1
|
Sezer T, Okudan N, Belviranli M. Comparing the effect of high-intensity interval exercise and voluntary exercise training on cognitive functions in rats. Neurosci Lett 2024; 842:137993. [PMID: 39306028 DOI: 10.1016/j.neulet.2024.137993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
It is known that exercise increases brain-derived neurotrophic factor (BDNF) levels in the hippocampus, the brain region responsible for learning and memory, resulting in improved cognitive functions and learning processes. However, it is claimed that different types of exercise cause different responses in the brain. It is thought that lactate and osteocalcin secreted in response to exercise are associated with an increase in BDNF levels. However, there are not enough studies on this subject. This study aimed to compare the effects of high-intensity interval training (HIIT) and voluntary exercise training on cognitive performance and molecular connections. Male rats were randomly divided into control, voluntary exercise training and HIIT groups. The voluntary exercise group had free access to the voluntary wheel for 8 weeks. The HIIT group performed HIIT on the treadmill 3 days a week for 8 weeks. The rats underwent open field (OF), elevated plus maze (EPM) and Morris water maze (MWM) tests 24 h after the last exercise training. Then, after blood was drawn under anesthesia, the rats were sacrificed and their hippocampus tissues were separated. Glucocorticoid and BDNF levels in the blood were evaluated by enzyme-linked immunosorbent assay (ELISA), and osteocalcin and BDNF expressions in the hippocampus were evaluated by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Neither voluntary exercise training nor HIIT had any significant effect on behavioral parameters assessed by OF, EPM and MWM tests. However, BDNF expression in hippocampus tissue was higher in the HIIT group than in the control group. In addition, osteocalcin expression in hippocampus tissue was higher in the HIIT and voluntary exercise groups than in the control group. In conclusion, according to the findings we obtained from this study, although it does not have a significant effect on cognitive functions, the effect of HIIT on brain functions seems to be more effective than voluntary exercise.
Collapse
Affiliation(s)
- Tuğba Sezer
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| | - Muaz Belviranli
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| |
Collapse
|
2
|
Bao F, Zhao X, You J, Liu Y, Xu Z, Wu Y, Wu Y, Xu Z, Yu L, Li J, Wei Y. Aerobic exercise alleviates skeletal muscle aging in male rats by inhibiting apoptosis via regulation of the Trx system. Exp Gerontol 2024; 194:112523. [PMID: 39025384 DOI: 10.1016/j.exger.2024.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Skeletal muscle aging in rats is a reduction in skeletal muscle mass caused by a decrease in the number or volume of skeletal muscle myofibers. Apoptosis has been recognized to play a key role in accelerating the process of skeletal muscle aging in rats. The thioredoxin (Trx) system is a widely expressed oxidoreductase system that controls the cellular reduction/oxidation state and has both potent anti-free radical damage and important pro-growth and apoptosis inhibitory functions. Previous studies have shown that exercise delays skeletal muscle aging. However, it is unclear whether exercise attenuates skeletal muscle aging via the Trx system. Therefore, the present study used the Trx system as an entry point to explore the effect of aerobic exercise to improve skeletal muscle aging in rats and its possible mechanisms, and to provide a theoretical basis for exercise to delay skeletal muscle aging in rats. It was shown that aerobic exercise in senescent rats resulted in increased gastrocnemius index, decreased body weight, increased endurance, decreased skeletal muscle cell apoptosis, increased activity and protein expression of the Trx system, and decreased expression of p38 and ASK1. Based on these findings, we conclude that 10 weeks of aerobic exercise may enhance the anti-apoptotic effect of Trx by up-regulating Trx and Trx reductase (TR) protein expression, which in turn increases Trx activity in rat skeletal muscle, and ultimately alleviates apoptosis in senescent skeletal muscle cells.
