1
|
Jena NR, Shukla PK. Hydroxyl radical-induced C1'-H abstraction reaction of different artificial nucleotides. J Mol Model 2024; 30:330. [PMID: 39269493 DOI: 10.1007/s00894-024-06126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
CONTEXT Recently, a few antiviral drugs viz Molnupiravir (EIDD-1931), Favipiravir, Ribavirin, Sofosbuvir, Galidesivir, and Remdesivir are shown to be beneficial against COVID-19 disease. These drugs bind to the viral RNA single strand to inhibit the virus genome replication. Similarly, recently, some artificial nucleotides, such as P, J, B, X, Z, V, S, and K were proposed to behave as potent antiviral candidates. However, their activity in the presence of the most reactive hydroxyl (OH) radical is not yet known. Here, the possibility of RNA strand break due to the OH radical-induced C1'-hydrogen (H) abstraction reaction of the above molecules (except Remdesivir) is studied in detail by considering their nucleotide conformation. The results are compared with those of the natural RNA nucleotides (G, C, A, and U). Due to low Gibbs barrier-free energy and high exothermicity, all these nucleotides (except Remdesivir) are prone to OH radical-induced C1'-H abstraction reaction. As Remdesivir contains a C1'-CN bond, the OH radical substitution reactions at the CN and C1' sites would likely liberate the catalytically important CN group, thereby downgrading its activity. METHOD Initially, the B3LYP-D3 dispersion-corrected density functional theory method and 6-31 + G* basis set were used to optimize all reactant, transition state, and product complexes in the implicit aqueous medium. Subsequently, the structures of these complexes were further optimized by using the ωB97X-D dispersion-corrected density functional theory method and cc-PVTZ basis set in the aqueous medium. The IEFPCM method was used to model the aqueous medium.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silcharm, 788011, India
| |
Collapse
|
2
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Jiang Y, Clavaguéra C, Indrajith S, Houée-Levin C, Berden G, Oomens J, Scuderi D. OH Radical-Induced Oxidation in Nucleosides and Nucleotides Unraveled by Tandem Mass Spectrometry and Infrared Multiple Photon Dissociation Spectroscopy. Chemphyschem 2023; 24:e202300534. [PMID: 37713246 DOI: 10.1002/cphc.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
OH⋅-induced oxidation products of DNA nucleosides and nucleotides have been structurally characterized by collision-induced dissociation tandem mass spectrometry (CID-MS2 ) and Infrared Multiple Photon Dissociation (IRMPD) spectroscopy. CID-MS2 results have shown that the addition of one oxygen atom occurs on the nucleobase moiety. The gas-phase geometries of +16 mass increment products of 2'-deoxyadenosine (dA(O)H+ ), 2'-deoxyadenosine 5'-monophosphate (dAMP(O)H+ ), 2'-deoxycytidine (dC(O)H+ ), and 2'-deoxycytidine 5'-monophosphate (dCMP(O)H+ ) are extensively investigated by IRMPD spectroscopy and quantum-chemical calculations. We show that a carbonyl group is formed at the C8 position after oxidation of 2'-deoxyadenosine and its monophosphate derivative. For 2'-deoxycytidine and its monophosphate derivative, the oxygen atom is added to the C5 position to form a C-OH group. IRMPD spectroscopy has been employed for the first time to provide direct structural information on oxidative lesions in DNA model systems.
