1
|
Bae J, Takano C, Hoque SA, Saito H, Akino W, Nishimura S, Onda Y, Okitsu S, Hayakawa S, Komine-Aizawa S, Ushijima H. Precautionary findings on the utilization of FilmArray® to detect human astroviruses in fecal and sewage samples. J Infect Chemother 2024; 30:1327-1329. [PMID: 39084458 DOI: 10.1016/j.jiac.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The FilmArray® Gastrointestinal (GI) Panel is a modern, sensitive, and comprehensive stool testing technique for identifying common gastrointestinal pathogens, including viruses, bacteria, and parasites. Its increasing demand is due to ease of operation and automation. Pathogens, particularly viruses, undergo constant genetic evolution. For instance, human astrovirus (HAstV), which causes gastroenteritis in children, the elderly, and immune-compromised individuals, can be identified by the GI Panel. HAstV has evolved into several clades, including the classic (HAstV1-8), novel Melbourne (MLB1-3), and Virginia (VA1-5) clades. This study investigated whether the GI Panel accurately detects all HAstV clades. A total of 12 stool and three sewage water (SW) samples were selected post-confirmation of distinct HAstV strains using conventional RT-PCR and sequence-based genotyping for reassessment by the GI Panel. The GI Panel accurately detected the classic HAstV in stool and SW samples. However, our results confirm the GI Panel's inability to detect the novel MLB (MLB1-3) and VA (VA2) clades in fecal samples, raising the possibility of false-negative results in HAstV testing. Although the GI Panel is useful for identifying a variety of gastrointestinal pathogens in stool and SW samples in a single test, our findings highlight the need to exercise caution when interpreting HAstV results from the GI Panel.
Collapse
Affiliation(s)
- Jonghyun Bae
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Pharmacy, College of Pharmacy, Hanyang University, Republic of Korea
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Cell and Tissue Culture Laboratory, Center for Advanced Research in Sciences (CARS), University of Dhaka, Bangladesh
| | - Hiroyuki Saito
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Japan
| | - Wakako Akino
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Japan
| | | | - Yuko Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Awere-Duodu A, Donkor ES. Rotavirus in Water Environments: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241276667. [PMID: 39439598 PMCID: PMC11494518 DOI: 10.1177/11786302241276667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 10/25/2024]
Abstract
Background Despite the adoption of rotavirus vaccines, sporadic outbreaks of the virus have been reported in many parts of the world. These outbreaks are facilitated by several factors including the ease of transmission of rotavirus through water environments. This systematic review aimed to determine the global prevalence of rotavirus in water environments. Methodology Comprehensive Boolean searches were conducted in PubMed, SCOPUS, and Web of Science. A total of 75 eligible studies were included in the study, from which data was extracted for both systematic review and meta-analysis. Extracted prevalence data was grouped according to six water categories: drinking water, untreated sewage, treated sewage, surface water, groundwater, and others. A single-group prevalence meta-analysis was conducted in RStudio version 4.3.3 subjecting the data to the random-effects model. Results The included studies were conducted in 32 countries that span 5 continents: Africa, Asia, Europe, North America, and South America. The pooled prevalence of rotavirus in water environments was 40.86%. Among the individual water environments, untreated sewage had the highest prevalence (68.27%), followed by treated sewage (53.07%), surface water (33.40%), groundwater (25.64%) and drinking water (9.46%). Continental stratification of the prevalence data was as follows: Africa (51.75%), Asia (32.48%), Europe (55.90%), North America (41.80%), and South America (28.51%). Conclusion There is a high prevalence of rotavirus in water environments, especially in untreated sewage, and in Europe. Further research is needed to find more efficient methods that can effectively eliminate rotavirus to insignificant levels in water environments.
