1
|
Liu J, Li Y, Wu S, Zhang Z, Li D. Hyperbaric Oxygen Upregulates Mst1 to Activate Keap1/Nrf2/HO-1 Pathway Resisting Oxidative Stress in a Rat Model of Acute Myocardial Infarction. Mol Biotechnol 2025; 67:284-293. [PMID: 38393629 DOI: 10.1007/s12033-024-01050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024]
Abstract
This study aimed to investigate the protective effects and mechanisms of hyperbaric oxygen (HBO) preconditioning in a rat model of acute myocardial infarction (MI) established by ligation of the left anterior descending (LAD) coronary artery. Microarray, real-time PCR, and western blotting (WB) results demonstrated that the Mst1 gene was downregulated in the heart tissue of the MI rat model. HBO preconditioning significantly increased Mst1 expression in cardiac tissues of rats after MI modeling. Lentiviral infection was used to silence the Mst1 gene in rats treated with HBO to probe the effect of Mst1 on HBO cardioprotection. HBO preconditioning decreased heart infarct size and ameliorated cardiac function in MI rats, whereas Mst1 silencing reversed the effect of HBO administration, as indicated after heat infarct size determination via TTC staining, histological examination via HE staining, and measurements of cardiac function. HBO preconditioning reduced oxidative stress and inflammation in cardiac tissue of MI rat model, evidenced by alteration of malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), and protein carbonyl contents, as well as production of inflammation-associated myeloperoxidase (MPO), IL-1β, and TNF-α. These findings provide a new signaling mechanism through which HBO preconditioning can protect against acute MI injury through the Mst1-mediating Keap1/Nrf2/HO-1-dependent antioxidant defense system.
Collapse
Affiliation(s)
- Jianhui Liu
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Congtai District, No. 81, Congtai Road, Handan, 056008, Hebei, China
| | - Yan Li
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Congtai District, No. 81, Congtai Road, Handan, 056008, Hebei, China
| | - Shubiao Wu
- Department of Orthopaedics, Affiliated Hospital of Hebei Engineering University, Handan, 056008, Hebei, China
| | - Zhigang Zhang
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Congtai District, No. 81, Congtai Road, Handan, 056008, Hebei, China
| | - Di Li
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Congtai District, No. 81, Congtai Road, Handan, 056008, Hebei, China.
| |
Collapse
|
2
|
Aljakna Khan A, Sabatasso S. Autophagy in myocardial ischemia and ischemia/reperfusion. Cardiovasc Pathol 2025; 74:107691. [PMID: 39218167 DOI: 10.1016/j.carpath.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Myocardial infarction (MI) is a life-threatening condition that leads to loss of viable heart tissue. The best way to treat acute MI and limit the infarct size is to re-open the occluded coronary artery and restore the supply of oxygenated and nutrient-rich blood, but reperfusion can cause additional damage. Autophagy is an intracellular process that recycles damaged cytoplasmic components (molecules and organelles) by loading them into autophagosomes and degrading them in autolysosomes. Autophagy is increased in in vivo animal models of permanent ischemia and ischemia/reperfusion but by different molecular mechanisms. While autophagy is protective during permanent ischemia, it is detrimental during ischemia/reperfusion. Its modulation is being investigated as a potential target to reduce reperfusion injury. This review provides a synopsis of the current knowledge about autophagy, summarizes findings specifically in permanent ischemia and ischemia/reperfusion, and briefly discusses the potential implication of experimental findings.
Collapse
Affiliation(s)
- Aleksandra Aljakna Khan
- Faculty Unit of Anatomy and Morphology, University Centre of Legal Medicine, Lausanne-Geneva, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Sara Sabatasso
- Faculty Unit of Anatomy and Morphology, University Centre of Legal Medicine, Lausanne-Geneva, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Unit of Forensic medicine, University Centre of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
3
|
Zhang W, Guo C, Li Y, Wang H, Wang H, Wang Y, Wu T, Wang H, Cheng G, Man J, Chen S, Fu S, Yang L. Mitophagy mediated by HIF-1α/FUNDC1 signaling in tubular cells protects against renal ischemia/reperfusion injury. Ren Fail 2024; 46:2332492. [PMID: 38584135 PMCID: PMC11000611 DOI: 10.1080/0886022x.2024.2332492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Kidney Diseases, Lanzhou, China
| | - Chao Guo
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Hao Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huabing Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Yingying Wang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Tingting Wu
- Department of Functional Examination in Children, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huinan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Gang Cheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiangwei Man
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Siyu Chen
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Shengjun Fu
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Urology, Lanzhou, China
| |
Collapse
|
4
|
Yao H, Xie Y, Li C, Liu W, Yi G. Mitochondria-Associated Organelle Crosstalk in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Transl Res 2024; 17:1106-1118. [PMID: 38807004 DOI: 10.1007/s12265-024-10523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Organelle damage is a significant contributor to myocardial ischemia/reperfusion (I/R) injury. This damage often leads to disruption of endoplasmic reticulum protein regulatory programs and dysfunction of mitochondrial energy metabolism. Mitochondria and endoplasmic reticulum are seamlessly connected through the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a crucial site for the exchange of organelles and metabolites. However, there is a lack of reports regarding the communication of information and metabolites between mitochondria and related organelles, which is a crucial factor in triggering myocardial I/R damage. To address this research gap, this review described the role of crosstalk between mitochondria and the correlative organelles such as endoplasmic reticulum, lysosomal and nuclei involved in reperfusion injury of the heart. In summary, this review aims to provide a comprehensive understanding of the crosstalk between organelles in myocardial I/R injury, with the ultimate goal of facilitating the development of targeted therapies based on this knowledge.
Collapse
Affiliation(s)
- Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Yuxin Xie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Chaoquan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Wanting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Lee TL, Shen WC, Chen YC, Lai TC, Lin SR, Lin SW, Yu IS, Yeh YH, Li TK, Lee IT, Lee CW, Chen YL. Mir221- and Mir222-enriched adsc-exosomes mitigate PM exposure-exacerbated cardiac ischemia-reperfusion injury through the modulation of the BNIP3-MAP1LC3B-BBC3/PUMA pathway. Autophagy 2024:1-20. [PMID: 39245438 DOI: 10.1080/15548627.2024.2395799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Epidemiology has shown a strong relationship between fine particulate matter (PM) exposure and cardiovascular disease. However, it remains unknown whether PM aggravates myocardial ischemia-reperfusion (I/R) injury, and the related mechanisms are unclear. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exos) contain high levels of Mir221 and Mir222. The present study investigated the effects of PM exposure on I/R-induced cardiac injury through mitophagy and apoptosis, as well as the potential role of Mir221 and Mir222 in ADSC-Exos. Wild-type, mir221- and mir222-knockout (KO), and Mir221- and Mir222-overexpressing transgenic (TG) mice were intratracheally injected with PM (10 mg/kg). After 24 h, mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion (I/R). H9c2 cardiomyocytes were cultured under 1% O2 for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation [H/R]). PM aggravated I/R (or H/R) cardiac injury by increasing ROS levels and causing mitochondrial dysfunction, which increased the expression of mitochondrial fission-related proteins (DNM1L/Drp1 and MFF) and mitophagy-related proteins (BNIP3 and MAP1LC3B/LC3B) in vivo and in vitro. Treatment with ADSC-Exos or Mir221- and Mir222-mimics significantly reduced PM+I/R-induced cardiac injury. Importantly, ADSC-Exos contain Mir221 and Mir222, which directly targets BNIP3, MAP1LC3B/LC3B, and BBC3/PUMA, decreasing their expression and ultimately reducing cardiomyocyte mitophagy and apoptosis. The present data showed that ADSC-Exos treatment regulated mitophagy and apoptosis through the Mir221 and Mir222-BNIP3-MAP1LC3B-BBC3/PUMA pathway and significantly reduced the cardiac damage caused by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exos in alleviating PM-induced exacerbation of myocardial I/R injury.Abbreviation: ADSC-Exos: adipose-derived stem cell exosomes; AL: autolysosome; ATP: adenosine triphosphate; BBC3/PUMA: BCL2 binding component 3; BNIP3: BCL2/adenovirus E1B interacting protein 3; CASP3: caspase 3; CASP9: caspase 9; CDKN1B/p27: cyclin dependent kinase inhibitor 1B; CVD: cardiovascular disease; DCFH-DA: 2',7'-dichlorodihydrofluorescein diacetate; DHE: dihydroethidium; DNM1L/Drp1: dynamin 1-like; EF: ejection fraction; FS: fractional shortening; H/R: hypoxia-reoxygenation; I/R: ischemia-reperfusion; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; miRNA: microRNA; NAC: N-acetylcysteine; OCR: oxygen consumption rate; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PM: particulate matter; PRKAA1/AMPK: protein kinase AMP-activated catalytic subunit alpha 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TRP53/p53: transformation related protein 53; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.