Collapse
Affiliation(s)
- Yining Jiang
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Suvasthika Indrajith
- Stockholm University, Roslagstullsbacken 21 C, plan 4, Albano, Fysikum, 106 91, Stockholm, Sweden
| | - Chantal Houée-Levin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, 6525 ED, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, 6525 ED, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box, 94157, Amsterdam, 1090 GD, The Netherlands
| | - Debora Scuderi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| |
Collapse
|
4
|
Fleming AM, Omaga CA, Burrows CJ. NEIL3 promoter G-quadruplex with oxidatively modified bases shows magnesium-dependent folding that stalls polymerase bypass. Biochimie 2023; 214:156-166. [PMID: 37437684 PMCID: PMC10592359 DOI: 10.1016/j.biochi.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Oxidative stress unleashes reactive species capable of oxidizing 2'-deoxyguanosine (G) nucleotides in G-rich sequences of the genome, such as the potential G-quadruplex forming sequencing (PQS) in the NEIL3 gene promoter. Oxidative modification of G yields 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) that can be further oxidized to hydantoin products. Herein, OG was synthesized into the NEIL3 PQS that was allowed to fold to a G-quadruplex (G4) in K+ ion solutions with varying amounts of Mg2+ in the physiological range. The Mg2+ dependency in the oxidatively modified NEIL3 G4 to stall a replicative DNA polymerase was evaluated. The polymerase was found to stall at the G4 or OG, as well as continue to full-length extension with dependency on the location of the modification and the concentration of Mg2+. To provide some clarity on these findings, OG or the hydantoins were synthesized in model NEIL3 G4 folding sequences at the positions of the polymerase study. The model G4 sequences were allowed to fold in K+ ion solutions with varying levels of Mg2+ to identify how the presence of the divalent metal impacted G4 folding depending on the location of the modification. The presence of Mg2+ either caused the transition of the NEIL3 G4 folds from an antiparallel to parallel orientation of the strands or had no impact. Structural models are proposed to understand the findings using the literature as a guide. The biological significance of the results is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Carla A Omaga
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA.
| |
Collapse
|
5
|
Maraventano G, Ticli G, Cazzalini O, Stivala LA, Ramos-Gonzalez M, Rodríguez JL, Prosperi E. Single Cell Determination of 7,8-dihydro-8-oxo-2'-deoxyguanosine by Fluorescence Techniques: Antibody vs. Avidin Labeling. Molecules 2023; 28:molecules28114326. [PMID: 37298802 DOI: 10.3390/molecules28114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
An important biomarker of oxidative damage in cellular DNA is the formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG). Although several methods are available for the biochemical analysis of this molecule, its determination at the single cell level may provide significant advantages when investigating the influence of cell heterogeneity and cell type in the DNA damage response. to. For this purpose, antibodies recognizing 8-oxodG are available; however, detection with the glycoprotein avidin has also been proposed because of a structural similarity between its natural ligand biotin and 8-oxodG. Whether the two procedures are equivalent in terms of reliability and sensitivity is not clear. In this study, we compared the immunofluorescence determination of 8-oxodG in cellular DNA using the monoclonal antibody N45.1 and labeling using avidin conjugated with the fluorochrome Alexa Fluor488 (AF488). Oxidative DNA damage was induced in different cell types by treatment with potassium bromate (KBrO3), a chemical inducer of reactive oxygen species (ROS). By using increasing concentrations of KBrO3, as well as different reaction conditions, our results indicate that the monoclonal antibody N45.1 provides a specificity of 8-oxodG labeling greater than that attained with avidin-AF488. These findings suggest that immunofluorescence techniques are best suited to the in situ analysis of 8-oxodG as a biomarker of oxidative DNA damage.
Collapse
Affiliation(s)
- Giusy Maraventano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Giulio Ticli
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy
| | - Lucia A Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy
| | - Mariella Ramos-Gonzalez
- Zootecnia and Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15081, Peru
| | - José-Luis Rodríguez
- Zootecnia and Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15081, Peru
- Faculty of Veterinary, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ennio Prosperi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| |
Collapse
|
6
|
Zhang R, Lai W, Wang H. Quantification of Epigenetic DNA Modifications in the Subchromatin Structure Matrix Attachment Regions by Stable Isotope Dilution UHPLC-MS/MS Analysis. Anal Chem 2021; 93:15567-15572. [PMID: 34783527 DOI: 10.1021/acs.analchem.1c04151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, subchromatin structure-based quantification of epigenetic DNA modifications is limited. Matrix attachment regions (MARs), an important subchromatin structure, contain DNA elements that specifically bind chromatin to the nuclear matrix in eukaryotes and are involved in a number of diseases. Here, we exploited a high-salt extraction-based subchromatin fractionation approach for the isolation of MAR DNA and other fractions and further developed heavy stable isotope-diluted ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) for the specific quantification of epigenetic DNA modifications in the subchromatin structures. By this approach, we showed for the first time that the content of a DNA demethylation intermediate, 5-hydroxymethylcytosine (5hmdC), in MARs decreased significantly in four tested cell lines compared to the contents in genomic DNA. In particular, the content of DNA 5hmdC in the MARs of 293T cell lines decreased the most at approximately 41.09%. Together, our findings implicate that MAR DNA is less sensitive than genomic DNA to DNA demethylation.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
7
|
Møller P, Roursgaard M. Biomarkers of DNA Oxidation Products: Links to Exposure and Disease in Public Health Studies. Chem Res Toxicol 2021; 34:2235-2250. [PMID: 34704445 DOI: 10.1021/acs.chemrestox.1c00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
8
|
Ding T, Tang F, Ni G, Liu J, Zhao H, Chen Q. The development of isoguanosine: from discovery, synthesis, and modification to supramolecular structures and potential applications. RSC Adv 2020. [DOI: 10.1039/c9ra09427j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
First systematical review of isoguanosine, an unnatural base, as an isomer of guanosine shows significant differences in diverse properties.