Collapse
Affiliation(s)
- Aaron Awere-Duodu
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
3
|
Freitas JF, Oliveira TT, Agnez-Lima LF. Metaviromic reveals the dynamics and diversity of the virosphere in wastewater samples from Natal, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124752. [PMID: 39154883 DOI: 10.1016/j.envpol.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic underscored the significance of omics technology and Wastewater-Based Epidemiology for epidemic preparedness. This study investigates the virosphere in wastewater samples from Natal (Brazil), aiming to understand its structure, relationships, and potential. Metaviromic analysis was used on DNA and RNA from weekly samples collected over a year (June/2021 to May/2022) from three wastewater treatment plants. The virosphere showed stability, particularly in viruses infecting microorganisms and plants. However, an alternation of representatives of viruses that infect animals has been observed. Among the most abundant viruses infecting microorganisms are genera associated with the bacterial genera Escherichia, Pseudomonas, and Caulobacte. Regarding the viruses infecting plants, Sobemovirus and Tobamovirus are the most abundant genera. Odontoglossum ringspot virus was identified as a possible RNA virus biomarker. Among DNA viruses infecting animals, genera Bocaparvovirus and Mastadenovirus are the most prevalent. Intriguingly, some Poxviridae family members were observed in the samples. Co-occurrence network analysis identified potential biomarkers like Volepox virus, Anatid herpesvirus 1, and Caviid herpesvirus 2. Among RNA viruses affecting animals, Mamastrovirus, Rotavirus, and Norovirus genera were the most abundant pathogens. Furthermore, members of the Coronaviridae family exhibited a high degree of centrality values in the co-occurrence network, even connecting with unclassified viruses. The study emphasizes the importance of research in understanding the roles of unclassified viruses. In addition, we observed an association between Coronaviridae reads, rainfall, and the number of reported COVID-19 cases. Our study highlights the diversity and complexity of the viral community in wastewater and the need for research to understand better the ecological roles unclassified viruses play. Such advances will significantly contribute to our preparedness and response to future viral threats. Furthermore, our study contributes to knowledge of virosphere dynamics, offering insights that can contribute to the direction of future public health policies and interventions.
Collapse
Affiliation(s)
- Júlia Firme Freitas
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Thais Teixeira Oliveira
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
4
|
Kumthip K, Khamrin P, Thongprachum A, Malasao R, Yodmeeklin A, Ushijima H, Maneekarn N. Diverse genotypes of norovirus genogroup I and II contamination in environmental water in Thailand during the COVID-19 outbreak from 2020 to 2022. Virol Sin 2024; 39:556-564. [PMID: 38823781 PMCID: PMC11401460 DOI: 10.1016/j.virs.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Noroviruses (NoVs) are the most significant viral pathogens associated with waterborne and foodborne outbreaks of nonbacterial acute gastroenteritis in humans worldwide. This study aimed to investigate the prevalence and diversity of NoVs contaminated in the environmental water in Chiang Mai, Thailand. A total of 600 environmental water samples were collected from ten sampling sites in Chiang Mai from July 2020 to December 2022. The presence of NoV genogroups I (GI), GII, and GIV were examined using real-time RT-PCR assay. The genotype of the virus was determined by nucleotide sequencing and phylogenetic analysis. The results showed that NoV GI and GII were detected at 8.5% (51/600) and 11.7% (70/600) of the samples tested, respectively. However, NoV GIV was not detected in this study. NoV circulated throughout the year, with a higher detection rate during the winter season. Six NoV GI genotypes (GI.1-GI.6) and eight NoV GII genotypes (GII.2, GII.3, GII.7, GII.8, GII.10, GII.13, GII.17, and GII.21) were identified. Among 121 NoV strains detected, GII.17 was the most predominant genotype (24.8%, 30 strains), followed by GII.2 (21.5%, 26 strains), GI.3 (17.4%, 21 strains), and GI.4 (16.5%, 20 strains). Notably, NoV GII.3, GII.7, GII.8, and GII.10 were detected for the first time in water samples in this area. This study provides insight into the occurrence and seasonal pattern of NoV along with novel findings of NoV strains in environmental water in Thailand during the COVID-19 outbreak. Our findings emphasize the importance of further surveillance studies to monitor viral contamination in environmental water.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Aksara Thongprachum
- Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand; Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Rungnapa Malasao
- Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand; Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Wong JCC, Tay M, Hapuarachchi HC, Lee B, Yeo G, Maliki D, Lee W, Mohamed Suhaimi NA, Chio K, Tan WCH, Ng LC. Case report: Zika surveillance complemented with wastewater and mosquito testing. EBioMedicine 2024; 101:105020. [PMID: 38387403 PMCID: PMC10897811 DOI: 10.1016/j.ebiom.2024.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND In June 2023, a local cluster of 15 Zika cases was reported in a neighbourhood in Northeastern Singapore. The last significant local transmission of Zika virus (ZIKV) with more than 450 cases was in 2016-2017. To monitor the situation and mitigate further transmission, case, entomological and wastewater-based surveillance were carried out. METHODS Primary healthcare practitioners and the community were alerted to encourage timely case identification. Surveillance was enhanced through testing of Aedes mosquitoes collected from the National Gravitrap surveillance system, and wastewater samples were collected from a network of autosamplers deployed at manholes across the country. FINDINGS ZIKV RNA was detected in mosquito pools (3/43; 7%) and individual mosquitoes (3/82; 3.7%) captured, and in wastewater samples (13/503) collected from the vicinity of the cluster of cases. Respective samples collected from other sites across the country were negative. The peak detection of ZIKV RNA in mosquitoes and wastewater coincided temporally with the peak in the number of cases in the area (15-25 May 2023). INTERPRETATION The restriction of ZIKV signals from wastewater and mosquitoes within the neighbourhood suggested limited ZIKV transmission. The subsequent waning of signals suggested effectiveness of control measures. We demonstrate the utility of wastewater-based surveillance of ZIKV, which complements existing case- and entomological-based surveillance. The non-intrusive approach is particularly useful to monitor diseases such as Zika, which generally causes silent or mild infections, but may cause severe outcomes such as congenital Zika syndrome. FUNDING This study was funded by Singapore's Ministry of Finance and the National Environment Agency, Singapore.
Collapse
Affiliation(s)
| | - Martin Tay
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Benjamin Lee
- Environmental Health Institute, National Environment Agency, Singapore
| | - Gladys Yeo
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Winston Lee
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Kaiyun Chio
- Environmental Public Health Operations Group, National Environment Agency, Singapore
| | | | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
6
|
Cantelli CP, Tavares GCL, Sarmento SK, Burlandy FM, Fumian TM, Maranhão AG, da Silva EDSRF, Horta MAP, Miagostovich MP, Yang Z, Leite JPG. Assessment of Gastroenteric Viruses in Marketed Bivalve Mollusks in the Tourist Cities of Rio de Janeiro, Brazil, 2022. Viruses 2024; 16:317. [PMID: 38543684 PMCID: PMC10974528 DOI: 10.3390/v16030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/23/2024] Open
Abstract
This study investigated the prevalence and genetic diversity of gastroenteric viruses in mussels and oysters in Rio de Janeiro, Brazil. One hundred and thirty-four marketed bivalve samples were obtained between January and December 2022. The viral analysis was performed according to ISO/TS 15216, and the screening revealed the detection of norovirus GII/GI (40.3%), sapovirus (SaV; 12.7%), human mastadenovirus (7.5%), and rotavirus A (RVA; 5.9%). In total, 44.8% (60) of shellfish samples tested positive for one or more viruses, 46.7% (28/60) of the positive samples tested positive for a single viral agent, 26.7% (16) tested positive for two viral agents, 8.3% (5) for three viral agents, and 13.3% (8) for four viral agents. Additionally, three mussel samples were contaminated with the five investigated viruses (5%, 3/60). Norovirus GII showed the highest mean viral load (3.4 × 105 GC/g), followed by SaV (1.4 × 104 GC/g), RVA (1.1 × 104 GC/g), human mastadenovirus (3.9 × 103 GC/g), and norovirus GI (6.7 × 102 GC/g). Molecular characterization revealed that the recovered norovirus strains belonged to genotypes GII.2, GII.6, GII.9, GII.17, and GII.27; SaV belonged to genotypes GI.1 and GIV.1; RVA to genotypes G6, G8, P[8]-III, and human mastadenovirus to types F40 and F41. The GII.27 norovirus characterized in this study is the only strain of this genotype reported in Brazil. This study highlights the dissemination and diversity of gastroenteric viruses present in commercialized bivalves in a touristic area, indicating the potential risk to human health and the contribution of bivalves in the propagation of emerging pathogens.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| | | | - Sylvia Kahwage Sarmento
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| | | | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| | - Adriana Gonçalves Maranhão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| | | | | | | | - Zhihui Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20723, USA
