1
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Li Y, Xue L, Gao J, Cai W, Zhang Z, Meng L, Miao S, Hong X, Xu M, Wu Q, Zhang J. A systematic review and meta-analysis indicates a substantial burden of human noroviruses in shellfish worldwide, with GII.4 and GII.2 being the predominant genotypes. Food Microbiol 2023; 109:104140. [DOI: 10.1016/j.fm.2022.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
|
3
|
Hepatitis A and E Viruses in Mussels from Cherrat Estuary in Morocco: Detection by Real-Time Reverse Transcription PCR Analysis. Adv Virol 2022; 2022:8066356. [DOI: 10.1155/2022/8066356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to evaluate hepatitis A virus (HAV) and hepatitis E virus (HEV) contamination in mussels (Mytilus galloprovincialis) from Cherrat estuary (Moroccan Atlantic Coast), Morocco. In total, 52 samples (n = 12 mussels/each) were collected at four sites in the estuary, monthly, between March 2019 and March 2020. HAV and HEV were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) according to the ISO/TS 15216 method. HAV was detected in 46.15% of analyzed samples. Conversely, HEV was not detected in any sample. Moreover, the HAV detection rate was significantly associated with seasonal rainfall variations. This qualitative study on HAV and HEV contamination highlights the interest of studying mussel samples from wild areas. As HAV presence in mussels represents a potential health risk, viral contamination surveillance of mussels is necessary to protect consumers. HAV shellfish contamination must be monitored at Cherrat estuary because of the role played by shellfish as HAV reservoirs and/or vehicles in fecal-oral HAV transmission.
Collapse
|
4
|
Molecular Detection of Rotavirus in Mollusks from the Oued El Maleh Estuary of Mohammedia, Morocco. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral outbreaks can result from the consumption of contaminated bivalve mollusks. However, despite the regulation related to enteric bacteria in food products, the consumption of raw and undercooked mollusks remains linked to viral epidemics in human populations. Real-time RT-PCR is a highly sensitive approach for detecting and quantifying enteric viruses, and after eliminating enzymatic amplification inhibitors from samples of interest, sensitive and specific tests, like real-time RT-PCR, can facilitate the detection and quantification of a wide range of viruses that are concentrated in mollusk digestive tissues. The aim of the present study was to evaluate the prevalence of Group-A rotaviruses in mussel (Mytilus edulis Linnaeus, 1758) specimens (n=576) collected downstream of the Oued El Maleh Estuary, which is along the coast of Mohammedia City in Morocco, using real-time RT-PCR. Rotavirus A RNA was detected in 37.5% (n=18) of the 48 sample batches, and viral loads ranged from 0.42×101 to 1.8603×104 genomic copies per g digestive tissue. Most (72.22%) of the positive samples were collected during the wet season (September-April), and the probability of detecting rotaviruses was significantly greater during the wet season than during the dry season (P<0.001). Monitoring Rotavirus A and similar viruses in shellfish may help prevent viral contamination and preserve public health.
Collapse
|
5
|
Gao J, Zhang L, Xue L, Cai W, Qin Z, Yang J, Liang Y, Wang L, Chen M, Ye Q, Li Y, Wang J, Wu S, Wu Q, Zhang J. Development of a High-Efficiency Immunomagnetic Enrichment Method for Detection of Human Norovirus via PAMAM Dendrimer/SA-Biotin Mediated Cascade-Amplification. Front Microbiol 2021; 12:673872. [PMID: 34354679 PMCID: PMC8329424 DOI: 10.3389/fmicb.2021.673872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Human norovirus is a common cause of acute gastroenteritis worldwide, and oysters have been found to be the main carriers for its spread. The lack of efficient pre-treatment methods has been a major bottleneck limiting the detection of viruses in oysters. In this study, we established a novel immunomagnetic enrichment method using polyamidoamine (PAMAM) dendrimer/SA-biotin-mediated cascade amplification for reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) detection. We compared the capture efficiency of traditional immunomagnetic enrichment, biotin-amplified immunomagnetic enrichment, and PAMAM dendrimer/SA-biotin-mediated cascade-amplification immunomagnetic enrichment. The optimal capture efficiency of the novel method was 44.26 ± 1.45%, which increased by 183.17% (P < 0.01) and 18.09% (P < 0.05) compared with the first two methods, respectively. Three methods were all applied in detecting norovirus in 44 retail oysters, the detection rate of the PAMAM dendrimer/SA-biotin-mediated method was 25.0%, which was higher than those of traditional IME (15.90%) and SA-biotin-amplified IME (18.80%) by 9.1 and 6.2%, respectively. In conclusion, the novel method can be applied for the rapid detection of norovirus in oysters, which can help reduce the cost and time of detection and improve detection rates.