Collapse
Affiliation(s)
- Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Shen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Chun Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Centers for Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Chiayi, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Marzook H, Gupta A, Jayakumar MN, Saleh MA, Tomar D, Qaisar R, Ahmad F. GSK-3α-BNIP3 axis promotes mitophagy in human cardiomyocytes under hypoxia. Free Radic Biol Med 2024; 221:235-244. [PMID: 38815772 DOI: 10.1016/j.freeradbiomed.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Dysregulated autophagy/mitophagy is one of the major causes of cardiac injury in ischemic conditions. Glycogen synthase kinase-3alpha (GSK-3α) has been shown to play a crucial role in the pathophysiology of cardiac diseases. However, the precise role of GSK-3α in cardiac mitophagy remains unknown. Herein, we investigated the role of GSK-3α in cardiac mitophagy by employing AC16 human cardiomyocytes under the condition of acute hypoxia. We observed that the gain-of-GSK-3α function profoundly induced mitophagy in the AC16 cardiomyocytes post-hypoxia. Moreover, GSK-3α overexpression led to increased ROS generation and mitochondrial dysfunction in cardiomyocytes, accompanied by enhanced mitophagy displayed by increased mt-mKeima intensity under hypoxia. Mechanistically, we identified that GSK-3α promotes mitophagy through upregulation of BNIP3, caused by GSK-3α-mediated increase in expression of HIF-1α and FOXO3a in cardiomyocytes post-hypoxia. Moreover, GSK-3α displayed a physical interaction with BNIP3 and, inhibited PINK1 and Parkin recruitment to mitochondria was observed specifically under hypoxia. Taken together, we identified a novel mechanism of mitophagy in human cardiomyocytes. GSK-3α promotes mitochondrial dysfunction and regulates FOXO3a -mediated BNIP3 overexpression in cardiomyocytes to facilitate mitophagy following hypoxia. An interaction between GSK-3α and BNIP3 suggests a role of GSK-3α in BNIP3 recruitment to the mitochondrial membrane where it enhances mitophagy in stressed cardiomyocytes independent of the PINK1/Parkin.
Collapse
Affiliation(s)
- Hezlin Marzook
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anamika Gupta
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Manju N Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed A Saleh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dhanendra Tomar
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rizwan Qaisar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Firdos Ahmad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
7
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2024:10.1038/s41401-024-01359-9. [PMID: 39117969 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M, Madhani M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther 2024; 259:108666. [PMID: 38763322 DOI: 10.1016/j.pharmthera.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, via pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.
Collapse
Affiliation(s)
- Reece J Lamb
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Kayleigh Griffiths
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Centre for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic, and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom.
| |
Collapse
|
9
|
Agyapong ED, Pedriali G, Ramaccini D, Bouhamida E, Tremoli E, Giorgi C, Pinton P, Morciano G. Calcium signaling from sarcoplasmic reticulum and mitochondria contact sites in acute myocardial infarction. J Transl Med 2024; 22:552. [PMID: 38853272 PMCID: PMC11162575 DOI: 10.1186/s12967-024-05240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Acute myocardial infarction (AMI) is a serious condition that occurs when part of the heart is subjected to ischemia episodes, following partial or complete occlusion of the epicardial coronary arteries. The resulting damage to heart muscle cells have a significant impact on patient's health and quality of life. About that, recent research focused on the role of the sarcoplasmic reticulum (SR) and mitochondria in the physiopathology of AMI. Moreover, SR and mitochondria get in touch each other through multiple membrane contact sites giving rise to the subcellular region called mitochondria-associated membranes (MAMs). MAMs are essential for, but not limited to, bioenergetics and cell fate. Disruption of the architecture of these regions occurs during AMI although it is still unclear the cause-consequence connection and a complete overview of the pathological changes; for sure this concurs to further damage to heart muscle. The calcium ion (Ca2+) plays a pivotal role in the pathophysiology of AMI and its dynamic signaling between the SR and mitochondria holds significant importance. In this review, we tried to summarize and update the knowledge about the roles of these organelles in AMI from a Ca2+ signaling point of view. Accordingly, we also reported some possible cardioprotective targets which are directly or indirectly related at limiting the dysfunctions caused by the deregulation of the Ca2+ signaling.
Collapse
Affiliation(s)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy
| | | | | | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy.
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy.
| |
Collapse
|
10
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Lv Y, Yu Z, Zhang P, Zhang X, Li H, Liang T, Guo Y, Cheng L, Peng F. The structure and function of FUN14 domain-containing protein 1 and its contribution to cardioprotection by mediating mitophagy. Front Pharmacol 2024; 15:1389953. [PMID: 38828457 PMCID: PMC11140143 DOI: 10.3389/fphar.2024.1389953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiovascular disease (CVD) is a serious public health risk, and prevention and treatment efforts are urgently needed. Effective preventive and therapeutic programs for cardiovascular disease are still lacking, as the causes of CVD are varied and may be the result of a multifactorial combination. Mitophagy is a form of cell-selective autophagy, and there is increasing evidence that mitophagy is involved in cardioprotective processes. Recently, many studies have shown that FUN14 domain-containing protein 1 (FUNDC1) levels and phosphorylation status are highly associated with many diseases, including heart disease. Here, we review the structure and functions of FUNDC1 and the path-ways of its mediated mitophagy, and show that mitophagy can be effectively activated by dephosphorylation of Ser13 and Tyr18 sites, phosphorylation of Ser17 site and ubiquitination of Lys119 site in FUNDC1. By effectively activating or inhibiting excessive mitophagy, the quality of mitochondria can be effectively controlled. The main reason is that, on the one hand, improper clearance of mitochondria and accumulation of damaged mitochondria are avoided, and on the other hand, excessive mitophagy causing apoptosis is avoided, both serving to protect the heart. In addition, we explore the possible mechanisms by which FUNDC1-mediated mitophagy is involved in exercise preconditioning (EP) for cardioprotection. Finally, we also point out unresolved issues in FUNDC1 and its mediated mitophagy and give directions where further research may be needed.
Collapse
Affiliation(s)
- Yuhu Lv
- College of Physical Education, Guangdong University of Education, Guangzhou, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, Guangzhou, China
| | - Zhengze Yu
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Peiwen Zhang
- College of Nursing and Rehabilitation, Xi an FanYi University, Xi’an, China
| | - Xiqian Zhang
- College of Physical Education, Guangdong University of Education, Guangzhou, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, Guangzhou, China
| | - Huarui Li
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Ting Liang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Yanju Guo
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Lin Cheng
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| |
Collapse
|
12
|
Biswal P, Sahu MR, Ahmad MH, Mondal AC. The interplay between hippo signaling and mitochondrial metabolism: Implications for cellular homeostasis and disease. Mitochondrion 2024; 76:101885. [PMID: 38643865 DOI: 10.1016/j.mito.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Mitochondria are the membrane-bound organelles producing energy for cellular metabolic processes. They orchestrate diverse cell signaling cascades regulating cellular homeostasis. This functional versatility may be attributed to their ability to regulate mitochondrial dynamics, biogenesis, and apoptosis. The Hippo pathway, a conserved signaling pathway, regulates various cellular processes, including mitochondrial functions. Through its effectors YAP and TAZ, the Hippo pathway regulates transcription factors and creates a seriatim process that mediates cellular metabolism, mitochondrial dynamics, and survival. Mitochondrial dynamics also potentially regulates Hippo signaling activation, indicating a bidirectional relationship between the two. This review outlines the interplay between the Hippo signaling components and the multifaceted role of mitochondria in cellular homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Priyanka Biswal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Deng J, Liu Q, Ye L, Wang S, Song Z, Zhu M, Qiang F, Zhou Y, Guo Z, Zhang W, Chen T. The Janus face of mitophagy in myocardial ischemia/reperfusion injury and recovery. Biomed Pharmacother 2024; 173:116337. [PMID: 38422659 DOI: 10.1016/j.biopha.2024.116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
In myocardial ischemia/reperfusion injury (MIRI), moderate mitophagy is a protective or adaptive mechanism because of clearing defective mitochondria accumulates during MIRI. However, excessive mitophagy lead to an increase in defective mitochondria and ultimately exacerbate MIRI by causing overproduction or uncontrolled production of mitochondria. Phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1), Parkin, FUN14 domain containing 1 (FUNDC1) and B-cell leukemia/lymphoma 2 (BCL-2)/adenovirus E1B19KD interaction protein 3 (BNIP3) are the main mechanistic regulators of mitophagy in MIRI. Pink1 and Parkin are mitochondrial surface proteins involved in the ubiquitin-dependent pathway, while BNIP3 and FUNDC1 are mitochondrial receptor proteins involved in the non-ubiquitin-dependent pathway, which play a crucial role in maintaining mitochondrial homeostasis and mitochondrial quality. These proteins can induce moderate mitophagy or inhibit excessive mitophagy to protect against MIRI but may also trigger excessive mitophagy or insufficient mitophagy, thereby worsening the condition. Understanding the actions of these mitophagy mechanistic proteins may provide valuable insights into the pathological mechanisms underlying MIRI development. Based on the above background, this article reviews the mechanism of mitophagy involved in MIRI through Pink1/Parkin pathway and the receptor mediated pathway led by FUNDC1 and BNIP3, as well as the related drug treatment, aim to provide effective strategies for the prevention and treatment of MIRI.