Collapse
Affiliation(s)
- Fenmiao Bao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Jiaqi You
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zheng Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yuqing Wu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yufeng Wu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Liang Yu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Junping Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yan Wei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
3
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Golpasandi H, Rahimi MR, Ahmadi S, Łubkowska B, Cięszczyk P. Effects of Vitamin D3 Supplementation and Aerobic Training on Autophagy Signaling Proteins in a Rat Model Type 2 Diabetes Induced by High-Fat Diet and Streptozotocin. Nutrients 2023; 15:4024. [PMID: 37764807 PMCID: PMC10535215 DOI: 10.3390/nu15184024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to investigate the combined effects of vitamin D3 supplementation and aerobic training on regulating the autophagy process in rats with type 2 diabetic induced by a high-fat diet and streptozotocin. A total of 40 Wistar rats were divided into five groups: normal control (NC), diabetic control (DC), diabetic + aerobic training (DAT), diabetic + vitamin D3 (DVD), and diabetic + aerobic training + vitamin D3 (DVDAT). The rats underwent eight weeks of aerobic training with an intensity of 60% maximum running speed for one hour, along with weekly subcutaneous injections of 10,000 units of vitamin D3. The protein levels of different autophagy markers were assessed in the left ventricular heart tissue. The results showed that the protein levels of AMPK, pAMPK, mTOR, and pmTOR were significantly lower in the DC group compared to the NC group. Conversely, the levels of ULK, Beclin-1, LC3II, Fyco, and Cathepsin D proteins were significantly higher in the DC group. However, the interventions of aerobic training and vitamin D3 supplementation, either individually or in combination, led to increased levels of AMPK, pAMPK, mTOR, and pmTOR, and decreased levels of ULK, Beclin-1, LC3II, Fyco, and Cathepsin D (p < 0.05). Additionally, the aerobic capacity in the DAT and DVDAT groups was significantly higher compared to the NC, DC, and DVD groups (p < 0.05). These findings suggest that type 2 diabetes is associated with excessive autophagy in the left ventricle. However, after eight weeks of vitamin D3 supplementation and aerobic training, a significant reduction in excessive autophagy was observed in rats with type 2 diabetes.
Collapse
Affiliation(s)
- Hadi Golpasandi
- Department of Exercise Physiology, University of Kurdistan, Sanandaj 66177-15175, Iran;
| | | | - Slahadin Ahmadi
- Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66186-34683, Iran;
| | - Beata Łubkowska
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; (B.Ł.); (P.C.)
| | - Paweł Cięszczyk
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; (B.Ł.); (P.C.)
| |
Collapse
|
5
|
Sadeghi S, Delphan M, Shams M, Esmaeili F, Shanaki-Bavarsad M, Shanaki M. The high-intensity interval training (HIIT) and curcumin supplementation can positively regulate the autophagy pathway in myocardial cells of STZ-induced diabetic rats. BMC Res Notes 2023; 16:21. [PMID: 36841820 PMCID: PMC9960211 DOI: 10.1186/s13104-023-06295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
OBJECTIVE Targeting autophagy is a new therapeutic strategy for the complications of diabetes,such as diabetic cardiomyopathy (DCM). During diabetes, increased or insufficient autophagic activity causes aberrations in cellular homeostasis. Regarding the conflicting and unclear results regarding the effect of HIIT and curcumin supplementation on the expression of genes associated to autophagy, this study aimed to assess whether 4-week high-intensity interval training (HIIT) and curcumin supplementation are able to influence the expression of autophagy-related genes in myocardial cells of diabetic rats. METHODS In an experimental design, 24 male Wistar rats were randomly divided into 4 groups: non-diabetic control (NC), diabetic control (DC), diabetes + HIIT (D + HIIT), and diabetes + curcumin (D + CU). After HIIT program and curcumin treatment, the genes expression of autophagy pathway were assessed in the myocardium by real-time PCR Tanique. RESULTS The results indicated that the expression levels of ATG1, Beclin1, ATG5, and LAMP-2 genes were significantly reduced in the DC group compared to the NC group (p < 0.001). Following 4-week HIIT, the expression of Beclin1, ATG-5, and LAMP-2 improved considerably compared to the DC group (p < 0.001, p < 0.001, and p < 0.05, respectively). In addition, after 4 weeks of curcumin supplementation, the expression levels of ATG-5 and Beclin-1 were significantly improved compared to the DC group (p < 0.001, p < 0.05, respectively). It seems HIIT and curcumin supplementation can be an effective approach for inducing autophagy and improving cardiac function in DCM rats.However, HIIT seems more effective than curcumin in this regard.
