1
|
Xia Y, Hao L, Li Y, Li Y, Chen J, Li L, Han X, Liu Y, Wang X, Li D. Embryonic 6:2 FTOH exposure causes reproductive toxicity by disrupting the formation of the blood-testis barrier in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114497. [PMID: 36608565 DOI: 10.1016/j.ecoenv.2023.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have revealed nephrotoxicity, hepatotoxicity, subchronic developmental and reproductive toxicity in rats exposed to fluorotelomer alcohol (FTOH). However, the effects of embryonic 6:2 FTOH exposure on the reproductive system of offspring mice remain unclear. The purpose of this study is to explore the reproductive toxic effects of embryonic 6:2 FTOH exposure on offspring male mice and the related molecular mechanisms. Therefore, the pregnant mice were given corn oil or 6:2 FTOH by gavage from gestational days 12.5-21.5. The results demonstrated that embryonic 6:2 FTOH exposure resulted in disrupted testicular structure, low expression of tight junction protein between Sertoli cells (SCs), impaired blood-testis barrier (BTB) formation and maturation, reduced sperm viability and increased malformation, and induced testicular inflammation in the offspring of mice. Further in vitro studies showed that 6:2 FTOH treatment upregulated MMP-8 expression by activating AKT/NF-κB signaling pathway, which in turn enhanced occludin cleavage leading to the disruption of SCs barrier integrity. In summary, this study demonstrated that 6:2 FTOH exposure caused reproductive dysfunction in male offspring through disruption of BTB, which provided new insights into the effects of 6:2 FTOH exposure on the offspring.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lanxiang Hao
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Yueyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Li
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yanmei Liu
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
2
|
Sun H, Yang Z, Teng Z, Zhang Y, Han Z, Xu C, Wang Z, Wang H, Wen H, Chen X, Qu C, Wang Y. DDX58 expression promotes inflammation and growth arrest in Sertoli cells by stabilizing p65 mRNA in patients with Sertoli cell-only syndrome. Front Immunol 2023; 14:1135753. [PMID: 37033952 PMCID: PMC10073560 DOI: 10.3389/fimmu.2023.1135753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Sertoli cell -only syndrome (SCOS) is a type of testicular pathological failure that causes male infertility and no effective treatment strategy, is available for this condition. Moreover, the molecular mechanism underlying its development remains unknown. We identified DExD/H-Box helicase 58 (DDX58) as a key gene in SCOS based on four datasets of testicular tissue samples obtained from the Gene Expression Synthesis database. DDX58 was significantly upregulated in SCOS testicular Sertoli cells. Moreover, high expression of DDX58 was positively correlated with the expression of several testicular inflammatory factors, such as IL -1β, IL-18, and IL-6. Interestingly, DDX58 could be induced in the D-galactose (D-gal)-stimulated TM4 cell injury model. Whereas silencing of DDX58 inhibited D-gal -mediated p65 expression, inflammatory cytokine release, and growth arrest. Mechanistically, we found that DDX58 acts as an RNA-binding protein, which enhances p65 expression by promoting mRNA stability. Furthermore, p65 gene silencing decreased the expression of inflammatory cytokines and inhibition of cell growth in D-gal-induced cells. In conclusion, our findings demonstrate that DDX58 promotes inflammatory responses and growth arrest in SCOS Sertoli cells by stabilizing p65 mRNA. Accordingly, the DDX58/p65 regulatory axis might be a therapeutic target for SCOS.