Collapse
Affiliation(s)
- Jiaxin Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linxi Ye
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuo Wang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenyan Song
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mingyan Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fangfang Qiang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yulin Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ting Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, China.
| |
Collapse
|
14
|
Jeong DJ, Um JH, Kim YY, Shin DJ, Im S, Lee KM, Lee YH, Lim DS, Kim D, Yun J. The Mst1/2-BNIP3 axis is required for mitophagy induction and neuronal viability under mitochondrial stress. Exp Mol Med 2024; 56:674-685. [PMID: 38443598 PMCID: PMC10984967 DOI: 10.1038/s12276-024-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 03/07/2024] Open
Abstract
Mitophagy induction upon mitochondrial stress is critical for maintaining mitochondrial homeostasis and cellular function. Here, we found that Mst1/2 (Stk3/4), key regulators of the Hippo pathway, are required for the induction of mitophagy under various mitochondrial stress conditions. Knockdown of Mst1/2 or pharmacological inhibition by XMU-MP-1 treatment led to impaired mitophagy induction upon CCCP and DFP treatment. Mechanistically, Mst1/2 induces mitophagy independently of the PINK1-Parkin pathway and the canonical Hippo pathway. Moreover, our results suggest the essential involvement of BNIP3 in Mst1/2-mediated mitophagy induction upon mitochondrial stress. Notably, Mst1/2 knockdown diminishes mitophagy induction, exacerbates mitochondrial dysfunction, and reduces cellular survival upon neurotoxic stress in both SH-SY5Y cells and Drosophila models. Conversely, Mst1 and Mst2 expression enhances mitophagy induction and cell survival. In addition, AAV-mediated Mst1 expression reduced the loss of TH-positive neurons, ameliorated behavioral deficits, and improved mitochondrial function in an MPTP-induced Parkinson's disease mouse model. Our findings reveal the Mst1/2-BNIP3 regulatory axis as a novel mediator of mitophagy induction under conditions of mitochondrial stress and suggest that Mst1/2 play a pivotal role in maintaining mitochondrial function and neuronal viability in response to neurotoxic treatment.
Collapse
Affiliation(s)
- Dae Jin Jeong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Young Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Dong Jin Shin
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Sangwoo Im
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Donghoon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
15
|
Tuo H, Li W, Zhao W, Zhao J, Li D, Jin L. Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice. Sci Rep 2024; 14:924. [PMID: 38195835 PMCID: PMC10776756 DOI: 10.1038/s41598-024-51675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
Doxorubicin (DOX) is a popular and potent anticancer drug, but its cardiotoxicity limits its clinical application. Shikonin has a wide range of biological functions, including antioxidant and anti-inflammatory effects. The aim of this study was to investigate the effects of shikonin on DOX-induced cardiac injury and to identify the underlying mechanisms. Mice receiving shikonin showed reduced cardiac injury response and enhanced cardiac function after DOX administration. Shikonin significantly attenuated DOX-induced oxidative damage, inflammation accumulation and cardiomyocyte apoptosis. Shikonin protects against DOX-induced cardiac injury by inhibiting Mammalian sterile 20-like kinase 1 (Mst1) and oxidative stress and activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In conclusion, shikonin alleviates DOX-induced cardiotoxicity by inhibiting Mst1 and activating Nrf2. Shikonin may be used to treat DOX-induced cardiac injury.
Collapse
Affiliation(s)
- Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjing Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Zhao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danni Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
16
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Corradi F, Masini G, Bucciarelli T, De Caterina R. Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives. Cardiovasc Res 2023; 119:2405-2420. [PMID: 37722377 DOI: 10.1093/cvr/cvad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 09/20/2023] Open
Abstract
Systemic iron deficiency (SID), even in the absence of anaemia, worsens the prognosis and increases mortality in heart failure (HF). Recent clinical-epidemiological studies, however, have shown that a myocardial iron deficiency (MID) is frequently present in cases of severe HF, even in the absence of SID and without anaemia. In addition, experimental studies have shown a poor correlation between the state of systemic and myocardial iron. MID in animal models leads to severe mitochondrial dysfunction, alterations of mitophagy, and mitochondrial biogenesis, with profound alterations in cardiac mechanics and the occurrence of a fatal cardiomyopathy, all effects prevented by intravenous administration of iron. This shifts the focus to the myocardial state of iron, in the absence of anaemia, as an important factor in prognostic worsening and mortality in HF. There is now epidemiological evidence that SID worsens prognosis and mortality also in patients with acute and chronic coronary heart disease and experimental evidence that MID aggravates acute myocardial ischaemia as well as post-ischaemic remodelling. Intravenous administration of ferric carboxymaltose (FCM) or ferric dextrane improves post-ischaemic adverse remodelling. We here review such evidence, propose that MID worsens ischaemia/reperfusion injury, and discuss possible molecular mechanisms, such as chronic hyperactivation of HIF1-α, exacerbation of cytosolic and mitochondrial calcium overload, amplified increase of mitochondrial [NADH]/[NAD+] ratio, and depletion of energy status and NAD+ content with inhibition of sirtuin 1-3 activity. Such evidence now portrays iron metabolism as a core factor not only in HF but also in myocardial ischaemia.
Collapse
Affiliation(s)
- Francesco Corradi
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Gabriele Masini
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Tonino Bucciarelli
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Raffaele De Caterina
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
- Fondazione VillaSerena per la Ricerca, Viale L. Petruzzi 42, 65013, Città Sant'Angelo, Pescara, Italy
| |
Collapse
|
18
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
19
|
Wang L, Feng ZJ, Ma X, Li K, Li XY, Tang Y, Peng C. Mitochondrial quality control in hepatic ischemia-reperfusion injury. Heliyon 2023; 9:e17702. [PMID: 37539120 PMCID: PMC10395149 DOI: 10.1016/j.heliyon.2023.e17702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Hepatic ischemia-reperfusion injury is a phenomenon in which exacerbating damage of liver cells due to restoration of blood flow following ischemia during liver surgery, especially those involving liver transplantation. Mitochondria, the energy-producing organelles, are crucial for cell survival and apoptosis and have evolved a range of quality control mechanisms to maintain homeostasis in the mitochondrial network in response to various stress conditions. Hepatic ischemia-reperfusion leads to disruption of mitochondrial quality control mechanisms, as evidenced by reduced mitochondrial autophagy, excessive division, reduced fusion, and inhibition of biogenesis. This leads to dysfunction of the mitochondrial network. The accumulation of damaged mitochondria ultimately results in apoptosis of hepatocytes due to the release of apoptotic proteins like cytochrome C. This worsens hepatic ischemia-reperfusion injury. Currently, hepatic ischemia-reperfusion injury protection is being studied using different approaches such as drug pretreatment, stem cells and exosomes, genetic interventions, and mechanical reperfusion, all aimed at targeting mitochondrial quality control mechanisms. This paper aims to provide direction for future research on combating HIRI by reviewing the latest studies that focus on targeting mitochondrial quality control mechanisms.
