1
|
McDevitt E, Henein L, Crawford A, Kondakala S, Young D, Meek E, Howell GE. Alterations of Systemic and Hepatic Metabolic Function Following Exposure to Trans-nonachlor in Low and High Fat Diet Fed Male Sprague Dawley Rats. Int J Toxicol 2023; 42:407-419. [PMID: 37126671 PMCID: PMC10530595 DOI: 10.1177/10915818231170527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The overall prevalence of metabolic diseases such as type 2 diabetes (T2D) and associated co-morbidities have increased at an alarming rate in the United States and worldwide. There is a growing body of epidemiological evidence implicating exposure to persistent organic pollutants (POPs), including legacy organochlorine (OC) pesticides and their bioaccumulative metabolites, in the pathogenesis of metabolic diseases. Therefore, the goal of the present study was to determine if exposure to trans-nonachlor, a bioaccumulative OC pesticide contaminant, in concert with high fat diet intake induced metabolic dysfunction. Briefly, male Sprague Dawley rats were exposed to trans-nonachlor (.5 or 5 ppm) in either a low fat (LFD) or high fat diet (HFD) for 16 weeks. At 8 weeks of intake, trans-nonachlor decreased serum triglyceride levels in LFD and HFD fed animals and at 16 weeks compared to LFD fed animals. Interestingly, serum glucose levels were decreased by trans-nonachlor (5 ppm) in LFD fed animals at 16 weeks. Serum free fatty acids were increased by trans-nonachlor exposure (5 ppm) in LFD fed animals at 16 weeks. HFD fed animals displayed signs of hepatic steatosis including elevated liver triglycerides, liver enzymes, and liver lipid peroxidation which were not significantly altered by trans-nonachlor exposure. However, there was a trans-nonachlor mediated increase in expression of fatty acid synthase in livers of LFD fed animals and not HFD fed animals. Thus, the present data indicate exposure to trans-nonachlor in conjunction with LFD or HFD intake produces both diet and exposure dependent effects on lipid and glucose metabolism.
Collapse
Affiliation(s)
- Erin McDevitt
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
- University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Anna Crawford
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Sandeep Kondakala
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Edward Meek
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - George E. Howell
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| |
Collapse
|
2
|
Antioxidant, hypolipidemic and hypoglycemic effect of red wine in wistar rats fed with obesogenic diet. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Use of the ZDF rat to model dietary fat induced hypercoagulability is limited by progressive and fatal nephropathy. J Pharmacol Toxicol Methods 2020; 107:106933. [PMID: 33122074 DOI: 10.1016/j.vascn.2020.106933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Zucker diabetic fatty (ZDF) rats are used widely as an animal model of metabolic syndrome and insulin resistance. Our study focused on the effects of high versus low dietary fat on the development of Type 2 diabetes in obese male ZDF rats (fa/fa), including biomarkers to detect early signs of hypercoagulability and vascular injury in the absence of overt thrombosis. METHODS In this study, male (5/group) 10-week-old CRL:ZDF370(obese) rats were fed low (LFD, 16.7% fat) or high fat (HFD, 60% fat) diet for 12 or 15 weeks. Cohorts of 5 rats within diet groups were scheduled for sample collection after weeks 12 and 15. RESULTS HFD-fed ZDF rats had oily coats, lower rates of food consumption, more accelerated weight gain and increased serum cholesterol (+15%) and triglyceride concentrations (+75%) vs. LFD-fed ZDF rats. Urinary ketones were observed only in HFD-fed ZDF rats and greater urine glucose and protein concentrations in HFD-fed ZDF vs. LFD-fed ZDF rats were seen. Hemostasis testing showed ~2-fold greater fibrinogen concentration, increased von Willebrand factor concentration, and high thrombin generation in HFD-fed ZDF vs LFD-fed ZDF rats. Increased mortality in the HFD-fed ZDF rat was attributed to exacerbations of altered carbohydrate metabolism as evidenced by ketonuria and nephropathy leading to renal failure. DISCUSSION This characterization shows that the ZDF rat at the age, sex and weight used in this study is highly sensitive to dietary fat content that can exacerbate prothrombotic, metabolic and renal disturbances and increase mortality.