Collapse
Affiliation(s)
- Hao Sun
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Xu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhuang Wen
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaodong Chen
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Changbao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Changbao Qu, ; Yaxuan Wang,
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Changbao Qu, ; Yaxuan Wang,
| |
Collapse
|
3
|
Abstract
The male reproductive system consists of testes, a series of ducts connecting the testes to the external urethral orifice, accessory sex glands, and the penis. Spermatogonial stem cells differentiate and mature in testes and epididymides, and spermatozoa are ejaculated with exocrine fluids secreted by accessory sex glands. Many studies have clarified the detailed structure and function of the male reproductive system, and have shown that various biologic controls, including genomics, epigenetics, and the neuroendocrine-immune system regulate proliferation, differentiation, and maturation of germ cells. In other words (1) genetic deletion or abnormalities, (2) aberration of DNA methylation and histone modifications, as well as small RNA dysfunction, and (3) neuroendocrine-immune disorders are involved in functional failure of the male reproductive system. In this article, we review these three factors for germ cell microcircumstance, especially focused on the immunoendocrine environment. In particular, the relation between factors protecting germ cells with strong auto-immunogenicity and opposite factors compromising this protection are discussed. Reductions in sperm count, concentration, and semen quality are serious problems in developed countries, although the causes are complex and remain unclear. The accumulation of basic knowledge regarding the structure, function, and regulation of the male reproductive system under various experimental conditions will be important to resolve these problems.
Collapse
|
4
|
Altered Biology of Testicular VSELs and SSCs by Neonatal Endocrine Disruption Results in Defective Spermatogenesis, Reduced Fertility and Tumor Initiation in Adult Mice. Stem Cell Rev Rep 2021; 16:893-908. [PMID: 32592162 DOI: 10.1007/s12015-020-09996-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Reproductive health of men has declined in recent past with reduced sperm count and increased incidence of infertility and testicular cancers mainly attributed to endocrine disruption in early life. Present study aims to evaluate whether testicular stem cells including very small embryonic-like stem cells (VSELs) and spermatogonial stem cells (SSCs) get affected by endocrine disruption and result in pathologies in adult life. Effect of treatment on mice pups with estradiol (20 μg on days 5-7) and diethylstilbestrol (DES, 2 μg on days 1-5) was studied on VSELs, SSCs and spermatogonial cells in adult life. Treatment affected spermatogenesis, tubules in Stage VIII & sperm count were reduced along with reduction of meiotic (4n) cells and markers (Prohibitin, Scp3, Protamine). Enumeration of VSELs by flow cytometry (2-6 μm, 7AAD-, LIN-CD45-SCA-1+) and qRT-PCR using specific transcripts for VSELs (Oct-4a, Sox-2, Nanog, Stella, Fragilis), SSCs (tOct-4, Gfra-1, Gpr-125) and early germ cells (Mvh, Dazl) showed several-fold increase but transition from c-Kit negative to c-Kit positive spermatogonial cells was blocked on D100 after treatment. Transcripts specific for apoptosis (Bcl2, Bax) remained unaffected but tumor suppressor (p53) and epigenetic regulator (NP95) transcripts showed marked disruption. 9 of 10 mice exposed to DES showed tumor-like changes. To conclude, endocrine disruption resulted in a tilt towards excessive self-renewal of VSELs (leading to testicular cancer after DES treatment) and blocked differentiation (reduced numbers of c-Kit positive cells, meiosis, sperm count and fertility). Understanding the underlying basis for infertility and cancer initiation from endogenous stem cells through murine modelling will hopefully improve human therapies in future.