Collapse
Affiliation(s)
- LiuSong Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zan Jie Feng
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, China
| | - Xuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kai Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Yao Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Tang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cijun Peng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
20
|
Fu T, Ma Y, Li Y, Wang Y, Wang Q, Tong Y. Mitophagy as a mitochondrial quality control mechanism in myocardial ischemic stress: from bench to bedside. Cell Stress Chaperones 2023; 28:239-251. [PMID: 37093549 PMCID: PMC10167083 DOI: 10.1007/s12192-023-01346-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Myocardial ischemia reduces the supply of oxygen and nutrients to cardiomyocytes, leading to an energetic crisis or cell death. Mitochondrial dysfunction is a decisive contributor to the reception, transmission, and modification of cardiac ischemic signals. Cells with damaged mitochondria exhibit impaired mitochondrial metabolism and increased vulnerability to death stimuli due to disrupted mitochondrial respiration, reactive oxygen species overproduction, mitochondrial calcium overload, and mitochondrial genomic damage. Various intracellular and extracellular stress signaling pathways converge on mitochondria, so dysfunctional mitochondria tend to convert from energetic hubs to apoptotic centers. To interrupt the stress signal transduction resulting from lethal mitochondrial damage, cells can activate mitophagy (mitochondria-specific autophagy), which selectively eliminates dysfunctional mitochondria to preserve mitochondrial quality control. Different pharmacological and non-pharmacological strategies have been designed to augment the protective properties of mitophagy and have been validated in basic animal experiments and pre-clinical human trials. In this review, we describe the process of mitophagy in cardiomyocytes under ischemic stress, along with its regulatory mechanisms and downstream effects. Then, we discuss promising therapeutic approaches to preserve mitochondrial homeostasis and protect the myocardium against ischemic damage by inducing mitophagy.
Collapse
Affiliation(s)
- Tong Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yan Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yingwei Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
21
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
22
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Fei Q, Liu J, Qiao L, Zhang M, Xia H, Lu D, Wu D, Wang J, Li R, Li J, Yang F, Liu D, Xie B, Hui W, Qian B. Mst1 attenuates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice through regulating Keap1/Nrf2 axis. Biochem Biophys Res Commun 2023; 644:140-148. [PMID: 36646002 DOI: 10.1016/j.bbrc.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Ischemia reperfusion (I/R) injury remains a frequent adverse event that accompanies heart transplantation. Oxidative stress and aberrant production of free radicals were regarded as the culprit of cell death and tissue damage in post-transplant IR injury. Mst1 has been identified as a mediator of oxidative stress and Nrf2 regulates anti-oxidative enzymes, however, the interaction between Mst1 and Nrf2 anti-oxidative stress pathway remains to be clarified in the event of cardiac IR injury. Herein, the model of ischemia-reperfusion injury in heterotopic heart transplantation mice was firstly established.. We observed that cardiac IR induced upregulation of Mst1 and activation of Nrf2/HO-1pathway in mice receiving heterotopic heart transplantation. Further Cobalt dichloride-induced oxidative stress model of RAW264.7 macrophage cells were then established to mimic cardiac I/R injury, results showed that exposure to CoCl2 induced the upregulation of Mst1 and activation of Keap1/Nrf2 pathway, and genetic ablation of Mst-1 and inhibition of Keap1/Nrf2 pathway aggravated oxidative damage in those cells. Additional in vivo study showed that transfection of Mst1 shRNA spurred ROS generation and worsened cardiac damage in IR mice. Meanwhile, Mst1-KD mice receiving heart transplantation showed markedly downregulation of Nrf2, HO-1 yet upregulation of Keap1, indicating diminished protective effect against tissue damage caused by IR probably owing to the frustration of Keap1/Nrf2 pathway. Taken together, our findings demonstrated the protective effect of Mst1 from cardiac IR injury via triggering Keap1/Nrf2 axis and suppressing ROS generation, which shed light on the promising role of Mst1 in transitional management of IR injury resulted from cardiac transplantation.
Collapse
Affiliation(s)
- Qi Fei
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Futian District, Shenzhent, 518036, Guangdong, People's Republic of China
| | - Justin Liu
- Department of Statistics, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Li Qiao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, People's Republic of China
| | - Meng Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, People's Republic of China
| | - Haidong Xia
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, People's Republic of China
| | - Daoqiang Lu
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Di Wu
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Jun Wang
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Riwang Li
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Jie Li
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Fang Yang
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China.
| | - Baiyi Xie
- Department of Urology Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Wenqiao Hui
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Hefei, Anhui, 230031, China.
| | - Ban Qian
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
24
|
Maejima Y, Zablocki D, Nah J, Sadoshima J. The role of the Hippo pathway in autophagy in the heart. Cardiovasc Res 2023; 118:3320-3330. [PMID: 35150237 DOI: 10.1093/cvr/cvac014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
The Hippo pathway, an evolutionarily conserved signalling mechanism, controls organ size and tumourigenesis. Increasing lines of evidence suggest that autophagy, an important mechanism of lysosome-mediated cellular degradation, is regulated by the Hippo pathway, which thereby profoundly affects cell growth and death responses in various cell types. In the heart, Mst1, an upstream component of the Hippo pathway, not only induces apoptosis but also inhibits autophagy through phosphorylation of Beclin 1. YAP/TAZ, transcription factor co-factors and the terminal effectors of the Hippo pathway, affect autophagy through transcriptional activation of TFEB, a master regulator of autophagy and lysosomal biogenesis. The cellular abundance of YAP is negatively regulated by autophagy and suppression of autophagy induces accumulation of YAP, which, in turn, acts as a feedback mechanism to induce autophagosome formation. Thus, the Hippo pathway and autophagy regulate each other, thereby profoundly affecting cardiomyocyte survival and death. This review discusses the interaction between the Hippo pathway and autophagy and its functional significance during stress conditions in the heart and the cardiomyocytes therein.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA.,Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| |
Collapse
|
25
|
Huang G, Lu X, Duan Z, Zhang K, Xu L, Bao H, Xiong X, Lin M, Li C, Li Y, Zhou H, Luo Z, Li W. PCSK9 Knockdown Can Improve Myocardial Ischemia/Reperfusion Injury by Inhibiting Autophagy. Cardiovasc Toxicol 2022; 22:951-961. [DOI: 10.1007/s12012-022-09771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
|
26
|
Luan Y, Jin Y, Zhang P, Li H, Yang Y. Mitochondria-associated endoplasmic reticulum membranes and cardiac hypertrophy: Molecular mechanisms and therapeutic targets. Front Cardiovasc Med 2022; 9:1015722. [PMID: 36337896 PMCID: PMC9630933 DOI: 10.3389/fcvm.2022.1015722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 09/13/2023] Open
Abstract
Cardiac hypertrophy has been shown to compensate for cardiac performance and improve ventricular wall tension as well as oxygen consumption. This compensatory response results in several heart diseases, which include ischemia disease, hypertension, heart failure, and valvular disease. Although the pathogenesis of cardiac hypertrophy remains complicated, previous data show that dysfunction of the mitochondria and endoplasmic reticulum (ER) mediates the progression of cardiac hypertrophy. The interaction between the mitochondria and ER is mediated by mitochondria-associated ER membranes (MAMs), which play an important role in the pathology of cardiac hypertrophy. The function of MAMs has mainly been associated with calcium transfer, lipid synthesis, autophagy, and reactive oxygen species (ROS). In this review, we discuss key MAMs-associated proteins and their functions in cardiovascular system and define their roles in the progression of cardiac hypertrophy. In addition, we demonstrate that MAMs is a potential therapeutic target in the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yage Jin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengjie Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Protective Effect of Natural Medicinal Plants on Cardiomyocyte Injury in Heart Failure: Targeting the Dysregulation of Mitochondrial Homeostasis and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3617086. [PMID: 36132224 PMCID: PMC9484955 DOI: 10.1155/2022/3617086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Heart failure occurs because of various cardiovascular pathologies, such as coronary artery disease or cardiorenal syndrome, eventually reaching end-stage disease. Various factors contribute to cardiac structural or functional changes that result in systolic or diastolic dysfunction. Several studies have confirmed that the key factor in heart failure progression is myocardial cell death, and mitophagy is the major mechanism regulating myocardial cell death in heart failure. The clinical mechanisms of heart failure are well understood in practice. However, the essential role of mitophagic regulation in heart failure has only recently received widespread attention. Receptor-mediated mitophagy is involved in various mitochondrial processes like oxidative stress injury, energy metabolism disorders, and calcium homeostasis, which are also the main causes of heart failure. Understanding of the diverse regulatory mechanisms in mitophagy and the complexity of its pathophysiology in heart failure remains incomplete. Related studies have found that various natural medicinal plants and active ingredients, such as flavonoids and saponins, can regulate mitophagy to a certain extent, improve myocardial function, and protect myocardial cells. This review comprehensively covers the relevant mechanisms of different types of mitophagy in regulating heart failure pathology and controlling mitochondrial adaptability to stress injury. Further, it explores the relationship between mitophagy and cardiac ejection dysfunction. Natural medicinal plant-targeted regulation strategies and scientific evidence on mitophagy were provided to elucidate current and potential strategies to apply mitophagy-targeted therapy for heart failure.
