1
|
Davis MP. Novel drug treatments for pain in advanced cancer and serious illness: a focus on neuropathic pain and chemotherapy-induced peripheral neuropathy. Palliat Care Soc Pract 2024; 18:26323524241266603. [PMID: 39086469 PMCID: PMC11289827 DOI: 10.1177/26323524241266603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Drugs that are commercially available but have novel mechanisms of action should be explored as analgesics. This review will discuss haloperidol, miragabalin, palmitoylethanolamide (PEA), and clonidine as adjuvant analgesics or analgesics. Haloperidol is a sigma-1 receptor antagonist. Under stress and neuropathic injury, sigma-1 receptors act as a chaperone protein, which downmodulates opioid receptor activities and opens several ion channels. Clinically, there is only low-grade evidence that haloperidol improves pain when combined with morphine, methadone, or tramadol in patients who have cancer, pain from fibrosis, radiation necrosis, or neuropathic pain. Miragabalin is a gabapentinoid approved for the treatment of neuropathic pain in Japan since 2019. In randomized trials, patients with diabetic neuropathy have responded to miragabalin. Its long binding half-life on the calcium channel subunit may provide an advantage over other gabapentinoids. PEA belongs to a group of endogenous bioactive lipids called ALIAmides (autocoid local injury antagonist amides), which have a sense role in modulating numerous biological processes in particular non-neuronal neuroinflammatory responses to neuropathic injury and systemic inflammation. Multiple randomized trials and meta-analyses have demonstrated PEA's effectiveness in reducing pain severity arising from diverse pain phenotypes. Clonidine is an alpha2 adrenoceptor agonist and an imidazoline2 receptor agonist, which is U.S. Federal Drug Administration approved for attention deficit hyperactivity disorder in children, Tourette's syndrome, adjunctive therapy for cancer-related pain, and hypertension. Clonidine activation at alpha2 adrenoceptors causes downstream activation of inhibitory G-proteins (Gi/Go), which inhibits cyclic Adenosine monophosphate (AMP) production and hyperpolarizes neuron membranes, thus reducing allodynia. Intravenous clonidine has been used in terminally ill patients with poorly controlled symptoms, in particular pain and agitation.
Collapse
Affiliation(s)
- Mellar P. Davis
- Geisinger Commonwealth School of Medicine, 100 North Academy Avenue, Danville, PA 17822, USA
| |
Collapse
|
2
|
Baek IS, Choi S, Yoon H, Chung G, Kim SK. Analgesic Effect of Auricular Vagus Nerve Stimulation on Oxaliplatin-induced Peripheral Neuropathic Pain in a Rodent Model. Exp Neurobiol 2024; 33:129-139. [PMID: 38993080 PMCID: PMC11247280 DOI: 10.5607/en24012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer chemotherapy often triggers peripheral neuropathy in patients, leading to neuropathic pain in the extremities. While previous research has explored various nerve stimulation to alleviate chemotherapy-induced peripheral neuropathy (CIPN), evidence on the effectiveness of noninvasive auricular vagus nerve stimulation (aVNS) remains uncertain. This study aimed to investigate the efficacy of non-invasive aVNS in relieving CIPN pain. To induce CIPN in experimental animals, oxaliplatin was intraperitoneally administered to rats (6 mg/kg). Mechanical and cold allodynia, the representative symptoms of neuropathic pain, were evaluated using the von Frey test and acetone test, respectively. The CIPN animals were randomly assigned to groups and treated with aVNS (5 V, square wave) at different frequencies (2, 20, or 100 Hz) for 20 minutes. Results revealed that 20 Hz aVNS exhibited the most pronounced analgesic effect, while 2 or 100 Hz aVNS exhibited weak effects. Immunohistochemistry analysis demonstrated increased c-Fos expression in the locus coeruleus (LC) in the brain of CIPN rats treated with aVNS compared to sham treatment. To elucidate the analgesic mechanisms involving the adrenergic descending pathway, α1-, α2-, or β-adrenergic receptor antagonists were administered to the spinal cord before 20 Hz aVNS. Only the β-adrenergic receptor antagonist, propranolol, blocked the analgesic effect of aVNS. These findings suggest that 20 Hz aVNS may effectively alleviate CIPN pain through β-adrenergic receptor activation.