Collapse
Affiliation(s)
- Samira Sadeghi
- grid.411600.2Department of Medical Laboratory Sciences, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Delphan
- grid.411354.60000 0001 0097 6984Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran
| | - Masoumeh Shams
- grid.411600.2Department of Medical Laboratory Sciences, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- grid.411705.60000 0001 0166 0922Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Shanaki-Bavarsad
- grid.266102.10000 0001 2297 6811Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA USA
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Qiu Y, Pan X, Chen Y, Xiao J. Hallmarks of exercised heart. J Mol Cell Cardiol 2021; 164:126-135. [PMID: 34914934 DOI: 10.1016/j.yjmcc.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
The benefits of exercise in humans on the heart have been well recognized for many years. Long-term endurance exercise training can induce physiologic cardiac hypertrophy with normal or enhanced heart function, and provide protective benefits in preventing heart failure. The heart-specific responses that occur during exercise are complex and highly variable. This review mainly focuses on the current understanding of the structural and functional cardiac adaptations to exercise as well as molecular pathways and signaling proteins responsible for these changes. Here, we summarize eight tentative hallmarks that represent common denominators of the exercised heart. These hallmarks are: cardiomyocyte growth, cardiomyocyte fate reprogramming, angiogenesis and lymphangiogenesis, mitochondrial remodeling, epigenetic alteration, enhanced endothelial function, quiescent cardiac fibroblast, and improved cardiac metabolism. A major challenge is to explore the underlying molecular mechanisms for cardio-protective effects of exercise, and to identify therapeutic targets for heart diseases.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yiwen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Pan T, Ji M, Jiao J, Yin F, Qin C, Yang T. EFFECTS OF EXHAUSTIVE EXERCISE AND CONTUSION ON AUTOPHAGY-RELATED FACTORS IN SKELETAL MUSCLE OF RATS. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127062020_0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
ABSTRACT Objective: To study the effects of exhaustive exercise and contusion on autophagy-related factors Beclin1, LC3 and PINK1 expression in the skeletal muscle of rats. Methods: Forty-two male SD rats were randomly divided into 7 groups, 6 rats in each group: C, D0, D24, D48, E0, E24, and E48. Each group of rats was killed and dissected at the different respective time points specified above. The whole quadriceps femoris of the left hind limbs were removed and divided into two parts, one for mRNAs of Beclin1, LC3 and PINK1 by real-time fluorescent quantitative PCR, and the other for LC3 protein by Western blotting. Results: Compared with group C, the contents of Beclin1 mRNA, PINK1 mRNA, and LC3 mRNA in the immediate exhaustive exercise group (E0) were significantly reduced p<0.01. However, the levels of PINK1 mRNA, LC3 mRNA, and LC3 protein in skeletal muscle cells increased significantly in the 48 hours after exhaustion (E48) p<0.05, suggesting that cell autophagy had an increasing trend during the recovery period. Meanwhile, compared with the C group, the contents of Beclin1 mRNA, PINK1 mRNA, and LC3 mRNA in the immediate blunt contusion group (D0) increased significantly p<0.01 and were followed by a downward trend. Conclusion: Generally, there were differences between the blunt contusion and exhausted exercise models at each recovery phase. The gene expression of the autophagy-related factors was not high in the early exhaustive exercise recovery phase and subsequently followed an upward trend. But the above factors increased significantly in the immediate and early recovery phases after blunt contusion. Injury from blunt contusion may be more severe than exhaustive exercise-induced-injury, so the autophagy starts earlier according to the changes in autophagy-related factors. Level of evidence III; Therapeutic studies investigating the results of treatment.