Collapse
Affiliation(s)
- Tingting Ding
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Fan Tang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Jiang Liu
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Hang Zhao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| | - Qianming Chen
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management
- West China Hospital of Stomatology
- Sichuan University
| |
Collapse
|
9
|
Cadet J, Di Mascio P, Wagner JR. (5' R)-and (5' S)-purine 5',8-cyclo-2'-deoxyribonucleosides: reality or artifactual measurements? A reply to Chatgilialoglu's comments (this issue). Free Radic Res 2019; 53:1014-1018. [PMID: 31514561 DOI: 10.1080/10715762.2019.1667992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This rebuttal letter is aimed at refuting the poor and false arguments elaborated by Chatgilialoglu (preceding article) in his response to the position article (Cadet et al. Free Radic Res 2019;53:574-577) that focussed on the putative reliability of the HPLC-MS/MS measurements of five radiation-induced damage to cellular DNA, which included 8-oxo-7,8-dihydro-2'-deoxyadenosine and the (5'R) and (5'S) diastereomers of 5',8-cyclo-2'-deoxyadenosine and 5',8-cyclo-2'-deoxyadenosine (Krokidis et al. Free Radic Res 2017;51:470-482). Unfortunately, none of the main issues we raised on the suitability of the analytical approach and the shortcomings associated with DNA extraction in HPLC based measurement methods of oxidatively generated damage in cells were properly considered in Chatigilialolu's letter. The main questionable issues include the lack of information on the sensitivity of HPLC-MS/MS analysis, the absence of a dose curve that is essential in the formation of damage and the nonconsideration of artifactual oxidation.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke , Canada
| | - Paolo Di Mascio
- Instituto de Química, Universidade de São Paulo , São Paulo , Brazil
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
10
|
Cadet J, Di Mascio P, Wagner JR. Radiation-induced (5' R)-and (5' S)-purine 5',8-cyclo-2'-deoxyribonucleosides in human cells: a revisited analysis of HPLC-MS/MS measurements. Free Radic Res 2019; 53:574-577. [PMID: 30961398 DOI: 10.1080/10715762.2019.1605169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jean Cadet
- a Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Canada
| | - Paolo Di Mascio
- b Departamento de Bioquimica, Instituto de Quimica , Universidade de São Paulo , São Paulo , Brazil
| | - J Richard Wagner
- a Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
11
|
Weimann A, McLeod G, Henriksen T, Cejvanovic V, Poulsen HE. Identification and quantification of isoguanosine in humans and mice. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:225-232. [PMID: 30888208 DOI: 10.1080/00365513.2019.1585566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Isoguanine (2-hydroxyadenine), considered to be a non-natural nucleobase has, however, been shown to occur in the croton bean, butterfly wings and a mollusk. For the first time, to the best of our knowledge, we report the identification of isoguanosine (2-hydroxyadenosine), the ribonucleoside, in humans and mouse. Isoguanosine is identified and quantified in RNA from mouse liver samples and in human urine and cerebrospinal fluid. Isoguanine could not be detected as the 2'-deoxyribonucleoside in mouse liver DNA. It could be speculated that the source of isoguanosine was formation from adenosine during oxidative stress in the body. However, the urinary concentrations of isoguanosine and the levels in the liver found here by using isotope dilution liquid chromatography-tandem mass spectrometry are identical to or exceed those of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine. Guanine is the nucleobase that is oxidized the easiest, so it appears spectacular that the levels of isoguanosine are higher than the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine. It also appears intriguing that it was only possible to detect the ribonucleoside isoguanosine and not the 2'-deoxyribonucleoside. These observations could indicate that the isoguanosine found is not formed by oxidative stress and could have biological functions.