Collapse
Affiliation(s)
- In Seon Baek
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seunghwan Choi
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Heera Yoon
- Division of Preclinical R&D, Neurogrin Inc., Seoul 02447, Korea
| | - Geehoon Chung
- Division of Preclinical R&D, Neurogrin Inc., Seoul 02447, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
3
|
Cunha M, Tavares I, Costa-Pereira JT. Centralizing the Knowledge and Interpretation of Pain in Chemotherapy-Induced Peripheral Neuropathy: A Paradigm Shift towards Brain-Centric Approaches. Brain Sci 2024; 14:659. [PMID: 39061400 PMCID: PMC11274822 DOI: 10.3390/brainsci14070659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of cancer treatment, often linked with pain complaints. Patients report mechanical and thermal hypersensitivity that may emerge during chemotherapy treatment and may persist after cancer remission. Whereas the latter situation disturbs the quality of life, life itself may be endangered by the appearance of CIPN during cancer treatment. The causes of CIPN have almost entirely been ascribed to the neurotoxicity of chemotherapeutic drugs in the peripheral nervous system. However, the central consequences of peripheral neuropathy are starting to be unraveled, namely in the supraspinal pain modulatory system. Based on our interests and experience in the field, we undertook a review of the brain-centered alterations that may underpin pain in CIPN. The changes in the descending pain modulation in CIPN models along with the functional and connectivity abnormalities in the brain of CIPN patients are analyzed. A translational analysis of preclinical findings about descending pain regulation during CIPN is reviewed considering the main neurochemical systems (serotoninergic and noradrenergic) targeted in CIPN management in patients, namely by antidepressants. In conclusion, this review highlights the importance of studying supraspinal areas involved in descending pain modulation to understand the pathophysiology of CIPN, which will probably allow a more personalized and effective CIPN treatment in the future.
Collapse
Affiliation(s)
- Mário Cunha
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
- I3S—Institute of Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José Tiago Costa-Pereira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
- I3S—Institute of Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
4
|
Farkas DJ, Foss JD, Ward SJ, Rawls SM. Kratom alkaloid mitragynine: Inhibition of chemotherapy-induced peripheral neuropathy in mice is dependent on sex and active adrenergic and opioid receptors. IBRO Neurosci Rep 2022; 13:198-206. [PMID: 36093282 PMCID: PMC9459671 DOI: 10.1016/j.ibneur.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
Mitragynine (MG) is an alkaloid found in Mitragyna speciosa (kratom) that is used as an herbal remedy for pain relief and opioid withdrawal. MG acts at μ-opioid and α-adrenergic receptors in vitro, but the physiological relevance of this activity in the context of neuropathic pain remains unknown. The purpose of the present study was to characterize the effects of MG in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN), and to investigate the potential impact of sex on MG's therapeutic efficacy. Inhibition of oxaliplatin-induced mechanical hypersensitivity was measured following intraperitoneal administration of MG. Both male and female C57BL/6J mice were used to characterize potential sex-differences in MG's therapeutic efficacy. Pharmacological mechanisms of MG were characterized through pretreatment with the opioid and adrenergic antagonists naltrexone, prazosin, yohimbine, and propranolol (1, 2.5, 5 mg/kg). Oxaliplatin produced significant mechanical allodynia of equal magnitude in both male and females, which was dose-dependently attenuated by repeated MG exposure. MG was more potent in males vs females, and the highest dose of MG (10 mg/kg) exhibited greater anti-allodynic efficacy in males. Mechanistically, activity at µ-opioid, α1- and α2-adrenergic receptors, but not β-adrenergic receptors contributed to the effects of MG against oxaliplatin-induced mechanical hypersensitivity. Repeated MG exposure significantly attenuated oxaliplatin-induced mechanical hypersensitivity with greater potency and efficacy in males, which has crucial implications in the context of individualized pain management. The opioid and adrenergic components of MG indicate that it shares pharmacological properties with clinical neuropathic pain treatments.