Collapse
|
5
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Cunha GR, Li Y, Mei C, Derpinghaus A, Baskin LS. Ontogeny of estrogen receptors in human male and female fetal reproductive tracts. Differentiation 2020; 118:107-131. [PMID: 33176961 DOI: 10.1016/j.diff.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022]
Abstract
This paper reviews and provides new observations on the ontogeny of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) in developing human male and female internal and external genitalia. Included in this study are observations on the human fetal uterine tube, the uterotubal junction, uterus, cervix, vagina, penis and clitoris. We also summarize and report on the ontogeny of estrogen receptors in the human fetal prostate, prostatic urethra and epididymis. The ontogeny of ESR1 and ESR2, which spans from 8 to 21 weeks correlates well with the known "window of susceptibility" (7-15 weeks) for diethylstilbestrol (DES)-induced malformations of the human female reproductive tract as determined through examination of DES daughters exposed in utero to this potent estrogen. Our fairly complete mapping of the ontogeny of ESR1 and ESR2 in developing human male and female internal and external genitalia provides a mechanistic framework for further investigation of the role of estrogen in normal development and of abnormalities elicited by exogenous estrogens.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Yi Li
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Cao Mei
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
7
|
Nanjappa MK, Medrano TI, Mesa AM, Ortega MT, Caldo PD, Mao J, Kinkade JA, Levin ER, Rosenfeld CS, Cooke PS. Mice lacking membrane estrogen receptor 1 are protected from reproductive pathologies resulting from developmental estrogen exposure†. Biol Reprod 2020; 101:392-404. [PMID: 31141131 DOI: 10.1093/biolre/ioz090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/22/2019] [Indexed: 01/06/2023] Open
Abstract
Both membrane and nuclear fractions of estrogen receptor 1 (ESR1) mediate 17β-estradiol (E2) actions. Mice expressing nuclear (n)ESR1 but lacking membrane (m)ESR1 (nuclear-only estrogen receptor 1 [NOER] mice) show reduced E2 responsivity and reproductive abnormalities culminating in adult male and female infertility. Using this model, we investigated whether reproductive pathologies caused by the synthetic estrogen diethylstilbestrol (DES) are mitigated by mESR1 ablation. Homozygous and heterozygous wild-type (WT and HET, respectively) and NOER male and female mice were subcutaneously injected with DES (1 mg/kg body weight [BW]) or vehicle daily from postnatal day (PND) 1-5. Uterine histology was assessed in select DES-treated females at PND 5, whereas others were ovariectomized at PND 60 and treated with E2 (10 μg/kg BW) or vehicle 2 weeks later. Neonatal DES exposure resulted in ovary-independent epithelial proliferation in the vagina and uterus of WT but not NOER females. Neonatal DES treatment also induced ovary-independent adult expression of classical E2-induced transcripts (e.g., lactoferrin [Ltf] and enhancer of zeste homolog 2 [Ezh2]) in WT but not NOER mice. At PND 90, DES-treated WT and HET males showed smaller testes and a high incidence of bacterial pyogranulomatous inflammation encompassing the testes, epididymis and occasionally the ductus deferens with spread to lumbar lymph nodes; such changes were largely absent in NOER males. Results indicate that male and female NOER mice are protected from deleterious effects of neonatal DES, and thus mESR1 signaling is required for adult manifestation of DES-induced reproductive pathologies in both sexes.
Collapse
Affiliation(s)
- Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Madison T Ortega
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D Caldo
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jessica A Kinkade
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, USA.,MU Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Rosenfeld CS, Javurek AB, Johnson SA, Lei Z, Sumner LW, Hess RA. Seminal fluid metabolome and epididymal changes after antibiotic treatment in mice. Reproduction 2018; 156:1-10. [PMID: 29692359 DOI: 10.1530/rep-18-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 01/19/2023]
Abstract