Collapse
Affiliation(s)
- Allan Weimann
- a Department of Clinical Pharmacology , Bispebjerg and Frederiksberg Hospital Copenhagen , Denmark
| | - George McLeod
- b Bruker UK Ltd , Coventry , UK.,c Owlstone Medical Ltd , Cambridge , UK
| | - Trine Henriksen
- a Department of Clinical Pharmacology , Bispebjerg and Frederiksberg Hospital Copenhagen , Denmark
| | - Vanja Cejvanovic
- a Department of Clinical Pharmacology , Bispebjerg and Frederiksberg Hospital Copenhagen , Denmark.,d Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Henrik E Poulsen
- a Department of Clinical Pharmacology , Bispebjerg and Frederiksberg Hospital Copenhagen , Denmark.,d Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
12
|
Cadet J, Wagner JR, Angelov D. Biphotonic Ionization of DNA: From Model Studies to Cell. Photochem Photobiol 2018; 95:59-72. [PMID: 30380156 DOI: 10.1111/php.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
Oxidation reactions triggered by low-intensity UV photons represent a minor contribution with respect to the overwhelming pyrimidine base dimerization in both isolated and cellular DNA. The situation is totally different when DNA is exposed to high-intensity UVC radiation under conditions where biphotonic ionization of the four main purine and pyrimidine bases becomes predominant at the expense of singlet excitation processes. The present review article provides a critical survey of the main chemical reactions of the base radical cations thus generated by one-electron oxidation of nucleic acids in model systems and cells. These include oxidation of the bases with the predominant formation of 8-oxo-7,8-dihydroguanine as the result of preferential hole transfer to guanine bases that act as sinks in isolated and cellular DNA. In addition to hydration, other nucleophilic addition reactions involving the guanine radical cation give rise to intra- and interstrand cross-links together with DNA-protein cross-links. Information is provided on the utilization of high-intensity UV laser pulses as molecular biology tools for studying DNA conformational features, nucleic acid-protein interactions and nucleic acid reactivity through DNA-protein cross-links and DNA footprinting experiments.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule LBMC, CNRS-UMR 5239, Université de Lyon, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
13
|
Affinity maturation of an antibody for the UV-induced DNA lesions 6,4 pyrimidine-pyrimidones. Appl Microbiol Biotechnol 2018; 102:6409-6424. [PMID: 29749564 DOI: 10.1007/s00253-018-8998-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 10/16/2022]
Abstract
DNA lesions, associated mostly with minor changes in DNA structure, may induce permanent change in heritable coding information. Biochemically, these minor structural changes are difficult to be explored for generating high-affinity antibodies to detect specific DNA lesions in varying sequence contexts. Herein, we established a platform of bacterial display to facilitate antibodies to be matured with high affinity and high specificity against DNA lesions. To achieve this goal, we, for the first time, developed a two-round mutation/screening strategy: (1) using multiple lesion-containing DNA probes for primary maturation and (2) using single lesion-containing DNA probes for second maturation. Specifically, we capitalized on 64M-2 as a parental template to improve affinity for 6-4PP by 710-fold, compared with the model one. In addition, the matured antibody (9c3) is found to be much less dependent on the bases surrounding 6-4PPs than the model one. The mechanistic study from both computational simulation and reverse mutations revealed the critical roles of the two-round mutations in the enhanced binding affinity and independence of surrounding bases. This selection strategy opens a new way to improve affinity and specificity of antibodies for other DNA lesions.