Collapse
|
8
|
da Rocha AL, Pinto AP, Morais GP, Marafon BB, Rovina RL, Veras ASC, Teixeira GR, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Rivas DA, da Silva ASR. Moderate, but Not Excessive, Training Attenuates Autophagy Machinery in Metabolic Tissues. Int J Mol Sci 2020; 21:ijms21228416. [PMID: 33182536 PMCID: PMC7697344 DOI: 10.3390/ijms21228416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
The protective effects of chronic moderate exercise-mediated autophagy include the prevention and treatment of several diseases and the extension of lifespan. In addition, physical exercise may impair cellular structures, requiring the action of the autophagy mechanism for clearance and renovation of damaged cellular components. For the first time, we investigated the adaptations on basal autophagy flux in vivo in mice's liver, heart, and skeletal muscle tissues submitted to four different chronic exercise models: endurance, resistance, concurrent, and overtraining. Measuring the autophagy flux in vivo is crucial to access the functionality of the autophagy pathway since changes in this pathway can occur in more than five steps. Moreover, the responses of metabolic, performance, and functional parameters, as well as genes and proteins related to the autophagy pathway, were addressed. In summary, the regular exercise models exhibited normal/enhanced adaptations with reduced autophagy-related proteins in all tissues. On the other hand, the overtrained group presented higher expression of Sqstm1 and Bnip3 with negative morphological and physical performance adaptations for the liver and heart, respectively. The groups showed different adaptions in autophagy flux in skeletal muscle, suggesting the activation or inhibition of basal autophagy may not always be related to improvement or impairment of performance.
Collapse
Affiliation(s)
- Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (A.L.d.R.); (A.P.P.); (G.P.M.)
| | - Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (A.L.d.R.); (A.P.P.); (G.P.M.)
| | - Gustavo P. Morais
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (A.L.d.R.); (A.P.P.); (G.P.M.)
| | - Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (B.B.M.); (R.L.R.)
| | - Rafael L. Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (B.B.M.); (R.L.R.)
| | - Allice S. C. Veras
- Postgraduate Program in Movement Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900, São Paulo, Brazil; (A.S.C.V.); (G.R.T.)
| | - Giovana R. Teixeira
- Postgraduate Program in Movement Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900, São Paulo, Brazil; (A.S.C.V.); (G.R.T.)
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente 19060-900, São Paulo, Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil; (J.R.P.); (L.P.d.M.); (D.E.C.); (E.R.R.)
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil; (J.R.P.); (L.P.d.M.); (D.E.C.); (E.R.R.)
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil; (J.R.P.); (L.P.d.M.); (D.E.C.); (E.R.R.)
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil; (J.R.P.); (L.P.d.M.); (D.E.C.); (E.R.R.)
| | - Donato A. Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States, Tufts University, Boston, MA 02111, USA;
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (A.L.d.R.); (A.P.P.); (G.P.M.)
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (B.B.M.); (R.L.R.)
- Correspondence: ; Tel.: +55-1633150522
| |
Collapse
|
9
|
Shiuchi T, Masuda T, Shimizu N, Chikahisa S, Séi H. Dopamine stimulation of the septum enhances exercise efficiency during complicated treadmill running in mice. J Physiol Sci 2019; 69:1019-1028. [PMID: 31664642 PMCID: PMC10717687 DOI: 10.1007/s12576-019-00722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
We aimed to identify the neurotransmitters and brain regions involved in exercise efficiency in mice during continuous complicated exercises. Male C57BL/6J mice practiced treadmill running with intermittent obstacles on a treadmill for 8 days. Oxygen uptake (VO2) during treadmill running was measured as exercise efficiency. After obstacle exercise training, the VO2 measured during treadmill running with obstacles decreased significantly. Obstacle exercise-induced c-Fos expressions and dopamine turnover (DOPAC/dopamine) in the septum after obstacle exercise training were significantly higher than that before training. The dopamine turnover was correlated with exercise efficiency on the 3rd day after exercise training. Furthermore, the training effect on exercise efficiency was significantly decreased by injection of dopamine receptor antagonists into the septum and was associated with decreased c-Fos expressions in the septum and hippocampus of the mice. These results suggest that dopaminergic function in the septum is involved in exercise efficiency during continuous complicated exercises.