Collapse
Affiliation(s)
- Daniel J. Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA,Corresponding author.
| | - Jeffery D. Foss
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Scott M. Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Li J, Wei Y, Zhou J, Zou H, Ma L, Liu C, Xiao Z, Liu X, Tan X, Yu T, Cao S. Activation of locus coeruleus-spinal cord noradrenergic neurons alleviates neuropathic pain in mice via reducing neuroinflammation from astrocytes and microglia in spinal dorsal horn. J Neuroinflammation 2022; 19:123. [PMID: 35624514 PMCID: PMC9145151 DOI: 10.1186/s12974-022-02489-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background The noradrenergic neurons of locus coeruleus (LC) project to the spinal dorsal horn (SDH), and release norepinephrine (NE) to inhibit pain transmission. However, its effect on pathological pain and the cellular mechanism in the SDH remains unclear. This study aimed to explore the analgesic effects and the anti-neuroinflammation mechanism of LC-spinal cord noradrenergic pathway (LC:SC) in neuropathic pain (NP) mice with sciatic chronic constriction injury. Methods The Designer Receptors Exclusively Activated by Designer Drugs (DREADD) was used to selectively activate LC:SC. Noradrenergic neuron-specific retro–adeno-associated virus was injected to the spinal cord. Pain threshold, LC and wide dynamic range (WDR) neuron firing, neuroinflammation (microglia and astrocyte activation, cytokine expression), and α2AR expression in SDH were evaluated. Results Activation of LC:SC with DREADD increased the mechanical and thermal nociceptive thresholds and reduced the WDR neuron firing. LC:SC activation (daily, 7 days) downregulated TNF-α and IL-1β expression, upregulated IL-4 and IL-10 expression in SDH, and inhibited microglia and astrocytes activation in NP mice. Immunofluorescence double staining confirmed that LC:SC activation decreased the expression of cytokines in microglia of the SDH. In addition, the effects of LC:SC activation could be reversed by intrathecal injection of yohimbine. Immunofluorescence of SDH showed that NE receptor α2B-AR was highly expressed in microglia in CCI mice. Conclusion These findings indicate that selective activation of LC:SC alleviates NP in mice by increasing the release of NE and reducing neuroinflammation of astrocytes and microglia in SDH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02489-9.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China.,Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Yiyong Wei
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China.,Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Junli Zhou
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Helin Zou
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Lulin Ma
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Chengxi Liu
- Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Zhi Xiao
- Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Xingfeng Liu
- Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Xinran Tan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China.,Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Tian Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China. .,Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China. .,Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
6
|
Lee JH, Kim B, Ko SG, Kim W. Analgesic Effect of SH003 and Trichosanthes kirilowii Maximowicz in Paclitaxel-Induced Neuropathic Pain in Mice. Curr Issues Mol Biol 2022; 44:718-730. [PMID: 35723335 PMCID: PMC8929024 DOI: 10.3390/cimb44020050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Pacliatxel is a taxol-based chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are prescribed to attenuate neuropathies, no optimal treatment is available. Thus, in our study, we analyzed whether SH003 and its sub-components could alleviate paclitaxel-induced neuropathic pain. Multiple paclitaxel injections (cumulative dose 8 mg/kg, i.p.) induced cold and mechanical allodynia from day 10 to day 21 after the first injection in mice. Oral administration of SH003, an herbal mixture extract of Astragalus membranaceus, Angelica gigas, and Trichosantheskirilowii Maximowicz (Tk), dose-dependently attenuated both allodynia. However, when administered separately only Tk decreased both allodynia. The effect of Tk was shown to be mediated by the spinal noradrenergic system as intrathecal pretreatment with α1- and α2-adrenergic-receptor antagonists (prazosin and idazoxan), but not 5-HT1/2, and 5-HT3-receptor antagonists (methysergide and MDL-72222) blocked the effect of Tk. The spinal noradrenaline levels were also upregulated. Among the phytochemicals of Tk, cucurbitacin D was shown to play a major role, as 0.025 mg/kg (i.p.) of cucurbitacin D alleviated allodynia similar to 500 mg/kg of SH003. These results suggest that Tk should be considered when treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
- Correspondence:
| |
Collapse
|
7
|
Lang Y, Tang R, Liu Y, Xi P, Liu H, Quan Z, Song D, Lv X, Huang Q, He J. Multisite Simultaneous Neural Recording of Motor Pathway in Free-Moving Rats. BIOSENSORS 2021; 11:bios11120503. [PMID: 34940260 PMCID: PMC8699182 DOI: 10.3390/bios11120503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 05/22/2023]
Abstract
Neural interfaces typically focus on one or two sites in the motoneuron system simultaneously due to the limitation of the recording technique, which restricts the scope of observation and discovery of this system. Herein, we built a system with various electrodes capable of recording a large spectrum of electrophysiological signals from the cortex, spinal cord, peripheral nerves, and muscles of freely moving animals. The system integrates adjustable microarrays, floating microarrays, and microwires to a commercial connector and cuff electrode on a wireless transmitter. To illustrate the versatility of the system, we investigated its performance for the behavior of rodents during tethered treadmill walking, untethered wheel running, and open field exploration. The results indicate that the system is stable and applicable for multiple behavior conditions and can provide data to support previously inaccessible research of neural injury, rehabilitation, brain-inspired computing, and fundamental neuroscience.