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| |
Collapse
|
7
|
Hoque SA, Saito H, Akino W, Kotaki T, Okitsu S, Onda Y, Kobayashi T, Hossian T, Khamrin P, Motomura K, Maneekarn N, Hayakawa S, Ushijima H. The Emergence and Widespread Circulation of Enteric Viruses Throughout the COVID-19 Pandemic: A Wastewater-Based Evidence. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:342-354. [PMID: 37898959 DOI: 10.1007/s12560-023-09566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/31/2023]
Abstract
Growing evidence shed light on the importance of wastewater-based epidemiology (WBE) during the pandemic, when the patients rarely visited the clinics despite the fact that the infections were still prevalent in the community as before. The abundance of infections in the community poses a constant threat of the emergence of new epidemic strains. Herein, we investigated enteric viruses in raw sewage water (SW) from Japan's Tohoku region and compared them to those from the Kansai region to better understand the circulating strains and their distribution across communities during the COVID-19 pandemic. Raw SW was collected between 2019 and 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major AGE viruses by RT-PCR. Sequence-based analyses were used to assess genotypes and evolutionary relationships. The most commonly detected enteric virus was rotavirus A (RVA) at 63.8%, followed by astrovirus (AstV) at 61.1%, norovirus (NoV) GII and adenovirus (AdV) at 33.3%, sapovirus (SV) at 25.0%, enterovirus (EV) at 19.4%, and NoV GI at 13.9%. The highest prevalence (46.0%) was found in the spring. Importantly, enteric viruses did not decline during the pandemic. Rather, several strains like NoV GII.2, DS-1-like human G3 (equine) RVA, MLB1 AstV, and different F41 HAdV emerged throughout the pandemic and spread widely over the Tohoku and Kansai regions. Tohoku's detection rate remained lower than that of the Kansai area (36 vs 58%). This study provides evidence for the emergence and spread of enteric viruses during the pandemic.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Hiroyuki Saito
- Department of Microbiology, Akita Prefectual Research Center for Public Health and Environment, Akita, Japan
| | - Wakako Akino
- Department of Microbiology, Akita Prefectual Research Center for Public Health and Environment, Akita, Japan
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yuko Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tania Hossian
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
8
|
Hoque SA, Pham NTK, Onda-Shimizu Y, Nishimura S, Sugita K, Kobayashi M, Islam MT, Okitsu S, Khamrin P, Maneekarn N, Hayakawa S, Ushijima H. Sapovirus infections in Japan before and after the emergence of the COVID-19 pandemic: An alarming update. J Med Virol 2023; 95:e29023. [PMID: 37543991 DOI: 10.1002/jmv.29023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
An increasing trend of sapovirus (SaV) infections in Japanese children during 2009-2019, particularly after the introduction of the voluntary rotavirus (RV)-vaccination program has been observed. Herein, we investigated the epidemiological situation of SaV infections from 2019 to 2022 when people adopted a precautionary lifestyle due to the emergence of the COVID-19 pandemic, and RV vaccines had been implemented as routine vaccines. Stool samples were collected from children who attended outpatient clinics with acute gastroenteritis and analyzed by reverse transcriptase-polymerase chain reaction to determine viral etiology. Among 961 stool samples, 80 (8.3%) were positive for SaV: 2019-2020 (6.5%), 2020-2021 (0%), and 2021-2022 (12.8%). The trend of SaV infection in Japanese children yet remained upward with statistical significance (p = 0.000). The major genotype was GI.1 (75%) which caused a large outbreak in Kyoto between December 2021 and February 2022. Phylogenetic, gene sequence and deduced amino acid sequence analyses suggested that these GI.1 strains detected in the outbreak and other places during 2021-2022 or 2019-2020 remained genetically identical and widely spread. This study reveals that SaV infection is increasing among Japanese children which is a grave concern and demands immediate attention to be paid before SaV attains a serious public health problem.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Cell and Tissue Culture Research, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Ngan Thi Kim Pham
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuko Onda-Shimizu
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichi Nishimura
- Cell and Tissue Culture Research, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Kumiko Sugita
- Division of Microbiology, Nihon University School of Medicine, Japanese Viral Gastritis Group, Tokyo, Japan
| | - Masaaki Kobayashi
- Division of Microbiology, Nihon University School of Medicine, Japanese Viral Gastritis Group, Tokyo, Japan
| | | | - Shoko Okitsu
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Satoshi Hayakawa
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|