1
|
Ono T, Nishino N, Iwai Y, Iwai Y, Sakai N, Kuroki Y, Nishino S. Eurycoma longifolia (Tongkat Ali) enhances wakefulness during active periods but facilitates sleep during resting periods in C57BL/6 mice. Eur J Neurosci 2023; 58:4298-4309. [PMID: 37968729 DOI: 10.1111/ejn.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
The effects of the Eurycoma longifolia (also known as Tongkat Ali [TA]) on sleep and wakefulness was evaluated in C57BL/6 mice. While TA has been used as an aphrodisiac in males, it exhibits various pharmacological effects. The most notable effect observed with TA was wake-enhancement during the second half of the active period, accompanied by significant elevations in core body temperature (CBT). In contrast, sleep was enhanced during the resting period (i.e., increase in rapid eye movement [REM] sleep and delta electroencephalography [EEG] power in non-REM sleep) with significant declines in CBT. The transition of TA's effects between resting and active periods was rapid. The results of the experiments in constant darkness indicate that TA prolongs the circadian tau and that this transition is governed by circadian clock mechanisms rather than light exposure. TA did not demonstrate efficacy in aiding sleep in an acute stress-induced insomnia model; thus, TA may be more suitable as a wake-enhancing agent for daytime sleepiness, as sleep propensity tends to accumulate towards the end of active period. Since TA amplifies the rest-activity pattern, prolongs circadian tau and increases REM sleep, thereby reversing some common symptoms seen in elderly subjects, it may also hold promise as a rejuvenating medicine.
Collapse
Affiliation(s)
- Taisuke Ono
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku, Japan
| | - Naoya Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yusuke Iwai
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yumi Iwai
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Noriaki Sakai
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yutaka Kuroki
- D-LAB, Japan Tobacco Inc., Minato, Japan
- Delightex Pte. Ltd., Singapore
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
2
|
Wang Y, Zhang J, Li H. Narrative review: pathogenesis, diagnosis, and treatment of sleep-related painful erection. Transl Androl Urol 2022; 10:4422-4430. [PMID: 35070824 PMCID: PMC8749065 DOI: 10.21037/tau-21-1045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023] Open
Abstract
Objective Through critical analysis and comprehensive review of the limited literature, this paper can help clinicians better identify the pathophysiology of sleep-related painful erections (SRPE) and provide direction for future treatment research. Background Patients with SRPE will be awakened by painful erections during sleep, which affects their sleep process and general health. At present, literatures of experimental and clinical research on SRPE disease are limited, as well as long-term reports on its pathogenesis and clinical management. Methods We use the PubMed database to obtain sleep-related peer erection literature. The search terms used include sleep, painful, penis and erection. After rigorous screening, the search returned 21 references published between 1987 and 2021. Conclusions The main cause of SRPE is obstructive sleep apnea (OSA) syndrome, psychological and spiritual factors, androgen elevation, neuroendocrine regulation and threshold of pain in the REM phase. The combination of multiple medications is the most effective approach to treat sleep-pain-related erections. The combination of CPAP, REM inhibitors and Baclofen has significant effect on SRPE caused by OSA syndrome. This article provides effective support and strategies for doctors to manage SRPE patients through a comprehensive analysis of the pathogenesis mechanism and clinical treatment strategies of SRPE.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Urology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianzhong Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Urology, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
3
|
Deng K, Yang L, Xie J, Tang H, Wu GS, Luo HR. Whole-brain mapping of projection from mouse lateral septal nucleus. Biol Open 2019; 8:bio.043554. [PMID: 31208998 PMCID: PMC6679409 DOI: 10.1242/bio.043554] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lateral septal nucleus (LS) plays a critical role in emotionality, social behavior and feeding processes, through neural connections with the hippocampus and hypothalamus. We investigated the neural circuits of LS by using herpes simplex virus 1 strain H129 (H129) and pseudorabies virus stain Bartha (PRV). Virus H129 indicates that LS directly projects to some cerebral nuclei (nucleus accumbens, bed nuclei of the stria terminalis and amygdala), part of the hypothalamus (median preoptic, paraventricular, dorsomedial nucleus and lateral area), thalamus (medial habenula, the paraventricular, parataenial and reuniens nuclei, and the medial line nuclei) and the pontine central gray. Then the LS has secondary projections to the CA3 and CA1 field of the hippocampal formation, lateral and medial preoptic area, and the mammillary body. PRV tracing shows that LS are mainly receiving primary inputs from the amygdala, hippocampus, hypothalamic, thalamus, midbrain and hindbrain, and secondary inputs from dorsal and central linear nucleus raphe, the lateral part of the superior central nucleus raphe, the ventral anterior-lateral complex, the intermediodorsal nucleus, the central medial nucleus, the rhomboid nucleus, and the submedial nucleus of the thalamus. The neural circuit data revealed here could help to understand and further research on the function of LS. Summary: We identified the sequence of projections from the lateral septal nucleus by virus tracing and expanded the data on neural circuits, which could help to understand brain function.
Collapse
Affiliation(s)
- Ke Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lu Yang
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Xie
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - He Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Gui-Sheng Wu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China .,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|