Kato R, Asami T, Utagawa E, Furumai H, Katayama H. Pepper mild mottle virus as a process indicator at drinking water treatment plants employing coagulation-sedimentation, rapid sand filtration, ozonation, and biological activated carbon treatments in Japan. WATER RESEARCH 2018; 132:61-70. [PMID: 29306700 DOI: 10.1016/j.watres.2017.12.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/13/2017] [Accepted: 12/23/2017] [Indexed: 05/12/2023]
Abstract
To assess the potential of pepper mild mottle virus (PMMoV) as a viral process indicator, its reduction through coagulation-sedimentation (CS) and rapid sand filtration (RSF) were compared with those of Escherichia coli, previously used viral indicators, and norovirus genotype II (NoV GII; enteric virus reference pathogen) in a bench-scale experiment. PMMoV log10 reductions in CS (1.96 ± 0.30) and RSF (0.26 ± 0.38) were similar to those of NoV GII (1.86 ± 0.61 and 0.28 ± 0.46). PMMoV, the most abundant viruses in the raw water, was also determined during CS, RSF, and advanced treatment processes at two full-scale drinking water treatment plants under strict turbidity management over a 13-month period. PMMoV was concentrated from large-volume water samples (10-614 L) and quantified by Taqman-based quantitative polymerase chain reaction. The PMMoV log10 reduction in CS (2.38 ± 0.74, n = 13 and 2.63 ± 0.76, n = 10 each for Plant A and B) and in ozonation (1.91 ± 1.18, n = 5, Plant A) greatly contributed to the overall log10 reduction. Our results suggest that PMMoV can act as a useful treatment process indicator of enteric viruses and can be used to monitor the log10 reduction of individual treatment processes at drinking water treatment plants due to its high and consistent copy numbers in source water.
Collapse
Affiliation(s)
- Ryuichi Kato
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Asami
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Etsuko Utagawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam - Japan University, Luu Huu Phuoc Str., My Dinh I Ward, Nam Tu Liem Dist., Hanoi, Viet Nam.
| |
Collapse
|
17
|
Hata A, Inaba M, Katayama H, Furumai H. Characterization of Natural Organic Substances Potentially Hindering RT-PCR-Based Virus Detection in Large Volumes of Environmental Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13568-13579. [PMID: 29165998 DOI: 10.1021/acs.est.7b00306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Quantitative detection of pathogenic viruses in the environmental water is essential for the assessment of water safety. It is known that some of natural organic substances interfere with virus detection processes, i.e., nucleic acid extraction and reverse transcription-PCR. Such substances are carried over into a sample after virus concentration. In this study, inhibitory substances in coastal water samples were characterized in view of their effects on efficiency of virus detection and property as organic matters. Among 81 samples tested, 77 (95%) showed low recoveries (<10%) of spiked murine norovirus. These recovery rates were correlated with the levels of organic matter present in virus concentrates as measured by ultraviolet absorbance at 254 nm (r = -0.70 - -0.71, p < 0.01). High-performance gel chromatography and fluorescence excitation-emission matrix spectroscopy revealed that organic fractions in the 10-100 kDa size range, which were not dominant in the original samples, and those possessing humic acid-like fluorescence properties were dominant in virus concentrates. The inhibitory effect was more pronounced during summer. Substances originating from seawater seemed to cause a more pronounced effect than those originating from wastewater. Our data highlight the previously unknown characteristics of natural inhibitory substances and are helpful in establishing an effective sample purification technique.
Collapse
Affiliation(s)
- Akihiko Hata
- Research Center for Environmental Quality Management, Kyoto University , 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Manami Inaba
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University , North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Furumai
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Lee S, Hata A, Yamashita N, Tanaka H. Evaluation of Virus Reduction by Ultrafiltration with Coagulation-Sedimentation in Water Reclamation. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:453-463. [PMID: 28455611 DOI: 10.1007/s12560-017-9301-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
The evaluation of virus reduction in water reclamation processes is essential for proper assessment and management of the risk of infection by enteric viruses. Ultrafiltration (UF) with coagulation-sedimentation (CS) is potentially effective for efficient virus removal. However, its performance at removing indigenous viruses has not been evaluated. In this study, we evaluated the reduction of indigenous viruses by UF with and without CS in a pilot-scale water reclamation plant in Okinawa, Japan, by measuring the concentration of viruses using the real-time polymerase chain reaction (qPCR). Aichi virus (AiV) and pepper mild mottle virus (PMMoV) were targeted in addition to the main enteric viruses of concern for risk management, namely, norovirus (NoV) genogroups I and II (GI and GII) and rotavirus (RoV). PMMoV, which is a plant pathogenic virus and is present at high concentrations in water contaminated by human feces, has been suggested as a useful viral indicator. We also investigated the reduction of a spiked model virus (F-specific RNA bacteriophage MS2) to measure the effect of viral inactivation by both qPCR and plaque assay. Efficiencies of removal of NoV GI, NoV GII, RoV, and AiV by UF with and without CS were >0.5 to 3.7 log10, although concentrations were below the detection limit in permeate water. PMMoV was the most prevalent virus in both feed and permeate water following UF, but CS pretreatment could not significantly improve its removal efficiency (mean removal efficiency: UF, 3.1 log10; CS + UF, 3.4 log10; t test, P > 0.05). CS increased the mean removal efficiency of spiked MS2 by only 0.3 log10 by qPCR (t-test, P > 0.05), but by 2.8 log10 by plaque assay (t-test, P < 0.01). This difference indicates that the virus was inactivated during CS + UF. Our results suggest that PMMoV could be used as an indicator of removal efficiency in water reclamation processes, but cultural assay is essential to understanding viral fate.