Collapse
|
14
|
Fleming AM, Burrows CJ. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA. Org Biomol Chem 2018; 15:8341-8353. [PMID: 28936535 DOI: 10.1039/c7ob02096a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In DNA, 2'-deoxyguanosine (dG) is susceptible to oxidative modification by reactive oxygen species (ROS) yielding many products, one of which is 8-oxo-7,8-dihydro-2'-deoxyguanosine (dOG). Interestingly, dOG is stable but much more labile toward oxidation than dG, furnishing 5-guanidinohydantoin-2'-deoxyribose (dGh) that is favored in the duplex context or spiroiminodihydantoin-2'-deoxyribose (dSp) that is favored in the oxidation of single-stranded contexts. Previously, exposure of DNA to ionizing radiation found ∼50% of the dOG exists as a tandem lesion with an adjacent formamide site. The present work explored oxidation of dOG in a tandem lesion with a THF abasic site analog (F) that models the formamide on either the 5' or 3' side. When dOG was in a tandem lesion, both dGh and dSp were observed as oxidation products. The 5' versus 3' side in which F resided influenced the stereochemistry of the dSp formed. Further, tandem lesions with dOG were found to be up to two orders of magnitude more reactive to oxidation than dOG in an intact duplex. When dOG is in a tandem lesion it is up to fivefold more prone to formation of spermine cross-links during oxidation compared to dOG in an intact duplex. Lastly, dOG, dGh, and each dSp diastereomer were synthesized as part of a tandem lesion in a duplex DNA to establish that dOG tandem lesions decrease the thermal stability by 12-13 °C, while dGh or either dSp diastereomer in a tandem lesion decrease the stability by >20 °C. The biological consequences of these results are discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
15
|
Cejvanovic V, Kjær LK, Bergholdt HKM, Torp-Pedersen A, Henriksen T, Weimann A, Ellervik C, Poulsen HE. Iron induced RNA-oxidation in the general population and in mouse tissue. Free Radic Biol Med 2018; 115:127-135. [PMID: 29157668 DOI: 10.1016/j.freeradbiomed.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Iron promotes formation of hydroxyl radicals by the Fenton reaction, subsequently leading to potential oxidatively generated damage of nucleic acids. Oxidatively generated damage to RNA, measured as 8-oxo-7,8-dihydroguanosine (8-oxoGuo) in urine, is increased in patients with genetic iron overload, which have led us to test the hypothesis that high iron status, assessed by iron biomarkers and genetic disposition, increases urinary excretion of 8-oxoGuo. In a general Danish population study we used a Mendelian randomization design with HFE genotypes as a proxy for iron status and supplemented with ex vivo experiments in mice muscle tissue exposed to iron(II) sulfate to attempt to clarify this hypothesis. The biomarkers ferritin, transferrin, and transferrin saturation (TS) were associated with 8-oxoGuo (in linear univariable and multivariable regression analyses: P < 0.001). Mendelian randomization indicated a causal pathway between genetically elevated iron biomarkers (assessed by ferritin and TS) and high levels of 8-oxoGuo. The ex vivo experiments showed a monotonically increase in 8-oxoGuo with increased iron concentration (ANOVA: P = 0.0008) that was prevented with iron chelation (P = 0.01). Our results indicate a causal relationship between iron biomarkers and 8-oxoGuo. Furthermore, the ex vivo experiment shows a mechanistic link between iron and 8-oxoGuo formation. Both iron overload and the biomarker 8-oxoGuo have been linked to e.g. diabetes, which merits future studies to investigate if iron induced 8-oxoGuo is involved in disease development.