Collapse
Affiliation(s)
- Yiran Lang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
| | - Rongyu Tang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
| | - Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (P.X.); (H.L.)
| | - Pengcheng Xi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (P.X.); (H.L.)
| | - Honghao Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (P.X.); (H.L.)
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.Q.); (D.S.)
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.Q.); (D.S.)
| | - Xiaodong Lv
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
| | - Qiang Huang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
| | - Jiping He
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
- Correspondence:
| |
Collapse
|
8
|
Lee JH, Kim W. Involvement of Serotonergic System in Oxaliplatin-Induced Neuropathic Pain. Biomedicines 2021; 9:970. [PMID: 34440174 PMCID: PMC8394518 DOI: 10.3390/biomedicines9080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Oxaliplatin is a chemotherapeutic agent widely used against colorectal and breast cancers; however, it can also induce peripheral neuropathy that can rapidly occur even after a single infusion in up to 80-90% of treated patients. Numerous efforts have been made to understand the underlying mechanism and find an effective therapeutic agent that could diminish pain without damaging its anti-tumor effect. However, its mechanism is not yet clearly understood. The serotonergic system, as part of the descending pain inhibitory system, has been reported to be involved in different types of pain. The malfunction of serotonin (5-hydroxytryptamine; 5-HT) or its receptors has been associated with the development and maintenance of pain. However, its role in oxaliplatin-induced neuropathy has not been clearly elucidated. In this review, 16 in vivo studies focused on the role of the serotonergic system in oxaliplatin-induced neuropathic pain were analyzed. Five studies analyzed the involvement of 5-HT, while fourteen studies observed the role of its receptors in oxaliplatin-induced allodynia. The results show that 5-HT is not involved in the development of oxaliplatin-induced allodynia, but increasing the activity of the 5-HT1A, 5-HT2A, and 5-HT3 receptors and decreasing the action of 5-HT2C and 5-HT6 receptors may help inhibit pain.
Collapse
Affiliation(s)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| |
Collapse
|
9
|
Li D, Chung G, Kim SK. The Involvement of Central Noradrenergic Pathway in the Analgesic Effect of Bee Venom Acupuncture on Vincristine-Induced Peripheral Neuropathy in Rats. Toxins (Basel) 2020; 12:toxins12120775. [PMID: 33291335 PMCID: PMC7762247 DOI: 10.3390/toxins12120775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vincristine is a vinca alkaloid anti-mitotic drug with a broad spectrum of effects on solid and hematologic cancers. The major dose-limiting factor of this anti-cancer regimen is painful peripheral neuropathy. However, no gold-standard analgesic option has been used clinically. In this study, we investigated the effects and mechanism of bee venom acupuncture (BVA) to alleviate peripheral neuropathic pain induced by repeated intraperitoneal infusions of vincristine (1 mg/kg/day, days 1–5 and 8–12) in rats. Subcutaneous injection with bee venom (BV, 1.0 mg/kg) at the ST36 acupoint ameliorated cold and mechanical hypersensitivity (i.e., aberrant withdrawal responses in acetone drop and von Frey hair tests, respectively). In vivo extracellular recording demonstrated that BVA inhibited cutaneous cold (acetone) and mechanical (brush, press, and pinch) stimuli-elicited abnormal hyperexcitation of the spinal wide dynamic range (WDR) neurons in vincristine-treated rats. In addition, the microinjection of lidocaine into the ipsilateral locus coeruleus or the antagonism of the spinal α2-adrenergic receptors clearly reversed the effects of BVA on cold and mechanical hypersensitivity, indicating a vital role of the descending noradrenergic modulation in analgesia. These findings suggest that BVA could be a potential therapeutic option for vincristine-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Daxian Li
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
10
|