Collapse
|
28
|
Tan N, Liu T, Wang X, Shao M, Zhang M, Li W, Ling G, Jiang J, Wang Q, Li J, Li C, Wang W, Wang Y. The multi-faced role of FUNDC1 in mitochondrial events and human diseases. Front Cell Dev Biol 2022; 10:918943. [PMID: 35959490 PMCID: PMC9358025 DOI: 10.3389/fcell.2022.918943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Mitophagy plays a vital role in the selective elimination of dysfunctional and unwanted mitochondria. As a receptor of mitophagy, FUN14 domain containing 1 (FUNDC1) is attracting considerably critical attention. FUNDC1 is involved in the mitochondria fission, the clearance of unfolded protein, iron metabolism in mitochondria, and the crosstalk between mitochondria and endoplasmic reticulum besides mitophagy. Studies have demonstrated that FUNDC1 is associated with the progression of ischemic disease, cancer, and metabolic disease. In this review, we systematically examine the recent advancements in FUNDC1 and the implications of this protein in health and disease.
Collapse
Affiliation(s)
- Nannan Tan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhua Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guanjing Ling
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinchi Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Wei Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| |
Collapse
|
29
|
Shang H, VanDusseldorp TA, Ma R, Zhao Y, Cholewa J, Zanchi NE, Xia Z. Role of MST1 in the regulation of autophagy and mitophagy: implications for aging-related diseases. J Physiol Biochem 2022; 78:709-719. [PMID: 35727484 DOI: 10.1007/s13105-022-00904-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
As a key mechanism to maintain cellular homeostasis under stress conditions, autophagy/mitophagy is related to the occurrence of metabolic disorders, neurodegenerative diseases, cancer, and other aging-related diseases, but the relevant signal pathways regulating autophagy have not been clarified. Mammalian sterile 20-like kinase 1 (MST1) is a central regulatory protein of many metabolic pathways involved in the pathophysiological processes of aging and aging-related diseases and has become a critical integrator affecting autophagic signaling. Recent studies show that MST1 not only suppresses autophagy through directly phosphorylating Beclin-1 and/or inhibiting the protein expression of silent information regulator 1 (SIRT1) in the cytoplasm, but also inhibits BCL2/adenovirus E1B protein-interacting protein 3 (BNIP3)-, FUN14 domain containing 1 (FUNDC1)-, and Parkin (Parkinson protein 2)-mediated mitophagy by interacting with factors such as Ras association domain family 1A (RASSF1A). Indeed, a common pharmacological strategy for anti-aging is to induce autophagy/mitophagy through MST1 inhibition. This article reviews the role and mechanism of MST1 in regulating autophagy during aging, to provide evidence for the development of drugs targeting MST1.
Collapse
Affiliation(s)
- Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Ranggui Ma
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yan Zhao
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Jason Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão (UFMA), Sao Luis, MA, Brazil
- Laboratory of Skeletal Muscle Biology and Human Strength Performance (LABFORCEH), Sao Luis, MA, Brazil
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China.
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China.
| |
Collapse
|
30
|
Lv Y, Cheng L, Peng F. Compositions and Functions of Mitochondria-Associated Endoplasmic Reticulum Membranes and Their Contribution to Cardioprotection by Exercise Preconditioning. Front Physiol 2022; 13:910452. [PMID: 35733995 PMCID: PMC9207531 DOI: 10.3389/fphys.2022.910452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are important components of intracellular signaling and contribute to the regulation of intracellular Ca2+/lipid homeostasis, mitochondrial dynamics, autophagy/mitophagy, apoptosis, and inflammation. Multiple studies have shown that proteins located on MAMs mediate cardioprotection. Exercise preconditioning (EP) has been shown to protect the myocardium from adverse stimuli, but these mechanisms are still being explored. Recently, a growing body of evidence points to MAMs, suggesting that exercise or EP may be involved in cardioprotection by modulating proteins on MAMs and subsequently affecting MAMs. In this review, we summarize the latest findings on MAMs, analyzing the structure and function of MAMs and the role of MAM-related proteins in cardioprotection. We focused on the possible mechanisms by which exercise or EP can modulate the involvement of MAMs in cardioprotection. We found that EP may affect MAMs by regulating changes in MFN2, MFN1, AMPK, FUNDC1, BECN1, VDAC1, GRP75, IP3R, CYPD, GSK3β, AKT, NLRP3, GRP78, and LC3, thus playing a cardioprotective role. We also provided direction for future studies that may be of interest so that more in-depth studies can be conducted to elucidate the relationship between EP and cardioprotection.
Collapse
|
31
|
Liang Y, Jie H, Liu Q, Li C, Xiao R, Xing X, Sun J, Yu S, Hu Y, Xu GH. Knockout of circRNA single stranded interacting protein 1 (circRBMS1) played a protective role in myocardial ischemia-reperfusion injury though inhibition of miR-2355-3p/Mammalian Sterile20-like kinase 1 (MST1) axis. Bioengineered 2022; 13:12726-12737. [PMID: 35611768 PMCID: PMC9275998 DOI: 10.1080/21655979.2022.2068896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evidence suggests circRBMS1 regulates mRNA to mediate cell apoptosis, inflammation, and oxidative stress in different diseases. MST1 is reported to be the target and activator of apoptosis-related molecules and signaling pathways. Hence, the present study aims to investigate the role of circ-RBMS1/miR-2355-3p/MST1 in the development of I/R injury. In vitro experiments showed increased circ-RBMS1 and decreased miR-2355-3p in H/R-induced HCMs. CircRBMS1 served as a sponge for miR-2355-3p and miR-2355-3p targeted MST1. Furthermore, knockout of circRBMS1 attenuated cell apoptosis, oxidized stress, and inflammation in H/R-induced HCMs. In vivo experiments indicated circRBMS1 knockdown attenuated cardiac function damage, cell apoptosis, oxidative stress injury and inflammatory response through miR-2355-3p/MST1 axis in mice. In summary, these results demonstrated circRBMS1 played a protective role in myocardial I/R injury though inhibition of miR-2355-3p/MST1 axis. It might provide a new therapeutic target for cardiac I/R injury.