Collapse
|
4
|
Biochemical and Physiological Parameters in Rats Fed with High-Fat Diet: The Protective Effect of Chronic Treatment with Purple Grape Juice (Bordo Variety). BEVERAGES 2018. [DOI: 10.3390/beverages4040100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High-fat-diet (HFD) has been related to metabolic and cardiovascular diseases. Consumption of grapes and their byproducts containing phenolic compounds has been reported due to the benefits they produce for human health. The purpose of this study was to investigate the antioxidant and protective effect of chronic intake of purple grape juice on certain biochemical and physiological changes promoted by the consumption of HFD. Forty male rats were randomly divided into four groups to receive standard or HFD diet and/or conventional (CGJ) or organic grape juice (OGJ) for three months. Dietary intake, body weight gain, cardiometabolic parameters, and serum lipoperoxidation were investigated. Results showed that consumption of CGJ and OGJ changed the pattern of food and drink intake of the animals. There was a reduction in the body weight of animals that consumed grape juices and an increase in the weight gain in HFD and OGJ rats. HFD increased abdominal fat and the abdominal fat/weight ratio, and both grape juices prevented these modifications. HFD increased hepatic enzymes levels (aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT)) and reduced urea. Purple grape juices prevented some of these changes. HFD enhanced lipid peroxidation (thiobarbituric acid reactive substances (TBARS)) in serum and CGJ and OGJ prevented this increase. The consumption of purple grape juice has the potential to prevent and ameliorate most of the alterations provoked by HFD, therefore regular intake of grape products could promote beneficial effects.
Collapse
|
5
|
Kim S, Yang X, Li Q, Wu M, Costyn L, Beharry Z, Bartlett MG, Cai H. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice. J Biol Chem 2017; 292:18422-18433. [PMID: 28939770 DOI: 10.1074/jbc.m117.798827] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression.
Collapse
Affiliation(s)
- Sungjin Kim
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Xiangkun Yang
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Qianjin Li
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Meng Wu
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Leah Costyn
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Zanna Beharry
- the Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Michael G Bartlett
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Houjian Cai
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
6
|
Skaznik-Wikiel ME, Swindle DC, Allshouse AA, Polotsky AJ, McManaman JL. High-Fat Diet Causes Subfertility and Compromised Ovarian Function Independent of Obesity in Mice. Biol Reprod 2016; 94:108. [PMID: 27030045 PMCID: PMC4939738 DOI: 10.1095/biolreprod.115.137414] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/22/2016] [Indexed: 01/09/2023] Open
Abstract
Excess calorie consumption, particularly of a diet high in fat, is a risk factor for both obesity and reproductive disorders. Animal model studies indicate that elevated dietary fat can influence some reproductive functions independent of obesity. In the current study we sought to determine whether a high-fat diet (HFD) impacts ovarian function, long-term fertility, and local and systemic markers of inflammation independent of obesity. Five-week-old mice were fed either low-fat diet (control group-LF-Ln) or HFD for 10 wk and were divided based on body weight into high-fat obese (HF-Ob: >25 g) and high-fat lean (HF-Ln: <22 g). Ovaries were collected to assess ovarian follicles and to determine the degree of local inflammation. Serum proinflammatory cytokines were also measured. A group of animals was followed for breeding trials for 5 mo while being exposed to LFD or HFD. We found that both 10-wk and 32-wk exposure to HFD resulted in depleted primordial follicles regardless of obesity phenotype. Macrophage counts revealed increased tissue inflammation in the ovary independent of obesity. In addition, serum proinflammatory cytokines were increased in HF-Ln and HF-Ob in comparison to LF-Ln mice. Moreover, HFD had a sustained effect on litter production rate and number of pups per litter regardless of obese phenotype. This study describes for the first time that exposure to HFD causes significant reduction in primordial follicles, compromised fertility, produced higher proinflammatory cytokine levels, and increased ovarian macrophage infiltration, independent of obesity. The negative effects of HFD on primordial follicles may be mediated by increased tissue inflammation.
