1
|
Oguzie JU, Petros BA, Oluniyi PE, Mehta SB, Eromon PE, Nair P, Adewale-Fasoro O, Ifoga PD, Odia I, Pastusiak A, Gbemisola OS, Aiyepada JO, Uyigue EA, Edamhande AP, Blessing O, Airende M, Tomkins-Tinch C, Qu J, Stenson L, Schaffner SF, Oyejide N, Ajayi NA, Ojide K, Ogah O, Abejegah C, Adedosu N, Ayodeji O, Liasu AA, Okogbenin S, Okokhere PO, Park DJ, Folarin OA, Komolafe I, Ihekweazu C, Frost SDW, Jackson EK, Siddle KJ, Sabeti PC, Happi CT. Metagenomic surveillance uncovers diverse and novel viral taxa in febrile patients from Nigeria. Nat Commun 2023; 14:4693. [PMID: 37542071 PMCID: PMC10403498 DOI: 10.1038/s41467-023-40247-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy.
Collapse
Affiliation(s)
- Judith U Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Brittany A Petros
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
- Harvard/MIT MD-PhD Program, Boston, MA, 02115, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul E Oluniyi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Samar B Mehta
- Department of Medicine, University of Maryland Medical Center, Baltimore, MA, USA
| | - Philomena E Eromon
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Parvathy Nair
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Opeoluwa Adewale-Fasoro
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Peace Damilola Ifoga
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Ikponmwosa Odia
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | | | - Otitoola Shobi Gbemisola
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | | | | | | | - Osiemi Blessing
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Michael Airende
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Christopher Tomkins-Tinch
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - James Qu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liam Stenson
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Nicholas Oyejide
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Nnenna A Ajayi
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Kingsley Ojide
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Onwe Ogah
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | | | | | | | | | | | | | - Daniel J Park
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Onikepe A Folarin
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | | | - Simon D W Frost
- Microsoft Premonition, Redmond, WA, USA
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Katherine J Siddle
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Christian T Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Cao X, Wang Z, Pang J, Sun L, Kondo H, Andika IB. Identification of a novel dicistro-like virus associated with the roots of tomato plants. Arch Virol 2023; 168:214. [PMID: 37523067 DOI: 10.1007/s00705-023-05843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Viruses belonging to the family Dicistroviridae have a monopartite positive-sense single-stranded RNA genome and infect a variety of arthropods. Using high-throughput sequencing, we detected a novel dicistro-like virus, tentatively named "tomato root-associated dicistro-like virus" (TRaDLV), in the roots of tomato plants showing yellow mosaic symptoms on the leaves. The diseased tomato plants were coinfected with multiple plant viruses, and TRaDLV was present in the roots but not in the leaves. The genome of TRaDLV is 8726 nucleotides in length, excluding the poly(A) tail, and contains two open reading frames (ORFs) separated by an intergenic region (IGR). The TRaDLV genome showed characteristics similar to those of dicistroviruses, including the presence of a 3C-like protease domain, repeated amino acid sequences representing multiple copies of viral genome-linked protein (VPg)-like sequences in the ORF1 polyprotein, and a series of stem-loop structures resembling an internal ribosome entry site in the IGR. Phylogenetic analysis revealed that TRaDLV clustered with unclassified dicistro-like viruses from invertebrates or identified in samples of plant-derived material. These findings indicate the existence of a novel dicistro-like virus that may associate with plant roots or a root-inhabiting organism.
Collapse
Affiliation(s)
- Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109, Qingdao, China
- Shandong Agricultural University, 271018, Tai'an, China
- Shouguang International vegetable Sci-tech Fair Management Service Center, 262700, Shouguang, China
| | - Ziqi Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109, Qingdao, China
| | - Jianguo Pang
- University Library, Northwest A&F University, 712100, Xianyang, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Xianyang, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, 710-0046, Kurashiki, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109, Qingdao, China.
| |
Collapse
|
3
|
Balkanska R, Shumkova R, Atsenova N, Salkova D, Dundarova H, Radoslavov G, Hristov P. Molecular Detection and Phylogenetic Analysis of Deformed Wing Virus and Sacbrood Virus Isolated from Pollen. Vet Sci 2023; 10:vetsci10020140. [PMID: 36851444 PMCID: PMC9965827 DOI: 10.3390/vetsci10020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Among many pathogens and pests, honey bee viruses are known as one of the most common cause of diseases in honey bee colonies. In this study, we demonstrate that pollen grains and bee bread are potential sources of viral DNA. We extracted DNA from 3 types of pollen samples: directly provided by beekeepers (n = 12), purchased from trade markets (n = 5), and obtained from honeycombs (bee bread, n = 10). The extracted DNA was used for molecular detection (RT-PCR analysis) of six of the most widely distributed honey bee viruses: deformed wing virus, sacbrood virus, acute bee paralysis virus, black queen cell virus, Kashmir bee virus, Israeli acute paralysis virus, and chronic bee paralysis virus. We successfully managed to establish only the deformed wing virus (DWV) and the sacbrood virus (SBV), with different distribution frequencies depending on the territory of the country. The phylogenetic analyses of Bulgarian isolates were performed with the most similar sequences available in molecular databases from other countries. Phylogenies of Bulgarian viral strains demonstrated genetically heterogeneous populations of DWV and relatively homogenous populations of SBV. In conclusion, the results obtained from the current study have shown that pollen is a valuable source for molecular detection of honey bee pathogens. This allows epidemiological monitoring of honey bee diseases at a regional and a national level.