Collapse
Affiliation(s)
- Yingping Liang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huanhuan Jie
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Liu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang Li
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renjie Xiao
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianliang Xing
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Sun
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanhui Hu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guo-Hai Xu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Mao Y, Ren J, Yang L. FUN14 Domain Containing 1 (FUNDC1): A Promising Mitophagy Receptor Regulating Mitochondrial Homeostasis in Cardiovascular Diseases. Front Pharmacol 2022; 13:887045. [PMID: 35645834 PMCID: PMC9136072 DOI: 10.3389/fphar.2022.887045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria, the intracellular organelles for cellular aerobic respiration and energy production, play an important role in the regulation of cell metabolism and cell fate. Mitophagy, a selective form of autophagy, maintains dynamic homeostasis of cells through targeting long-lived or defective mitochondria for timely clearance and recycling. Dysfunction in mitophagy is involved in the molecular mechanism responsible for the onset and development of human diseases. FUN14 domain containing 1 (FUNDC1) is a mitochondrial receptor located in the outer mitochondria membrane (OMM) to govern mitophagy process. Emerging evidence has demonstrated that levels and phosphorylation states of FUNDC1 are closely related to the occurrence, progression and prognosis of cardiovascular diseases, indicating a novel role for this mitophagy receptor in the regulation of mitochondrial homeostasis in cardiovascular system. Here we review mitophagy mediated by FUNDC1 in mitochondria and its role in various forms of cardiovascular diseases.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- *Correspondence: Jun Ren, ; Lifang Yang,
| | - Lifang Yang
- Department of Anesthesiology, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Jun Ren, ; Lifang Yang,
| |
Collapse
|
33
|
Tai H, Tong YJ, Yu R, Yu Y, Yao SC, Li LB, Liu Y, Cui XZ, Kuang JS, Meng XS, Jiang XL. A possible new activator of PI3K-Huayu Qutan Recipe alleviates mitochondrial apoptosis in obesity rats with acute myocardial infarction. J Cell Mol Med 2022; 26:3423-3445. [PMID: 35567290 PMCID: PMC9189350 DOI: 10.1111/jcmm.17353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 01/20/2023] Open
Abstract
Obesity, which has unknown pathogenesis, can increase the frequency and seriousness of acute myocardial infarction (AMI). This study evaluated effect of Huayu Qutan Recipe (HQR) pretreatment on myocardial apoptosis induced by AMI by regulating mitochondrial function via PI3K/Akt/Bad pathway in rats with obesity. For in vivo experiments, 60 male rats were randomly divided into 6 groups: sham group, AMI group, AMI (obese) group, 4.5, 9.0 and 18.0 g/kg/d HQR groups. The models fed on HQR with different concentrations for 2 weeks before AMI. For in vitro experiments, the cardiomyocytes line (H9c2) was used. Cells were pretreated with palmitic acid (PA) for 24 h, then to build hypoxia model followed by HQR‐containing serum for 24 h. Related indicators were also detected. In vivo, HQR can lessen pathohistological damage and apoptosis after AMI. In addition, HQR improves blood fat levels, cardiac function, inflammatory factor, the balance of oxidation and antioxidation, as well as lessen infarction in rats with obesity after AMI. Meanwhile, HQR can diminish myocardial cell death by improving mitochondrial function via PI3K/Akt/Bad pathway activation. In vitro, HQR inhibited H9c2 cells apoptosis, improved mitochondrial function and activated the PI3K/Akt/Bad pathway, but effects can be peripeteiad by LY294002. Myocardial mitochondrial dysfunction occurs following AMI and can lead to myocardial apoptosis, which can be aggravated by obesity. HQR can relieve myocardial apoptosis by improving mitochondrial function via the PI3K/Akt/Bad pathway in rats with obesity.
Collapse
Affiliation(s)
- He Tai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Department of Internal Medicine, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, China
| | - Yu-Jing Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Yu
- Science and Technology Branch, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - You Yu
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Si-Cheng Yao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ling-Bing Li
- Department of Graduate School, China PLA General Hospital, Beijing, China
| | - Ye Liu
- Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Zheng Cui
- Cardiovascular Surgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jin-Song Kuang
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Lin Jiang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Nephrology Laboratory, The fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
34
|
Huang G, Lu X, Zhou H, Li R, Huang Q, Xiong X, Luo Z, Li W. PCSK9 inhibition protects against myocardial ischemia-reperfusion injury via suppressing autophagy. Microvasc Res 2022; 142:104371. [PMID: 35460665 DOI: 10.1016/j.mvr.2022.104371] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Autophagy is critical for myocardial ischemia-reperfusion (I/R) injury. However, there is still considerable debate over its protective and deleterious effects. The purpose of this study was to determine the involvement of the proprotein convertase subtilisin/Kexin type 9 (PCSK9) and its inhibitor in myocardial ischemia-reperfusion injury autophagy (MRI). METHODS Nine groups of eighty rats were used: sham, I/R2 h, I/R4 h, I/R6 h, I/R8 h, I/R1 d, and I/R2 d. A 30-min coronary artery blockage was used to produce myocardial IR. The time required for reperfusion rose linearly with the time gradient, from 2 h to 2 days. Following the determination of the best reperfusion period, three groups were formed: sham, I/R, and I/R + P (PCSK9 inhibitor (evolocumab) 10 mg/kg diluted in 2 ml sterile injection water was administered subcutaneously 1 week and half an hour before to surgery. Each group's infarction area was determined by electrocardiography (ECG), cardiac function, and 2,3,5-triphenyltetrazolium chloride (TTC) /Evan Blue (EB) staining. To detect morphological alterations in myocardial cells in each group, hematoxylin and eosin (HE) staining was used. Meanwhile, western blotting, immunohistochemistry, and Masson trichrome staining were utilized to quantify myocardial fibrosis and PCSK9 and autophagy protein expression. RESULTS The results indicated that PCSK9 expression levels increased significantly in MRI, as indicated by increased levels of the autophagy regulatory protein light chain 3 (LC3) and Beclin-1, which activated autophagy in cardiomyocytes, exacerbated myocardial injury, and increased the size of myocardial infarcts. Meanwhile, PCSK9 regulates mitophagy via the Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3) pathway, which controls myocardial infarction MRI throughout. Additionally, the PCSK9 inhibitor significantly decreased autophagy, enhanced cardiac function, and reduced the extent of reperfusion injury, consequently reducing myocardial infarct size expansion. CONCLUSION PCSK9 is upregulated in the myocardial ischemia-reperfusion injury hearts and regulates mitophagy via the BNIP3 pathway, which in turn contributes to reperfusion injury after myocardial infarction. PCSK9 inhibition protects against myocardial ischemia-reperfusion injury via suppressing autophagy.
Collapse
Affiliation(s)
- Guangwei Huang
- Guizhou Medical University, 550004 Guiyang, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun 561000, Guizhou, China
| | - Xiyang Lu
- Guizhou Medical University, 550004 Guiyang, China
| | - Haiyan Zhou
- Guizhou Medical University, 550004 Guiyang, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Runhong Li
- Guizhou Medical University, 550004 Guiyang, China
| | - Qing Huang
- Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun 561000, Guizhou, China
| | - Xinlin Xiong
- Guizhou Medical University, 550004 Guiyang, China
| | - Zhenhua Luo
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Wei Li
- Guizhou Medical University, 550004 Guiyang, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
35
|
Hypoxia Acclimation Protects against Heart Failure Postacute Myocardial Infarction via Fundc1-Mediated Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8192552. [PMID: 35422895 PMCID: PMC9005280 DOI: 10.1155/2022/8192552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is the main cause of heart failure (HF) postacute myocardial infarction (AMI). Hypoxia acclimation (HA) reduces efficiently the area of AMI caused by ischemia and/or reperfusion and delays HF. Here, we examined whether HA improves mitochondrial structure and function through the hypoxic autophagy receptor FUNDC1 to prevent HF post-AMI. Male adult mice were acclimated in a low-pressure hypoxic animal chamber (11% oxygen (O2)) for 8 h/day for 28 days, and then, an induced HF post-AMI model via left anterior descending (LAD) artery ligation was structured to explore the efficacy and mechanism of HA. Our results showed that HA exposure can improve cardiac structure and function in mice with HF post-AMI and protected myocardial mitochondrial morphology and function. Further studies showed that HA increased the expression of Fundc1 protein and its associated mitophagy protein LC3 in myocardial tissue after infarction. We then established a cellular model of oxygen glucose deprivation (OGD) in vitro, and knockdown of FUNDC1 attenuated the protective effect of HA exposed on cardiomyocyte mitochondria and increased cardiomyocyte apoptosis. In conclusion, the protective effect of HA on HF post-AMI is achieved by regulating Fundc1-mediated mitophagy in myocardial tissue. FUNDC1-mediated mitophagy could be a promising strategy to treat cardiovascular diseases, including HF.
Collapse
|
36
|
Ramaccini D, Pedriali G, Perrone M, Bouhamida E, Modesti L, Wieckowski MR, Giorgi C, Pinton P, Morciano G. Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines 2022; 10:biomedicines10030726. [PMID: 35327528 PMCID: PMC8945338 DOI: 10.3390/biomedicines10030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical, and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-chambered cardiac muscle. In the middle, many biological events occur after and intersect with each other to regulate development, organ size, and, in some cases, regeneration. Several studies have defined the essential roles of the Hippo pathway in heart physiology through the regulation of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed of multiple components, some of which were recently discovered, and is highly interconnected with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among species, and in addition to its regulatory roles, it is involved in disease by drastically changing the heart phenotype and its function when its components are mutated, absent, or constitutively activated. In this review, we report some insights into the regulation of cardiac physiology and pathology by the Hippo pathway.