Nakagawa T, Akimoto N, Hakozaki A, Noma T, Nakamura A, Hayashi Y, Sasaki E, Ozaki N, Furue H. Responsiveness of lumbosacral superficial dorsal horn neurons during the voiding reflex and functional loss of spinal urethral-responsive neurons in streptozotocin-induced diabetic rats. Neurourol Urodyn 2019; 39:144-157. [PMID: 31663175 DOI: 10.1002/nau.24198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
AIMS Sensory information from the lower urinary tract (LUT) is conveyed to the spinal cord to trigger and co-ordinate micturition. However, it is not fully understood how spinal dorsal horn neurons are excited during the voiding reflex. In this study, we developed an in vivo technique allowing recording of superficial dorsal horn (SDH) neurons concurrent with intravesical pressure (IVP) during the micturition cycle in both normal and diabetic rats. METHODS Lumbosacral dorsal horn neuronal activity and IVP were recorded from urethane-anesthetized naive and streptozotocin (STZ)-induced diabetic rats. Saline was continuously perfused into the urinary bladder through a cannula to induce micturition. RESULTS We classified SDH neurons into bladder- and urethral-responsive neurons, based on their responsiveness during the voiding reflex. Bladder-responsive SDH neurons responded to the rapid increase in IVP at the start of voiding. In contrast, urethral-responsive SDH neuronal firing increased at the peak IVP and their firing lasted during the voiding phase (the high-frequency oscillations). Urethral-responsive SDH neurons were more sensitive to capsaicin, received C afferent fiber inputs, and were rarely detected in STZ-diabetes rats. Administration of a cyclohexenoic long-chain fatty alcohol (TAC-302), which is reported to promote neurite outgrowth of peripheral nerves in STZ-diabetic rats, prevented the functional loss of spinal urethral response. CONCLUSIONS Sensory information from the bladder and urethra is conveyed separately to different groups of SDH neurons. Functional loss of spinal urethral sensory information through unmyelinated C afferent fibers may contribute to diabetic bladder dysfunction.
Collapse
Affiliation(s)
- Tatsuki Nakagawa
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Nozomi Akimoto
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Atsushi Hakozaki
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Takahisa Noma
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Ayumi Nakamura
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yukio Hayashi
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Eiji Sasaki
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
11
|
Choi S, Chae HK, Heo H, Hahm DH, Kim W, Kim SK. Analgesic Effect of Melittin on Oxaliplatin-Induced Peripheral Neuropathy in Rats. Toxins (Basel) 2019; 11:E396. [PMID: 31288453 PMCID: PMC6669583 DOI: 10.3390/toxins11070396] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Oxaliplatin is a chemotherapeutic agent used for metastatic colon and other advanced cancers. Most common side effect of oxaliplatin is peripheral neuropathy, manifested in mechanical and cold allodynia. Although the analgesic effect of bee venom has been proven to be effective against oxaliplatin-induced peripheral neuropathy, the effect of its major component; melittin has not been studied yet. Thus, in this study, we investigated whether melittin has an analgesic effect on oxaliplatin-induced allodynia. Intraperitoneal single injection of oxaliplatin (6 mg/kg) induced mechanical and cold allodynia, resulting in increased withdrawal behavior in response to von Frey filaments and acetone drop on hind paw. Subcutaneous melittin injection on acupoint ST36 (0.5 mg/kg) alleviated oxaliplatin-induced mechanical and cold allodynia. In electrophysiological study, using spinal in vivo extracellular recording, it was shown that oxaliplatin-induced hyperexcitation of spinal wide dynamic range neurons in response to peripheral stimuli, and melittin administration inhibited this neuronal activity. In behavioral assessment, analgesic effect of melittin was blocked by intrathecal α1- and α2- adrenergic receptor antagonists administration. Based on these results, we suggest that melittin could be used as an analgesic on oxaliplatin-induced peripheral neuropathy, and that its effect is mediated by activating the spinal α1- and α2-adrenergic receptors.