Collapse
Affiliation(s)
- Vanja Cejvanovic
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Laura Kofoed Kjær
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Arendse Torp-Pedersen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Production, Research and Innovation, Region Zealand, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
17
|
Torres-Cuevas I, Aupi M, Asensi MA, Vento M, Ortega Á, Escobar J. 7,8-hydroxy-2′-deoxyguanosine/2′-deoxiguanosine ratio determined in hydrolysates of brain DNA by ultrachromatrography coupled to tandem mass spectrometry. Talanta 2017; 170:97-102. [DOI: 10.1016/j.talanta.2017.03.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 02/05/2023]
|
18
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
19
|
Fleming AM, Burrows CJ. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med 2017; 107:35-52. [PMID: 27880870 PMCID: PMC5438787 DOI: 10.1016/j.freeradbiomed.2016.11.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are harnessed by the cell for signaling at the same time as being detrimental to cellular components such as DNA. The genome and transcriptome contain instructions that can alter cellular processes when oxidized. The guanine (G) heterocycle in the nucleotide pool, DNA, or RNA is the base most prone to oxidation. The oxidatively-derived products of G consistently observed in high yields from hydroxyl radical, carbonate radical, or singlet oxygen oxidations under conditions modeling the cellular reducing environment are discussed. The major G base oxidation products are 8-oxo-7,8-dihydroguanine (OG), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). The yields of these products show dependency on the oxidant and the reaction context that includes nucleoside, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and G-quadruplex DNA (G4-DNA) structures. Upon formation of these products in cells, they are recognized by the DNA glycosylases in the base excision repair (BER) pathway. This review focuses on initiation of BER by the mammalian Nei-like1-3 (NEIL1-3) glycosylases for removal of 2Ih, Sp, and Gh. The unique ability of the human NEILs to initiate removal of the hydantoins in ssDNA, bulge-DNA, bubble-DNA, dsDNA, and G4-DNA is outlined. Additionally, when Gh exists in a G4 DNA found in a gene promoter, NEIL-mediated repair is modulated by the plasticity of the G4-DNA structure provided by additional G-runs flanking the sequence. On the basis of these observations and cellular studies from the literature, the interplay between DNA oxidation and BER to alter gene expression is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States.
| |
Collapse
|
20
|
Cadet J, Wagner JR. Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MH, Cadet J. Singlet molecular oxygen: Düsseldorf – São Paulo, the Brazilian connection. Arch Biochem Biophys 2016; 595:161-75. [DOI: 10.1016/j.abb.2015.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/28/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
|
22
|
Pawlowska E, Wysokiński D, Tokarz P, Piastowska-Ciesielska A, Szczepanska J, Blasiak J. Dexamethasone and 1,25-dihydroxyvitamin D3 reduce oxidative stress-related DNA damage in differentiating osteoblasts. Int J Mol Sci 2014; 15:16649-64. [PMID: 25244015 PMCID: PMC4200756 DOI: 10.3390/ijms150916649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/13/2014] [Accepted: 09/09/2014] [Indexed: 01/22/2023] Open
Abstract
The process of osteoblast differentiation is regulated by several factors, including RUNX2. Recent reports suggest an involvement of RUNX2 in DNA damage response (DDR), which is important due to association of differentiation with oxidative stress. In the present work we explore the influence of two RUNX2 modifiers, dexamethasone (DEX) and 1,25-dihydroxyvitamin D3 (1,25-D3), in DDR in differentiating MC3T3-E1 preosteoblasts challenged by oxidative stress. The process of differentiation was associated with reactive oxygen species (ROS) production and tert-butyl hydroperoxide (TBH) reduced the rate of differentiation. The activity of alkaline phosphatase (ALP), a marker of the process of osteoblasts differentiation, increased in a time-dependent manner and TBH further increased this activity. This may indicate that additional oxidative stress, induced by TBH, may accelerate the differentiation process. The cells displayed changes in the sensitivity to TBH in the course of differentiation. DEX increased ALP activity, but 1,25-D3 had no effect on it. These results suggest that DEX might stimulate the process of preosteoblasts differentiation. Finally, we observed a protective effect of DEX and 1,25-D3 against DNA damage induced by TBH, except the day 24 of differentiation, when DEX increased the extent of TBH-induced DNA damage. We conclude that oxidative stress is associated with osteoblasts differentiation and induce DDR, which may be modulated by RUNX2-modifiers, DEX and 1,25-D3.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Daniel Wysokiński
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Paulina Tokarz
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
23
|
Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W, Sauvaigo S. Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol 2014; 87:20130715. [PMID: 24472775 DOI: 10.1259/bjr.20130715] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
During the last three decades, a considerable amount of work has been undertaken to determine the nature, the mechanism of formation and the biological consequences of radiation-induced DNA lesions. Most of the information was obtained via the development of chemical approaches, including theoretical, analytical and organic synthesis methods. Since it is not possible to present all the results obtained in this review article, we will focus on recent data dealing with the formation of complex DNA lesions produced by a single oxidation event, as these lesions may play a significant role in cellular responses to ionizing radiation and also to other sources of oxidative stress. Through the description of specific results, the contribution of different chemical disciplines in the assessment of the structure, the identification of the mechanism of formation and the biological impacts in terms of repair and mutagenicity of these complex radiation-induced DNA lesions will be highlighted.