Collapse
Affiliation(s)
- Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Le Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiwei Qin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiale Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanhui Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Linping Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Yang M, Zhao F, Tong L, Wang S, Zhou D. Contamination, bioaccumulation mechanism, detection, and control of human norovirus in bivalve shellfish: A review. Crit Rev Food Sci Nutr 2021; 62:8972-8985. [PMID: 34184956 DOI: 10.1080/10408398.2021.1937510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and bivalve shellfish are one of the main carriers of HuNoV transmission. A comprehensive understanding of bivalve shellfish-related HuNoV outbreaks focusing on contamination factors, bioaccumulation mechanisms, and pre- and post-harvest interventions is essential for the development of effective strategies to prevent contamination of shellfish. This review comprehensively surveys the current knowledge on global contamination and non-thermal treatment of HuNoV in bivalve shellfish. HuNoV contamination in bivalve shellfish is significantly related to the season and water. While evaluating the water quality of shellfish-inhabited waters is a key intervention, the development of non-heat treatment technology to effectively inactivate the HuNoV in bivalve shellfish while maintaining the flavor and nutrition of the shellfish is also an important direction for further research. Additionally, this review explores the bioaccumulation mechanisms of HuNoV in bivalve shellfish, especially the mechanism underlying the binding of histo-blood group antigen-like molecules and HuNoV. The detection methods for infectious HuNoV are also discussed. The establishment of effective methods to rapidly detect infectious HuNoV and development of biological components to inactivate or prevent HuNoV contamination in shellfish also need to be studied further.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Upfold NS, Luke GA, Knox C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:1-31. [PMID: 33501612 PMCID: PMC7837882 DOI: 10.1007/s12560-020-09456-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 05/02/2023]
Abstract
Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal-oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.
Collapse
Affiliation(s)
- Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
8
|
Sarmento SK, Guerra CR, Malta FC, Coutinho R, Miagostovich MP, Fumian TM. Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment. MARINE POLLUTION BULLETIN 2020; 157:111315. [PMID: 32658680 DOI: 10.1016/j.marpolbul.2020.111315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Noroviruses are the most common cause of gastroenteritis outbreaks in humans and bivalve shellfish consumption is a recognized route of infection. Our aim was to detect and characterize norovirus in bivalves from a coastal city of Brazil. Nucleic acid was extracted from the bivalve's digestive tissue concentrates using magnetic beads. From March 2018 to June 2019, 77 samples were screened using quantitative RT-PCR. Noroviruses were detected in 41.5%, with the GII being the most prevalent (37.7%). The highest viral load was 3.5 × 106 and 2.5 × 105 GC/g in oysters and mussels, respectively. PMA-treatment demonstrated that a large fraction of the detected norovirus corresponded to non-infectious particles. Genetic characterization showed the circulation of the GII.2[P16] and GII.4[P4] genotypes. Norovirus detection in bivalves reflects the anthropogenic impact on marine environment and serves as an early warning for the food-borne disease outbreaks resulting from the consumption of contaminated molluscs.
Collapse
Affiliation(s)
- Sylvia Kahwage Sarmento
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ CEP 21045-900, Brazil
| | - Caroline Rezende Guerra
- Laboratório de Genética Marinha, Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo , RJ CEP 28930-000, Brazil
| | - Fábio Correia Malta
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ CEP 21045-900, Brazil
| | - Ricardo Coutinho
- Laboratório de Genética Marinha, Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo , RJ CEP 28930-000, Brazil
| | - Marize Pereira Miagostovich
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ CEP 21045-900, Brazil
| | - Tulio Machado Fumian
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ CEP 21045-900, Brazil.
| |
Collapse
|