Collapse
Affiliation(s)
- Tetsuya Shiuchi
- Department of Integrative Physiology, Institute of Biomedical Science, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan.
| | - Takuya Masuda
- Department of Integrative Physiology, Institute of Biomedical Science, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan
- Student Lab, Tokushima University Faculty of Medicine, Tokushima, 770-8503, Japan
| | - Noriyuki Shimizu
- Department of Integrative Physiology, Institute of Biomedical Science, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan
| | - Sachiko Chikahisa
- Department of Integrative Physiology, Institute of Biomedical Science, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan
| | - Hiroyoshi Séi
- Department of Integrative Physiology, Institute of Biomedical Science, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan
| |
Collapse
|
10
|
Corbianco S, Dini M, Bongioanni P, Carboncini MC, Cavallini G. Exercise training in ad libitum and food-restricted old rats: effects on metabolic and physiological parameters. Biogerontology 2019; 21:69-82. [PMID: 31641969 DOI: 10.1007/s10522-019-09844-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022]
Abstract
Aging is accompanied by a decline in the healthy function of multiple organs, leading to increased incidence and mortality from diseases such as cancer and inflammatory, cardiovascular and neurodegenerative diseases. Dietary restriction is the most effective experimental intervention known to consistently slow the aging process and with positive effects on health span in different organisms, from invertebrates to mammals. Age is also associated with progressive decline in physical activity levels in a wide range of animal species: therefore, regular physical exercise could represent a safe intervention to antagonize aging. In this research we explore the effects of exercise training initiated in late middle aged rats fed with different lifelong dietary regimens: one group was fed ad libitum and the second group was subjected to every-other-day fasting. These two groups might represent examples of "normal" aging and "successful" aging. The study shows the effects of exercise and food restriction and their interaction on plasma levels of total antioxidant capacity, lactate, amino acids, and on products of protein oxidation in soleus and tibialis anterior muscles. In addition, we evaluated body composition measurement by bioelectrical impedance analysis and muscle strength by grasping test. Results show that late-onset exercise training has the potential to improve some metabolic and physiological parameters in rats with the same "chronological age" but different "biological age", without negative effects, and highlight the relevance of a personalised and selected exercise protocol, since the responsiveness to exercise may depend on the individual's "biological age".
Collapse
Affiliation(s)
- Silvia Corbianco
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Marco Dini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Paolo Bongioanni
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maria Chiara Carboncini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gabriella Cavallini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
11
|
Abstract
The loss of skeletal muscle, called sarcopenia, is an inevitable event during the aging process, and significantly impacts quality of life. Autophagy is known to reduce muscle atrophy caused by dysfunctional organelles, even though the molecular mechanism remains unclear. Here, we have discuss the current understanding of exercise-induced autophagy activation in skeletal muscle regeneration and remodeling, leading to sarcopenia intervention. With aging, dysregulation of autophagy flux inhibits lysosomal storage processes involved in muscle biogenesis. AMPK-ULK1 and the FoxO/PGC-1α signaling pathways play a critical role in the induction of autophagy machinery in skeletal muscle, thus these pathways could be targets for therapeutics development. Autophagy has been also shown to be a critical regulator of stem cell fate, which determines satellite cell differentiation into muscle fiber, thereby increasing muscle mass. This review aims to provide a comprehensive understanding of the physiological role of autophagy in skeletal muscle aging and sarcopenia.
Collapse
Affiliation(s)
- Sung Sup Park
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141; Department of Life Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Young-Kyo Seo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141; Department of Life Science, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
12
|
Li FH, Sun L, Zhu M, Li T, Gao HE, Wu DS, Zhu L, Duan R, Liu TCY. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model. Exp Gerontol 2018; 113:150-162. [PMID: 30308288 DOI: 10.1016/j.exger.2018.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