Collapse
Affiliation(s)
- J-L Ravanat
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Cadet J, Wagner JR. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences. Arch Biochem Biophys 2014; 557:47-54. [PMID: 24820329 DOI: 10.1016/j.abb.2014.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 01/05/2023]
Abstract
Hydroxyl radical (OH) and one-electron oxidants that may be endogenously formed through oxidative metabolism, phagocytosis, inflammation and pathological conditions constitute the main sources of oxidatively generated damage to cellular DNA. It is worth mentioning that exposure of cells to exogenous physical agents (UV light, high intensity UV laser, ionizing radiation) and chemicals may also induce oxidatively generated damage to DNA. Emphasis is placed in this short review article on the mechanistic aspects of OH and one-electron oxidant-mediated formation of single and more complex damage (tandem lesions, intra- and interstrand cross-links, DNA-protein cross-links) in cellular DNA arising from one radical hit. This concerns DNA modifications that have been accurately measured using suitable analytical methods such as high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Evidence is provided that OH and one-electron oxidants after generating neutral radicals and base radical cations respectively may partly induce common degradation pathways. In addition, selective oxidative reactions giving rise to specific degradation products of OH and one-electron oxidation reactions that can be used as representative biomarkers of these oxidants have been identified.
Collapse
Affiliation(s)
- Jean Cadet
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
25
|
Poulsen HE, Nadal LL, Broedbaek K, Nielsen PE, Weimann A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim Biophys Acta Gen Subj 2014; 1840:801-8. [DOI: 10.1016/j.bbagen.2013.06.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
|
26
|
Yi D, Alvim Kamei CL, Cools T, Vanderauwera S, Takahashi N, Okushima Y, Eekhout T, Yoshiyama KO, Larkin J, Van den Daele H, Conklin P, Britt A, Umeda M, De Veylder L. The Arabidopsis SIAMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7 regulate the DNA damage checkpoint in response to reactive oxygen species. THE PLANT CELL 2014; 26:296-309. [PMID: 24399300 PMCID: PMC3963576 DOI: 10.1105/tpc.113.118943] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Whereas our knowledge about the diverse pathways aiding DNA repair upon genome damage is steadily increasing, little is known about the molecular players that adjust the plant cell cycle in response to DNA stress. By a meta-analysis of DNA stress microarray data sets, three family members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) class of cyclin-dependent kinase inhibitors were discovered that react strongly to genotoxicity. Transcriptional reporter constructs corroborated specific and strong activation of the three SIM/SMR genes in the meristems upon DNA stress, whereas overexpression analysis confirmed their cell cycle inhibitory potential. In agreement with being checkpoint regulators, SMR5 and SMR7 knockout plants displayed an impaired checkpoint in leaf cells upon treatment with the replication inhibitory drug hydroxyurea (HU). Surprisingly, HU-induced SMR5/SMR7 expression depends on ATAXIA TELANGIECTASIA MUTATED (ATM) and SUPPRESSOR OF GAMMA RESPONSE1, rather than on the anticipated replication stress-activated ATM AND RAD3-RELATED kinase. This apparent discrepancy was explained by demonstrating that, in addition to its effect on replication, HU triggers the formation of reactive oxygen species (ROS). ROS-dependent transcriptional activation of the SMR genes was confirmed by different ROS-inducing conditions, including high-light treatment. We conclude that the identified SMR genes are part of a signaling cascade that induces a cell cycle checkpoint in response to ROS-induced DNA damage.