Collapse
Affiliation(s)
- Malgorzata E Skaznik-Wikiel
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Delaney C Swindle
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Amanda A Allshouse
- Department of Biostatistics and Informatics, Colorado School of Public Health at the University of Colorado Denver, Aurora, Colorado
| | - Alex J Polotsky
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - James L McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
7
|
Bispo KP, de Oliveira Rodrigues L, da Silva Soares de Souza É, Mucci D, Tavares do Carmo MDG, de Albuquerque KT, de Carvalho Sardinha FL. Trans and interesterified fat and palm oil during the pregnancy and lactation period inhibit the central anorexigenic action of insulin in adult male rat offspring. J Physiol Sci 2015; 65:131-8. [PMID: 25398547 PMCID: PMC10717077 DOI: 10.1007/s12576-014-0351-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022]
Abstract
Palm oil and interesterified fat have been used to replace partially hydrogenated fats, rich in trans isomers, in processed foods. This study investigated whether the maternal consumption of normolipidic diets containing these lipids affects the insulin receptor and Akt/protein kinase B (PKB) contents in the hypothalamus and the hypophagic effect of centrally administered insulin in 3-month-old male offspring. At 90 days, the intracerebroventricular injection of insulin decreased 24-h feeding in control rats but not in the palm, interesterified or trans groups. The palm group exhibited increases in the insulin receptor content of 64 and 69 % compared to the control and trans groups, respectively. However, the quantifications of PKB did not differ significantly across groups. We conclude that the intake of trans fatty acid substitutes during the early perinatal period affects food intake regulation in response to centrally administered insulin in the young adult offspring; however, the underlying mechanisms remain unclear.
Collapse
Affiliation(s)
- Kenia Pereira Bispo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Letícia de Oliveira Rodrigues
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Érica da Silva Soares de Souza
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Daniela Mucci
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Maria das Graças Tavares do Carmo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Kelse Tibau de Albuquerque
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
- Laboratório de Nutrição Experimental, LABNEX, Universidade Federal do Rio de Janeiro, Macaé, RJ Brazil
| | - Fatima Lucia de Carvalho Sardinha
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| |
Collapse
|
8
|
Yoshimura M, Hagimoto M, Matsuura T, Ohkubo J, Ohno M, Maruyama T, Ishikura T, Hashimoto H, Kakuma T, Yoshimatsu H, Terawaki K, Uezono Y, Toyohira Y, Yanagihara N, Ueta Y. Effects of food deprivation on the hypothalamic feeding-regulating peptides gene expressions in serotonin depleted rats. J Physiol Sci 2014; 64:97-104. [PMID: 24162946 PMCID: PMC10717885 DOI: 10.1007/s12576-013-0296-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/09/2013] [Indexed: 01/08/2023]
Abstract
We examined the effects of serotonin (5-HT) depletion induced by peripheral injection of 5-HT synthesis inhibitor p-chlorophenylalanine (PCPA) on the expression of feeding-regulating peptides expressions by using in situ hybridization histochemistry in adult male Wistar rats. PCPA pretreatment had no significant effect on basal levels of oxytocin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH), pro-opiomelanocortin (POMC), cocaine and amphetamine-regulated transcript (CART), neuropeptide-Y (NPY), agouti-related protein (AgRP), melanin-concentrating hormone (MCH) or orexin in the hypothalamus. Food deprivation for 48 h caused a significant decrease in CRH, TRH, POMC, and CART, and a significant increase in NPY, AgRP and MCH. After PCPA treatment, POMC and CART did not decrease despite food deprivation. NPY was significantly increased by food deprivation with PCPA, but was attenuated compared to food deprivation without PCPA. These results suggest that the serotonergic system in the hypothalamus may be involved in the gene expression of POMC, CART, and NPY related to feeding behavior.
Collapse
Affiliation(s)
- Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Marina Hagimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Takanori Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Junichi Ohkubo
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Motoko Ohno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Toru Ishikura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Tetsuya Kakuma
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Oita, 879-5503 Japan
| | - Hironobu Yoshimatsu
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Oita, 879-5503 Japan
| | - Kiyoshi Terawaki
- Division of Cancer Pathophysiology, Group for Development of Molecular Diagnostics and Individualized Therapy, National Cancer Center Research Institute, Tokyo, 104-0045 Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, Group for Development of Molecular Diagnostics and Individualized Therapy, National Cancer Center Research Institute, Tokyo, 104-0045 Japan
| | - Yumiko Toyohira
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Nobuyuki Yanagihara
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| |
Collapse
|