Collapse
Affiliation(s)
- Seunghwan Choi
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyeon Kyeong Chae
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ho Heo
- Anapn Korean Traditional Medical Clinic, 11, Seongnae-ro, Gangdong-gu, Seoul 05392, Korea
| | - Dae-Hyun Hahm
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Woojin Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
12
|
Li D, Lee JH, Choi CW, Kim J, Kim SK, Kim W. The Analgesic Effect of Venlafaxine and Its Mechanism on Oxaliplatin-Induced Neuropathic Pain in Mice. Int J Mol Sci 2019; 20:ijms20071652. [PMID: 30987090 PMCID: PMC6479607 DOI: 10.3390/ijms20071652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/16/2019] [Accepted: 03/28/2019] [Indexed: 02/02/2023] Open
Abstract
The analgesic effect of venlafaxine (VLX), which is a selective serotonin and noradrenaline reuptake inhibitor (SNRI), has been observed on oxaliplatin-induced neuropathic pain in mice. Significant allodynia was shown after oxaliplatin treatment (6 mg/kg, i.p.); acetone and von Frey hair tests were used to assess cold and mechanical allodynia, respectively. Intraperitoneal administration of VLX at 40 and 60 mg/kg, but not 10 mg/kg, significantly alleviated these allodynia. Noradrenaline depletion by pretreatment of N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4, 50 mg/kg, i.p.) blocked the relieving effect of VLX (40 mg/kg, i.p.) on cold and mechanical allodynia. However, serotonin depletion by three consecutive pretreatments of para-chlorophenylalanine (PCPA, 150 mg/kg/day, i.p.) only blocked the effect of VLX on mechanical allodynia. In cold allodynia, the α2-adrenergic antagonist idazoxan (10 μg, i.t.), but not the α1-adrenergic antagonist prazosin (10 μg, i.t.), abolished VLX-induced analgesia. Furthermore, idazoxan and 5-HT3 receptor antagonist bemesetron (MDL-72222, 15 μg, i.t.), but not prazosin or mixed 5-HT1, 2 receptor antagonist methysergide (10 μg, i.t.), abolished VLX-induced analgesia in mechanical allodynia. In conclusion, 40 mg/kg of VLX treatment has a potent relieving effect against oxaliplatin-induced neuropathic pain, and α2-adrenergic receptor, and both α2-adrenergic and 5-HT3 receptors are involved in this effect of VLX on cold and mechanical allodynia, respectively.
Collapse
Affiliation(s)
- Daxian Li
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Hwan Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Chang Won Choi
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jaihwan Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Woojin Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
13
|
Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019; 69:409-419. [PMID: 30680641 PMCID: PMC10717877 DOI: 10.1007/s12576-019-00660-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH) is a psychostimulant. The precise mechanisms of its effects remain unknown and current relapse treatments have low efficacy. However, brain-derived neurotrophic factor (BDNF) and neuronal plasticity are essential contributors, despite paradoxical reports and a lack of comprehensive studies. Therefore, we investigated the effects of different doses of METH on long-term potentiation (LTP), BDNF expression and neuronal apoptosis in the hippocampus of reinstated rats. Rats were injected intraperitoneally with METH (1, 5, or 10 mg/kg) or saline, and trained in a conditioned place preference paradigm. Following implementation of the reinstatement model, electrophysiology, western blotting and TUNEL assay were performed to assess behavior, LTP components, BDNF expression, and neuronal apoptosis, respectively. The results demonstrated that the preference scores, population spike amplitude and BDNF expression markedly decreased in the METH (10 mg/kg) group compared with the other groups. In contrast, METH (5 mg/kg) significantly increased these factors more than the control group. There was no change in variables between METH (1 mg/kg) and the control group. Also, apoptosis of the hippocampus was increased in the METH (10 mg/kg) group compared with the METH (5 mg/kg) group. These results suggest that alterations in synaptic plasticity, expression of BDNF and neuronal apoptosis in the hippocampus has a vital role in the context-induced reinstatement of METH seeking.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Chae HK, Kim W, Kim SK. Phytochemicals of Cinnamomi Cortex: Cinnamic Acid, but not Cinnamaldehyde, Attenuates Oxaliplatin-Induced Cold and Mechanical Hypersensitivity in Rats. Nutrients 2019; 11:nu11020432. [PMID: 30791474 PMCID: PMC6412559 DOI: 10.3390/nu11020432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/08/2023] Open
Abstract
A chemotherapy drug, oxaliplatin, induces cold and mechanical hypersensitivity, but effective treatments for this neuropathic pain without side effects are still lacking. We previously showed that Cinnamomi Cortex suppresses oxaliplatin-induced pain behaviors in rats. However, it remains unknown which phytochemical of Cinnamomi Cortex plays a key role in that analgesic action. Thus, here we investigated whether and how cinnamic acid or cinnamaldehyde, major components of Cinnamomi Cortex, alleviates cold and mechanical allodynia induced by a single oxaliplatin injection (6 mg/kg, i.p.) in rats. Using an acetone test and the von Frey test for measuring cold and mechanical allodynia, respectively, we found that administration of cinnamic acid, but not cinnamaldehyde, at doses of 10, 20 and 40 mg/kg (i.p.) significantly attenuates the allodynic behaviors in oxaliplatin-injected rats with the strongest effect being observed at 20 mg/kg. Our in vivo extracellular recordings also showed that cinnamic acid (20 mg/kg, i.p.) inhibits the increased activities of spinal wide dynamic range neurons in response to cutaneous mechanical and cold stimuli following the oxaliplatin injection. These results indicate that cinnamic acid has an effective analgesic action against oxaliplatin-induced neuropathic pain through inhibiting spinal pain transmission, suggesting its crucial role in mediating the effect of Cinnamomi Cortex.