Collapse
Affiliation(s)
- Suntae Lee
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
| | - Akihiko Hata
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Naoyuki Yamashita
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| |
Collapse
|
19
|
Completo C, Geraldes V, Semião V, Mateus M, Rodrigues M. Centrifugal nanofiltration for small-volume samples. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Asami T, Katayama H, Torrey JR, Visvanathan C, Furumai H. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand. WATER RESEARCH 2016; 101:84-94. [PMID: 27258619 DOI: 10.1016/j.watres.2016.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 05/03/2023]
Abstract
In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment processes in actual full-scale DWTPs.
Collapse
Affiliation(s)
- Tatsuya Asami
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Jason Robert Torrey
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chettiyappan Visvanathan
- Environmental Engineering and Management Program, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
21
|
D'Ugo E, Marcheggiani S, Fioramonti I, Giuseppetti R, Spurio R, Helmi K, Guillebault D, Medlin LK, Simeonovski I, Boots B, Breitenbach U, Koker L, Albay M, Mancini L. Detection of Human Enteric Viruses in Freshwater from European Countries. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:206-214. [PMID: 27117764 DOI: 10.1007/s12560-016-9238-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
The transmission of water-borne pathogens typically occurs by a faecal-oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread. The aims of this work were to determine the presence and identity of representative human pathogenic enteric viruses in water samples from six European countries by quantitative polymerase chain reaction (q-PCR) and to develop two quantitative PCR methods for Adenovirus 41 and Mammalian Orthoreoviruses. A 2-year survey showed that Norovirus, Mammalian Orthoreovirus and Adenoviruses were the most frequently identified enteric viruses in the sampled surface waters. Although it was not possible to establish viability and infectivity of the viruses considered, the detectable presence of pathogenic viruses may represent a potential risk for human health. The methodology developed may aid in rapid detection of these pathogens for monitoring quality of surface waters.
Collapse
Affiliation(s)
- Emilio D'Ugo
- Quality and Fishfarm Unit, Department Environmental Environment & Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| | - Stefania Marcheggiani
- Quality and Fishfarm Unit, Department Environmental Environment & Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Fioramonti
- Quality and Fishfarm Unit, Department Environmental Environment & Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Giuseppetti
- Quality and Fishfarm Unit, Department Environmental Environment & Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Spurio
- School of Biosciences and Veterinary Medicine, University of Camerino, Ascoli Piceno, Italy
| | - Karim Helmi
- Veolia Rechercheur & Innovation, Saint-Maurice, France
| | | | - Linda K Medlin
- Microbia Environnement, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Ivan Simeonovski
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Bas Boots
- UCD School of Biosystems Engineering, Agriculture and Food Science Centre, Dublin, Ireland
| | | | - Latife Koker
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | - Meric Albay
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | - Laura Mancini
- Quality and Fishfarm Unit, Department Environmental Environment & Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Organic substances interfere with reverse transcription-quantitative PCR-based virus detection in water samples. Appl Environ Microbiol 2014; 81:1585-93. [PMID: 25527552 DOI: 10.1128/aem.03082-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Reverse transcription (RT)-PCR-based virus detection from water samples is occasionally hampered by organic substances that are co-concentrated during virus concentration procedures. To characterize these organic substances, samples containing commercially available humic acid, which is known to inhibit RT-PCR, and river water samples were subjected to adsorption-elution-based virus concentration using an electronegative membrane. In this study, the samples before, during, and after the concentration were analyzed in terms of organic properties and virus detection efficiencies. Two out of the three humic acid solutions resulted in RT-quantitative PCR (qPCR) inhibition that caused >3-log10-unit underestimation of spiked poliovirus. Over 60% of the organics contained in the two solutions were recovered in the concentrate, while over 60% of the organics in the uninhibited solution were lost during the concentration process. River water concentrates also caused inhibition of RT-qPCR. Organic concentrations in the river water samples increased by 2.3 to 3.9 times after the virus concentration procedure. The inhibitory samples contained organic fractions in the 10- to 100-kDa size range, which are suspected to be RT-PCR inhibitors. According to excitation-emission matrices, humic acid-like and protein-like fractions were also recovered from river water concentrates, but these fractions did not seem to affect virus detection. Our findings reveal that detailed organic analyses are effective in characterizing inhibitory substances.
Collapse
|