Collapse
Affiliation(s)
- Dalong Yi
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Sandy Vanderauwera
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Naoki Takahashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yoko Okushima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Thomas Eekhout
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kaoru Okamoto Yoshiyama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - John Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Hilde Van den Daele
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Phillip Conklin
- Department of Plant Biology, University of California Davis, Davis, California 95616
| | - Anne Britt
- Department of Plant Biology, University of California Davis, Davis, California 95616
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
- JST, Core Research for Evolutional Science and Technology, Nara 630-0192, Japan
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
- Address correspondence to
| |
Collapse
|
27
|
Song B, Pan S, Tang C, Li D, Rusling JF. Voltammetric microwell array for oxidized guanosine in intact ds-DNA. Anal Chem 2013; 85:11061-7. [PMID: 24164630 PMCID: PMC3856883 DOI: 10.1021/ac402736q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidative stress in humans causes damage to biomolecules by generating reactive oxygen species (ROS). DNA can be oxidatively damaged by ROS, which may lead to carcinogenesis. Here we report a microfluidic electrochemical array designed to rapidly detect oxidation in intact DNA in replicate measurements. Sensor arrays were fabricated by wet-chemistry patterning of gold compact discs. The eight-sensor array is incorporated into a 60 μL microfluidic channel connected to a pump and sample valve. The array features 7 nm thick osmium bipyridyl poly(vinylpyridine) chloride [Os(bpy)2(PVP)10Cl](+) films assembled layer-by-layer with polyions onto the gold sensors. 8-Hydroxy-7,8-hydro-2'-deoxyguanosine (8-oxodG) is selectively oxidized by [Os(bpy)2(PVP)10Cl](+) in intact ds-DNA to provide catalytic square wave voltammograms (SWV). The device is easy-to-use, fast, inexpensive, reusable, and can detect one 8-oxodG per 6600 nucleobases. The mass detection limit is 150-fold lower than a previously reported dip-and-read voltammetric sensor for oxidized DNA. Fast assays (<1 min) and moderate sample consumption (15 pmol DNA) suggest potential for research and clinical applications. Practical use is illustrated by detecting DNA oxidation from cigarette smoke and ash extracts in dispersions with NADPH and Cu(2+).
Collapse
Affiliation(s)
- Boya Song
- Department of Chemistry, University of Connecticut , Storrs, CT 06269, United States
| | | | | | | | | |
Collapse
|
28
|
Cadet J, Wagner JR. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:18-35. [PMID: 24045206 DOI: 10.1016/j.mrgentox.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
5-Methylcytosine and methylated histones have been considered for a long time as stable epigenetic marks of chromatin involved in gene regulation. This concept has been recently revisited with the detection of large amounts of 5-hydroxymethylcytosine, now considered as the sixth DNA base, in mouse embryonic stem cells, Purkinje neurons and brain tissues. The dioxygenases that belong to the ten eleven translocation (TET) oxygenase family have been shown to initiate the formation of this methyl oxidation product of 5-methylcytosine that is also generated although far less efficiently by radical reactions involving hydroxyl radical and one-electron oxidants. It was found as additional striking data that iterative TET-mediated oxidation of 5-hydroxymethylcytosine gives rise to 5-formylcytosine and 5-carboxylcytosine. This survey focuses on chemical and biochemical aspects of the enzymatic oxidation reactions of 5-methylcytosine that are likely to be involved in active demethylation pathways through the implication of enzymatic deamination of 5-methylcytosine oxidation products and/or several base excision repair enzymes. The high biological relevance of the latter modified bases explains why major efforts have been devoted to the design of a broad range of assays aimed at measuring globally or at the single base resolution, 5-hydroxymethylcytosine and the two other oxidation products in the DNA of cells and tissues. Another critical issue that is addressed in this review article deals with the assessment of the possible role of 5-methylcytosine oxidation products, when present in elevated amounts in cellular DNA, in terms of mutagenesis and interference with key cellular enzymes including DNA and RNA polymerases.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de la Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, 38054 Grenoble, France; Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| |
Collapse
|
29
|
Cadet J, Mouret S, Ravanat JL, Douki T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 2012; 88:1048-65. [PMID: 22780837 DOI: 10.1111/j.1751-1097.2012.01200.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E n°3, CEA/UJF, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex, France
| | | | | | | |
Collapse
|