Collapse
Affiliation(s)
- Daniela Ramaccini
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| |
Collapse
|
37
|
Liu Y, Chu G, Shen W, Zhang Y, Xu W, Yu Y. XMU-MP-1 protects heart from ischemia/reperfusion injury in mice through modulating Mst1/AMPK pathway. Eur J Pharmacol 2022; 919:174801. [PMID: 35123978 DOI: 10.1016/j.ejphar.2022.174801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
38
|
Li G, Li J, Shao R, Zhao J, Chen M. FUNDC1: A Promising Mitophagy Regulator at the Mitochondria-Associated Membrane for Cardiovascular Diseases. Front Cell Dev Biol 2022; 9:788634. [PMID: 35096821 PMCID: PMC8797154 DOI: 10.3389/fcell.2021.788634] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial autophagy (or mitophagy) regulates the mitochondrial network and function to contribute to multiple cellular processes. The protective effect of homeostatic mitophagy in cardiovascular diseases (CVDs) has attracted increasing attention. FUN14 domain containing 1 (FUNDC1), an identified mitophagy receptor, plays an essential role in CVDs. Different expression levels of FUNDC1 and its phosphorylated state at different sites alleviate or exacerbate hypoxia and ischemia/reperfusion injury, cardiac hypertrophy, or metabolic damage through promotion or inhibition of mitophagy. In addition, FUNDC1 can be enriched at contact sites between mitochondria and the endoplasmic reticulum (ER), determining the formation of mitochondria-associated membranes (MAMs) that regulate cellular calcium (Ca2+) homeostasis and mitochondrial dynamics to prevent heart dysfunction. Moreover, FUNDC1 has also been involved in inflammatory cardiac diseases such as septic cardiomyopathy. In this review, we collect and summarize the evidence on the roles of FUNDC1 exclusively in various CVDs, describing its interactions with different cellular organelles, its involvement in multiple cellular processes, and its associated signaling pathways. FUNDC1 may become a promising therapeutic target for the prevention and management of various CVDs.
Collapse
Affiliation(s)
- Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ruochen Shao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
WANG J, FU J, CHEN D. Study on the protective effect of Lycopene on ischemia-reperfusion myocardium through Inhibiting the opening of mitochondrial MPTP and the activation of apoptotic pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - Dan CHEN
- Hubei University of Medicine, China
| |
Collapse
|
40
|
He X, Liu J, Zang WJ. Mitochondrial homeostasis and redox status in cardiovascular diseases: Protective role of the vagal system. Free Radic Biol Med 2022; 178:369-379. [PMID: 34906725 DOI: 10.1016/j.freeradbiomed.2021.12.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular Ca2+ handling, apoptosis, and cell fate determination. Disruption of mitochondrial homeostasis under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and energy insufficiency, which further disturb mitochondrial and cellular homeostasis in a deleterious loop. Mitochondrial redox status has therefore become a potential target for therapy against cardiovascular diseases. In this review, we highlight recent progress in determining the roles of mitochondrial processes in regulating mitochondrial redox status, including mitochondrial dynamics (fusion-fission pathways), mitochondrial cristae remodeling, mitophagy, biogenesis, and mitochondrion-organelle interactions (endoplasmic reticulum-mitochondrion interactions, nucleus-mitochondrion communication, and lipid droplet-mitochondrion interactions). The strategies that activate vagal system include direct vagal activation (electrical vagal stimulation and administration of vagal neurotransmitter acetylcholine) and pharmacological modulation (choline and cholinesterase inhibitors). The vagal system plays an important role in maintaining mitochondrial homeostasis and suppressing mitochondrial oxidative stress by promoting mitochondrial biogenesis and mitophagy, moderating mitochondrial fusion and fission, strengthening mitochondrial cristae stabilization, regulating mitochondrion-organelle interactions, and inhibiting mitochondrial Ca2+ overload. Therefore, enhancement of vagal activity can maintain mitochondrial homeostasis and represents a promising therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; University of Health and Rehabilitation Sciences, Qingdao, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
41
|
Liu H, Zang C, Yuan F, Ju C, Shang M, Ning J, Yang Y, Ma J, Li G, Bao X, Zhang D. The role of FUNDC1 in mitophagy, mitochondrial dynamics and human diseases. Biochem Pharmacol 2021; 197:114891. [PMID: 34968482 DOI: 10.1016/j.bcp.2021.114891] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022]
Abstract
Mitochondria are the principal sites of energy metabolism and provide most of the energy needed for normal cellular function. They are dynamic organelles that constantly undergo fission, fusion and mitophagy to maintain their homeostasis and function. However, dysregulated mitochondrial dynamics and mitophagy leads to reduced ATP generation and mutation of their DNA, which ultimately leads to cell death. Increasing evidence has shown that the FUN14 domain-containing protein 1 (FUNDC1), a novel mitophagy receptor, participates in the process of mitochondrial dynamics and mitophagy and plays a critical role in various human diseases. Herein, we review the role of FUNDC1 in mitophagy and mitochondrial dynamics, thus providing a better understanding of the relationship between the two processes. Moreover, we summarize the treatments targeting FUNDC1, and suggest that FUNDC1 may represent a promising therapeutic target for the treatment of several human diseases such as cardiovascular diseases, metabolic syndrome, cancer and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yang Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Gen Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
42
|
Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:774619. [PMID: 34901234 PMCID: PMC8661033 DOI: 10.3389/fcvm.2021.774619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
IHD is a significant cause of mortality and morbidity worldwide. In the acute phase, it's demonstrated as myocardial infarction and ischemia-reperfusion injury, while in the chronic stage, the ischemic heart is mainly characterised by adverse myocardial remodelling. Although interventions such as thrombolysis and percutaneous coronary intervention could reduce the death risk of these patients, the underlying cellular and molecular mechanisms need more exploration. Mitochondria are crucial to maintain the physiological function of the heart. During IHD, mitochondrial dysfunction results in the pathogenesis of ischemic heart disease. Ischemia drives mitochondrial damage not only due to energy deprivation, but also to other aspects such as mitochondrial dynamics, mitochondria-related inflammation, etc. Given the critical roles of mitochondrial quality control in the pathological process of ischemic heart disease, in this review, we will summarise the efforts in targeting mitochondria (such as mitophagy, mtROS, and mitochondria-related inflammation) on IHD. In addition, we will briefly revisit the emerging therapeutic targets in this field.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.,Department of Geriatrics, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Zhang X, Feng J, Li X, Wu D, Wang Q, Li S, Shi C. Mitophagy in Diabetic Kidney Disease. Front Cell Dev Biol 2021; 9:778011. [PMID: 34957109 PMCID: PMC8703169 DOI: 10.3389/fcell.2021.778011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease worldwide and is the main microvascular complication of diabetes. The increasing prevalence of diabetes has increased the need for effective treatment of DKD and identification of new therapeutic targets for better clinical management. Mitophagy is a highly conserved process that selectively removes damaged or unnecessary mitochondria via the autophagic machinery. Given the important role of mitophagy in the increased risk of DKD, especially with the recent surge in COVID-19-associated diabetic complications, in this review, we provide compelling evidence for maintaining homeostasis in the glomeruli and tubules and its underlying mechanisms, and offer new insights into potential therapeutic approaches for treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuyu Li
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Changhua Shi
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Mao S, Tian S, Luo X, Zhou M, Cao Z, Li J. Overexpression of PLK1 relieved the myocardial ischemia-reperfusion injury of rats through inducing the mitophagy and regulating the p-AMPK/FUNDC1 axis. Bioengineered 2021; 12:2676-2687. [PMID: 34115550 PMCID: PMC8806532 DOI: 10.1080/21655979.2021.1938500] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Myocardial cell injury caused by myocardial ischemia and reperfusion is one of the main causes of the occurrence and development of heart disease. Recent study has shown that inducing mitophagy of cardiomyocytes is a crucial method to alleviate ischemia-reperfusion injury. While, Polo-like kinase 1 (PLK1) can induce the mitophagy of breast cancer cells. Moreover, PLK1 was able to promote the expression of p-AMPK and FUNDC1, which are the protective factors for myocardium. Therefore, the mouse model of ischemia/reperfusion was established and the effect of PLK1 on ischemia reperfusion induced myocardial damage was investigated. The PLK1 was overexpressed in H9c2 cells and rat model of ischemia/reperfusion. Ischemia reperfusion inhibited the expression of PLK1. While overexpression of PLK1 relieved the myocardial infarction and myocardium apoptosis through inducing mitophagy in rats model of ischemia reperfusion. In vitro, the H9c2 cells overexpressing the PLK1 were treated with the hypoxia and reoxygenation and the apoptosis, survival rate and expression of mitophagy-related proteins of H9c2 cells were detected using the flow cytometry, CCK-8 assay and western blotting. The results reveled that overexpression of PLK1 alleviated the hypoxia and reoxygenation induced apoptosis of H9c2 cells and promoted the expression of mitophagy-related proteins. In addition, enhanced PLK1 expression promoted the expression of p-AMPK and FUNDC1 in H9c2 cells. However, the inhibition of FUNDC1 abolished the positive effect of PLK1 on H9c2 cells mentioned above. In conclusion, PLK1 alleviated the ischemia reperfusion induced myocardial damage by inducing the mitophagy in a p-AMPK/FUNDC1 signaling dependent pathway.