Collapse
Affiliation(s)
- Hyeon Kyeong Chae
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
15
|
Fujita S, Hirota T, Sakiyama R, Baba M, Ieiri I. Identification of drug transporters contributing to oxaliplatin-induced peripheral neuropathy. J Neurochem 2018; 148:373-385. [PMID: 30295925 DOI: 10.1111/jnc.14607] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/19/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022]
Abstract
Oxaliplatin is widely used as a key drug in the treatment of colorectal cancer. However, its administration is associated with the dose-limiting adverse effect, peripheral neuropathy. Platinum accumulation in the dorsal root ganglion (DRG) is the major mechanism responsible for oxaliplatin-induced neuropathy. Some drug transporters have been identified as platinum complex transporters in kidney or tumor cells, but not yet in DRG. In the present study, we investigated oxaliplatin transporters and their contribution to peripheral neuropathy. We identified 12 platinum transporters expressed in DRG with real-time PCR, and their transiently overexpressing cells were established. After exposure to oxaliplatin, the accumulation of platinum in these overexpressing cells was evaluated using a coupled plasma mass spectrometer. Octn1/2- and Mate1-expressing cells showed the intracellular accumulation of oxaliplatin. In an animal study, peripheral neuropathy developed after the administration of oxaliplatin (4 mg/kg, intravenously, twice a week) to siRNA-injected rats (0.5 nmol, intrathecally, once a week) was demonstrated with the von Frey test. The knockdown of Octn1 in DRG ameliorated peripheral neuropathy, and decreased platinum accumulation in DRG, whereas the knockdown of Octn2 did not. Mate1 siRNA-injected rats developed more severe neuropathy than control rats. These results indicate that Octn1 and Mate1 are involved in platinum accumulation at DRG and oxaliplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Shunsuke Fujita
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Hirota
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Sakiyama
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Baba
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Yamada A, Koga K, Kume K, Ohsawa M, Furue H. Ethanol-induced enhancement of inhibitory synaptic transmission in the rat spinal substantia gelatinosa. Mol Pain 2018; 14:1744806918817969. [PMID: 30453825 PMCID: PMC6293375 DOI: 10.1177/1744806918817969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shown that ethanol produces a widespread modulation
of neuronal activity in the central nervous system. It is not fully
understood, however, how ethanol changes nociceptive transmission. We
investigated acute effects of ethanol on synaptic transmission in the
substantia gelatinosa (lamina II of the spinal dorsal horn) and
mechanical responses in the spinal dorsal horn. In substantia
gelatinosa neurons, bath application of ethanol at low concentration
(10 mM) did not change the frequency and amplitude of spontaneous
inhibitory postsynaptic currents. At medium to high concentrations
(20–100 mM), however, ethanol elicited a barrage of large amplitude
spontaneous inhibitory postsynaptic currents. In the presence of
tetrodotoxin, such enhancement of spontaneous inhibitory postsynaptic
currents was not detected. In addition, ethanol (20–100 mM) increased
the frequency of spontaneous discharge of vesicular GABA
transporter-Venus-labeled neurons and suppressed the mechanical
nociceptive response in wide-dynamic range neurons in the spinal
dorsal horn. The present results suggest that ethanol may reduce
nociceptive information transfer in the spinal dorsal horn by
enhancement of inhibitory GABAergic and glycinergic synaptic
transmission.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Department of Information Physiology, National
Institute for Physiological Sciences, Okazaki, Japan
| | - Kohei Koga
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
- Department of Information Physiology, National
Institute for Physiological Sciences, Okazaki, Japan
- School of Life Science, Graduate University for
Advanced Studies, Okazaki, Japan
- Hidemasa Furue, Department of
Neurophysiology 663–8131, Hyogo College of Medicine, Nishinomiya,
Japan.