Paternal environment can induce detrimental developmental origins of health and disease (DOHaD) effects in resulting offspring and even future descendants. Such paternal-induced DOHaD effects might originate from alterations in a possible seminal fluid microbiome (SFM) and composite metabolome. Seminal vesicles secrete a slightly basic product enriched with fructose and other carbohydrates, providing an ideal habitat for microorganisms. Past studies confirm the existence of a SFM that is influenced by genetic and nutritional status. Herein, we sought to determine whether treatment of male mice with a combination of antibiotics designed to target SFM induces metabolic alterations in seminal vesicle gland secretions (seminal fluid) and histopathological changes in testes and epididymides. Adult (10- to 12-week-old) National Institutes of Health (NIH) Swiss males (n = 10 per group) were treated with Clindamycin 0.06 mg/kg day, Unasyn (ampicillin/sulbactam) 40 mg/kg day and Baytril (enrofloxacin) 50 mg/kg day designed to target the primary bacteria within the SFM or saline vehicle alone. Fourteen-day antibiotic treatment of males induced metabolomic changes in seminal vesicles with inosine, xanthine and l-glutamic acid decreased but d-fructose increased in glandular secretions. While spermatogenesis was not affected in treated males, increased number of epididymal tubules showed cribriform growth in this group (7 antibiotic-treated males: 3 saline control males; P = 0.01). Antibiotic-treated males showed more severe cribriform cysts. Current findings suggest antibiotic treatment of male mice results in seminal fluid metabolome and epididymal histopathological alterations. It remains to be determined whether such changes compromise male reproductive function or lead to DOHaD effects in resulting offspring.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA .,Department of Biomedical SciencesUniversity of Missouri, Columbia, Missouri, USA.,Thompson Center for Autism and Neurobehavioral DisordersUniversity of Missouri, Columbia, Missouri, USA.,Genetics Area Program Faculty MemberUniversity of Missouri, Columbia, Missouri, USA
| | - Angela B Javurek
- Department of Occupational and Environmental Health SciencesWest Virginia University, Morgantown, West Virginia, USA
| | - Sarah A Johnson
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of Biomedical SciencesUniversity of Missouri, Columbia, Missouri, USA.,Department of GastroenterologySchool of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Zhentian Lei
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of BiochemistryUniversity of Missouri, Columbia, Missouri, USA.,MU Metabolomics CenterUniversity of Missouri, Columbia, Missouri, USA
| | - Lloyd W Sumner
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of BiochemistryUniversity of Missouri, Columbia, Missouri, USA.,MU Metabolomics CenterUniversity of Missouri, Columbia, Missouri, USA
| | - Rex A Hess
- Department of Comparative BiosciencesCollege of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
9
|
Chen Y, Wang J, Zhang Q, Xiang Z, Li D, Han X. Microcystin-leucine arginine exhibits immunomodulatory roles in testicular cells resulting in orchitis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:964-975. [PMID: 28765008 DOI: 10.1016/j.envpol.2017.07.081] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/06/2017] [Accepted: 07/24/2017] [Indexed: 05/14/2023]
Abstract
Microcystin-leucine arginine (MC-LR) causes testicular inflammation and hinders spermatogenesis. However, the molecular mechanisms underlying the immune responses to MC-LR in the testis have not been elucidated in detail. In this study, we show that MC-LR induced immune responses in Sertoli cells (SC), germ cells (GC), and Leydig cells (LC) via activating phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor kappa B (NF-κB), resulting in the production of pro-inflammatory cytokines and chemokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 10 (CXCL10). The observed effects were attributed to reduced activity of protein phosphatases 2A (PP2A) as a result of binding of MC-LR to the catalytic subunit of PP2A in SC and GC. By contrast, innate immune responses were triggered by Toll-like receptor 2 (TLR2) in LC because MC-LR could not enter into the LC and subsequently inhibit the PP2A activity. PI3K/AKT/NF-κB were also activated in SC, GC, and LC in vivo, with the enrichment of TNF-α, IL-6, MCP-1, and CXCL10 in the testis. Following chronic exposure, MC-LR-treated mice exhibited decreased sperm counts and abnormal sperm morphology. Our data demonstrate that MC-LR can activate innate immune responses in testicular cells, which provides novel insights to explore the mechanism associated with MC-LR-induced orchitis.
Collapse
Affiliation(s)
- Yabing Chen
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Qin Zhang
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
10
|
Hess RA. Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis. SPERMATOGENESIS 2014; 4:e979103. [PMID: 26413389 PMCID: PMC4581051 DOI: 10.4161/21565562.2014.979103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion: The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules.
Collapse
Affiliation(s)
- Rex A Hess
- Reproductive Biology & Toxicology; Department of Comparative Biosciences; College of Veterinary Medicine; University of Illinois ; Urbana, IL USA
| |
Collapse
|