Collapse
Affiliation(s)
- Shan Mao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Shuning Tian
- Department of Anesthesiology, Jiangmen Central Hospital Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen City, Guangdong Province, China
| | - Xianghong Luo
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Ming Zhou
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Zheng Cao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Ji Li
- Department of Cardiovascular Internal Medicine, The Second Affiliated Hospital of Guizhou Medical University, Kaili City, Guizhou Province, China
| |
Collapse
|
45
|
Molecular Signaling to Preserve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells 2021; 10:cells10123330. [PMID: 34943839 PMCID: PMC8699551 DOI: 10.3390/cells10123330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide, and ischemic heart disease is the most common cause of heart failure (HF). The heart is a high-energy demanding organ, and myocardial energy reserves are limited. Mitochondria are the powerhouses of the cell, but under stress conditions, they become damaged, release necrotic and apoptotic factors, and contribute to cell death. Loss of cardiomyocytes plays a significant role in ischemic heart disease. In response to stress, protective signaling pathways are activated to limit mitochondrial deterioration and protect the heart. To prevent mitochondrial death pathways, damaged mitochondria are removed by mitochondrial autophagy (mitophagy). Mitochondrial quality control mediated by mitophagy is functionally linked to mitochondrial dynamics. This review provides a current understanding of the signaling mechanisms by which the integrity of mitochondria is preserved in the heart against ischemic stress.
Collapse
|
46
|
Chen G, Chen L, Huang Y, Zhu X, Yu Y. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells. Bioengineered 2021; 13:3620-3633. [PMID: 34699308 PMCID: PMC8974051 DOI: 10.1080/21655979.2021.1997132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy disorder characterized by excessive trophoblast cell death. This study aims to explore the exact mechanism of the ubiquitination level of FUN14 domain containing 1 (FUNDC1) in mitophagy and injury in hypoxic trophoblast cells. In this study, HTR-8/SVneo trophoblast cells were cultured under normoxic and hypoxic conditions and PE mouse model was established. We found low ubiquitination level of FUNDC1 in hypoxic trophoblast cells and placenta of pregnant women with PE. Proteasome inhibitor MG-132 and protease activator MF-094 were added into HTR-8/SVneo trophoblast cells. Proteasome inhibitor MG-132 decreased FUNDC1 ubiquitination level while protease activator MF-094 increased FUNDC1 ubiquitination level. Inhibition of FUNDC1 ubiquitination promoted mitophagy and mitochondrial membrane potential (Δψm) in normoxic trophoblast cells, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased levels of glutathione (GSH) and superoxide dismutase (SOD). In addition, FUNDC1 ubiquitination alleviated cell injury in PE mice in vivo. In conclusion, increased FUNDC1 ubiquitination level inhibited mitophagy and Δψm changes in hypoxic trophoblast cells, and thus alleviated oxidative injury.
Collapse
Affiliation(s)
- GuoQing Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - Lu Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - Yan Huang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - XiongShan Zhu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - YuanLan Yu
- Department of Emergency, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, China
| |
Collapse
|
47
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|
48
|
Zhao S, Yu L. Sirtuin 1 activated by SRT1460 protects against myocardial ischemia/reperfusion injury. Clin Hemorheol Microcirc 2021; 78:271-281. [PMID: 33682700 DOI: 10.3233/ch-201061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ischemia reperfusion usually results in certain degree of damage to the myocardium, which is called myocardial ischemia/reperfusion (I/R) injury. OBJECTIVE Previous studies have found that Sirt1 plays a critical role in I/R injury by protecting cardiac function. SRT1460 is the activator for Sirt1 that participates in the regulation of various diseases. However, whether SRT1460 has any effects on myocardial I/R injury needs further study. METHODS The I/R rat model and H/R H9C2 model were established to simulate myocardial I/R injury. The infarct area of the rat heart was examined through TTC staining. The EF and FS of rats were detected through echocardiography. The levels of CK-MB, LDH, MDA, SOD and CK in cardiac tissues, serum or H9C2 cells were measured using commercial kits. Cell viability was assessed through MTT assay. Apoptosis was determined through flow cytometry analysis. Sirt1 expression was measured through western blot. RESULTS Our work found that SRT1460 reduced the infarct area of the heart induced by myocardial I/R injury. In addition, SRT1460 was confirmed to ameliorate cardiac dysfunction induced by myocardial I/R injury. Further exploration discovered that SRT1460 weakened oxidative stress induced by myocardial I/R injury. Findings from in vitro assays demonstrated that SRT1460 relieved injury of H/R-treated H9C2 cells. Finally, rescue assays proved that Sirt1 knockdown reversed the protective effects of SRT1460 on the injury of H/R-treated H9C2 cells. CONCLUSION Sirt1 activated by SRT1460 protected against myocardial I/R injury. This discovery may offer new sights on the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Shanjun Zhao
- Department of Ward 1 of Cardiovascular Medicine, Panyu Central Hospital, Guangzhou, China
| | - Lei Yu
- Department of Cardiovascular Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China.,Department of Cardiovascular Medicine, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
49
|
Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Role in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4578809. [PMID: 34336092 PMCID: PMC8289621 DOI: 10.1155/2021/4578809] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Abnormal function of suborganelles such as mitochondria and endoplasmic reticulum often leads to abnormal function of cardiomyocytes or vascular endothelial cells and cardiovascular disease (CVD). Mitochondria-associated membrane (MAM) is involved in several important cellular functions. Increasing evidence shows that MAM is involved in the pathogenesis of CVD. MAM mediates multiple cellular processes, including calcium homeostasis regulation, lipid metabolism, unfolded protein response, ROS, mitochondrial dynamics, autophagy, apoptosis, and inflammation, which are key risk factors for CVD. In this review, we discuss the structure of MAM and MAM-associated proteins, their role in CVD progression, and the potential use of MAM as the therapeutic targets for CVD treatment.
Collapse
|
50
|
Wang C, Liu L, Wang Y, Xu D. Advances in the mechanism and treatment of mitochondrial quality control involved in myocardial infarction. J Cell Mol Med 2021; 25:7110-7121. [PMID: 34160885 PMCID: PMC8335700 DOI: 10.1111/jcmm.16744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are important organelles in eukaryotic cells. Normal mitochondrial homeostasis is subject to a strict mitochondrial quality control system, including the strict regulation of mitochondrial production, fission/fusion and mitophagy. The strict and accurate modulation of the mitochondrial quality control system, comprising the mitochondrial fission/fusion, mitophagy and other processes, can ameliorate the myocardial injury of myocardial ischaemia and ischaemia-reperfusion after myocardial infarction, which plays an important role in myocardial protection after myocardial infarction. Further research into the mechanism will help identify new therapeutic targets and drugs for the treatment of myocardial infarction. This article aims to summarize the recent research regarding the mitochondrial quality control system and its molecular mechanism involved in myocardial infarction, as well as the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yishu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|