Collapse
Affiliation(s)
- Ralitsa Balkanska
- Department “Special Branches”, Institute of Animal Science, Agricultural Academy, 2230 Kostinbrod, Bulgaria
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria
| | - Nedyalka Atsenova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Heliana Dundarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
4
|
Izraeli Y, Lepetit D, Atias S, Mozes-Daube N, Wodowski G, Lachman O, Luria N, Steinberg S, Varaldi J, Zchori-Fein E, Chiel E. Genomic characterization of viruses associated with the parasitoid Anagyrus vladimiri (Hymenoptera: Encyrtidae). J Gen Virol 2022; 103. [PMID: 36748430 DOI: 10.1099/jgv.0.001810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Knowledge on symbiotic microorganisms of insects has increased dramatically in recent years, yet relatively little data are available regarding non-pathogenic viruses. Here we studied the virome of the parasitoid wasp Anagyrus vladimiri Triapitsyn (Hymenoptera: Encyrtidae), a biocontrol agent of mealybugs. By high-throughput sequencing of viral nucleic acids, we revealed three novel viruses, belonging to the families Reoviridae [provisionally termed AnvRV (Anagyrus vladimiri reovirus)], Iflaviridae (AnvIFV) and Dicistroviridae (AnvDV). Phylogenetic analysis further classified AnvRV in the genus Idnoreovirus, and AnvDV in the genus Triatovirus. The genome of AnvRV comprises 10 distinct genomic segments ranging in length from 1.5 to 4.2 kb, but only two out of the 10 ORFs have a known function. AnvIFV and AnvDV each have one polypeptide ORF, which is typical of iflaviruses but very un-common among dicistroviruses. Five conserved domains were found along both the ORFs of those two viruses. AnvRV was found to be fixed in an A. vladimiri population that was obtained from a mass rearing facility, whereas its prevalence in field-collected A. vladimiri was ~15 %. Similarly, the prevalence of AnvIFV and AnvDV was much higher in the mass rearing population than in the field population. The presence of AnvDV was positively correlated with the presence of Wolbachia in the same individuals. Transmission electron micrographs of females' ovaries revealed clusters and viroplasms of reovirus-like particles in follicle cells, suggesting that AnvRV is vertically transmitted from mother to offspring. AnvRV was not detected in the mealybugs, supporting the assumption that this virus is truly associated with the wasps. The possible effects of these viruses on A. vladimiri's biology, and on biocontrol agents in general, are discussed. Our findings identify RNA viruses as potentially involved in the multitrophic system of mealybugs, their parasitoids and other members of the holobiont.
Collapse
Affiliation(s)
- Yehuda Izraeli
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - David Lepetit
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Villeurbanne, France
| | - Shir Atias
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Netta Mozes-Daube
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Gal Wodowski
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, ARO, Volcani Research Center, Rishon LeZion, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, ARO, Volcani Research Center, Rishon LeZion, Israel
| | | | - Julien Varaldi
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Villeurbanne, France
| | - Einat Zchori-Fein
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa - Oranim, Tivon, Israel
| |
Collapse
|
5
|
Abstract
Echinoderms are a phylum of marine invertebrates that include model organisms, keystone species, and animals commercially harvested for seafood. Despite their scientific, ecological, and economic importance, there is little known about the diversity of RNA viruses that infect echinoderms compared to other invertebrates. We screened over 900 transcriptomes and viral metagenomes to characterize the RNA virome of 38 echinoderm species from all five classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea). We identified 347 viral genome fragments that were classified to genera and families within nine viral orders - Picornavirales, Durnavirales, Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, Ghabrivirales, Mononegavirales, and Hepelivirales. We compared the relative viral representation across three life stages (embryo, larvae, adult) and characterized the gene content of contigs which encoded complete or near-complete genomes. The proportion of viral reads in a given transcriptome was not found to significantly differ between life stages though the majority of viral contigs were discovered from transcriptomes of adult tissue. This study illuminates the biodiversity of RNA viruses from echinoderms, revealing the occurrence of viral groups in natural populations.
Collapse
Affiliation(s)
- Elliot W Jackson
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla CA, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| | - Daniel H Buckley
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|