Sarcopenia is associated with loss of muscle mass and function as well as oxidative stress, chronic low-grade inflammatory status, and adipocytokine dysfunction. It has been reported that sarcopenia can be attenuated by exercise training. The purpose of this study was to evaluate whether long-term high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) protocols could differentially modulate changes in body composition, physical performance, inflammatory parameters, and adipocytokines in fat tissues and serum, as well as oxidative parameters and insulin-like growth factor 1 (IGF-1) levels in skeletal muscle tissue of aged rats. Middle-aged (18-month-old) female Sprague Dawley rats (n = 36) were subjected to 8 months of MICT (26-m MICT) or HIIT (26-m HIIT) treadmill training (45 min, 5 times per week), and the results were compared with those of age-matched sedentary controls (26-m SED); 8-month-old (8-m SED) and 18-month-old (18-m SED) rats served as aging sedentary controls. Body composition parameters; physical performance; serum and skeletal muscle oxidative stress parameters; levels of IGF-1, a serum and fat tissue inflammatory marker; adipocytokine (leptin, adiponectin) levels; and plasma glucose and lipid metabolism-related parameters were analyzed among the five groups. The percent fat and body fat to lean mass ratio increased as a main effect with age, whereas 26-m HIIT but not 26-m MICT attenuated these alterations. The 26-m HIIT group showed a larger improvement in grip strength compared to that of 26-m MICT, with a similar increase in inclined plane performance, maximum running speed, and exhaustion over time as compared with the 26-m SED group. Notably, the 26-m HIIT group showed lower high-sensitivity C-reactive protein levels and higher IL-10 in serum compared with those of the 26-m SED and 26-m MICT groups. Both exercise protocols promoted increased skeletal muscle IGF-1 and decreased serum IGF-1 and adiponectin relative to those in the 26-m SED group, whereas only 26-m HIIT dampened the age-related decrease in plasma free fatty acids and increased serum leptin, along with providing lower fat tissue leptin as compared with that in the 26-m SED group. Moreover, the 26-m HIIT group showed lower serum and skeletal muscle malonylaldehyde and skeletal muscle 8-hydroxydeoxyguanosine (8-OHdG) levels than those in the 26-m MICT group, albeit similar decreases in serum and skeletal muscle 4-hydroxynonenal and serum 8-OHdG and increases in skeletal muscle superoxide dismutase 2 activity. In conclusion, HIIT initiated late in life exhibited greater beneficial effects in ameliorating aged-related elevations in oxidative stress and inflammation, as well as dysfunction of circulating adipocytokine levels, than a volume-matched MICT program. HIIT may therefore contribute to improvements in body composition and physical performance changes associated with aging.
Collapse
Affiliation(s)
- Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China.
| | - Lei Sun
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Min Zhu
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Tao Li
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Hao-En Gao
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Da-Shuai Wu
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Zhu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Rui Duan
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China.
| |
Collapse
|
13
|
Roperto S, Russo V, Rosati A, Ceccarelli DM, Munday JS, Turco MC, Roperto F. Chaperone-assisted selective autophagy in healthy and papillomavirus-associated neoplastic urothelium of cattle. Vet Microbiol 2018; 221:134-142. [PMID: 29981700 DOI: 10.1016/j.vetmic.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
Abstract
Chaperone-assisted selective autophagy (CASA) is a newly-described selective tension-induced macroautophagy pathway mediated by Bag3 that is believed to be essential for mechanotransduction in skeletal muscle and to be an important regulator of the immune system. We investigated CASA machinery both in healthy and in fifteen papillomavirus-associated neoplastic bovine urothelium. The components of CASA complex, that comprises the molecular chaperones HspA8/Hsc70 and Hsp8B/Hsp22 and the cochaperones Bag3 and STUB1/CHIP, were studied by molecular, microscopic and submicroscopic investigations. CASA complex was found to be constitutively expressed in healthy bovine urothelium; its expression increased in urothelial cancers of cattle, namely thirteen papillary carcinomas and two papillary urothelial neoplasm of low malignant potential (PUNLMPs). We suggest that basal levels of CASA are important in the healthy urothelium which interfaces with the community of urinary microbiota thus representing an important epithelial cell-autonomous mechanism of antibacterial defense. Co-immunoprecipitation studies using an antibody against bovine papillomavirus E5 protein revealed that the oncoprotein co-localized with CASA complex in urothelial cancer cells. This suggests that infection by BPV E5 could influence cell behaviour by interfering with basal autophagy processes although this study did not conclusively show that this interaction increased the expression of CASA proteins. In neoplastic urothelium, CASA could be involved in regulating fundamental cellular processes such adhesion, migration, and proliferation and so might influence the biological behaviour of urothelial tumors in cattle.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy.
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Alessandra Rosati
- Dipartimento di Medicina Chirurgia ed Odontoiatria, Schola Medica Salernitana, Università di Salerno, Baronissi, Italy
| | - Dora M Ceccarelli
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - John S Munday
- Pathobiology, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Maria C Turco
- Dipartimento di Medicina Chirurgia ed Odontoiatria, Schola Medica Salernitana, Università di Salerno, Baronissi, Italy
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|