| |
Collapse
|
17
|
Pham VM, Tu NH, Katano T, Matsumura S, Saito A, Yamada A, Furue H, Ito S. Impaired peripheral nerve regeneration in type-2 diabetic mouse model. Eur J Neurosci 2018; 47:126-139. [DOI: 10.1111/ejn.13771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vuong M. Pham
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Nguyen Huu Tu
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Tayo Katano
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Shinji Matsumura
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Akira Saito
- Central Research Laboratory; Kansai Medical University; Hirakata Japan
| | - Akihiro Yamada
- Department of Neurophysiology; Hyogo College of Medicine; Nishinomiya Japan
| | - Hidemasa Furue
- Department of Neurophysiology; Hyogo College of Medicine; Nishinomiya Japan
| | - Seiji Ito
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| |
Collapse
|
18
|
Kim W, Chung Y, Choi S, Min BI, Kim SK. Duloxetine Protects against Oxaliplatin-Induced Neuropathic Pain and Spinal Neuron Hyperexcitability in Rodents. Int J Mol Sci 2017; 18:ijms18122626. [PMID: 29206213 PMCID: PMC5751229 DOI: 10.3390/ijms18122626] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
Oxaliplatin is a widely used chemotherapy agent, but induces serious peripheral neuropathy. Duloxetine is a dual reuptake inhibitor of serotonin and norepinephrine, and is shown to be effective against pain. However, whether and how duloxetine can attenuate oxaliplatin-induced allodynia in rodents is not clearly understood. A single injection of oxaliplatin (6 mg/kg, intraperitoneal; i.p.) induced a cold and mechanical allodynia, which was assessed by acetone and von Frey filament tests, respectively. When significant allodynic signs were observed, three different doses of duloxetine (10, 30, and 60 mg/kg, i.p.) were injected. Administration of 30 and 60 mg/kg of duloxetine significantly reduced the allodynia, whereas 10 mg/kg did not. By using an in vivo extracellular recording method, we further confirmed that 30 mg/kg of duloxetine could significantly inhibit the hyperexcitability of spinal wide dynamic range (WDR) cells. The anti-allodynic effect of duloxetine was completely blocked by an intrathecal injection of phentolamine (non-selective α-adrenergic receptor antagonist, 20 μg), or prazosin (α1-adrenergic receptor antagonists, 10 μg); however, idazoxan (α2-adrenergic receptor antagonist, 10 μg) did not block it. In conclusion, we suggest that duloxetine may have an effective protective action against oxaliplatin-induced neuropathic pain and spinal hyperexcitability, which is mediated by spinal α1-adrenergic receptors.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Yeongu Chung
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Neurosurgery, College of Medicine, Kyung Hee University, Kyung Hee University Hospital, Seoul 02447, Korea.
| | - Seunghwan Choi
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Byung-Il Min
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Yeongju Municipal Hospital, Yeongju-si 36051, Korea.
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
19
|
Choi J, Jeon C, Lee JH, Jang JU, Quan FS, Lee K, Kim W, Kim SK. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α₂-Adrenergic Receptor. Toxins (Basel) 2017; 9:toxins9110351. [PMID: 29088102 PMCID: PMC5705966 DOI: 10.3390/toxins9110351] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022] Open
Abstract
Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α₂-adrenergic receptor antagonist (idazoxan, 50 µg), but not α₁-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α₂-adrenergic receptor.
Collapse
Affiliation(s)
- Jiho Choi
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
| | - Changhoon Jeon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
| | - Ji Hwan Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
| | - Jo Ung Jang
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
| | - Fu Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
| | - Kyungjin Lee
- Department of Herbology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 02447, Korea.
| |
Collapse
|