1
|
Huang B, Liang S, Li X, Xie Z, Yang R, Sun B, Xue J, Li B, Wang S, Shi H, Shi Y. Postweaning intermittent sleep deprivation enhances defensive attack in adult female mice via the microbiota-gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110915. [PMID: 38104921 DOI: 10.1016/j.pnpbp.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Sleep is one of the most important physiological activities in life and promotes the growth and development of an individual. In modern society, sleep deprivation (SD), especially among adolescents, has become a common phenomenon. However, long-term SD severely affected adolescents' neurodevelopment leading to abnormal behavioral phenotypes. Clinical studies indicated that sleep problems caused increased aggressive behavior in adolescents. Aggressive behavior was subordinate to social behaviors, in which defensive attack was often the last line for survival. Meanwhile, increasing studies shown that gut microbiota regulated social behaviors by affecting specific brain regions via the gut-brain axis. However, whether postweaning intermittent SD is related to defensive attack in adulthood, and if so, whether it is mediated by the microbiota-gut-brain axis are still elusive. Combined with microbial sequencing and hippocampal metabolomics, the present study mainly investigated the long-term effects of postweaning intermittent SD on defensive attack in adult mice. Our study demonstrated that postweaning intermittent SD enhanced defensive attack and impaired long-term memory formation in adult female mice. Moreover, microbial sequencing and LC-MS analysis showed that postweaning intermittent SD altered the gut microbial composition and the hippocampal metabolic profile in female mice, respectively. Our attention has been drawn to the neuroactive ligand-receptor interaction pathway and related metabolites. In conclusion, our findings provide a new perspective on the relationship of early-life SD and defensive attack in adulthood, and also highlight the importance of sleep in early-life, especially in females.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Ziyu Xie
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiping Xue
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Bingyu Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
2
|
Jeong DY, Daily JW, Lee GH, Ryu MS, Yang HJ, Jeong SY, Qiu JY, Zhang T, Park S. Short-Term Fermented Soybeans with Bacillus amyloliquefaciens Potentiated Insulin Secretion Capacity and Improved Gut Microbiome Diversity and Intestinal Integrity To Alleviate Asian Type 2 Diabetic Symptoms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13168-13178. [PMID: 32079403 DOI: 10.1021/acs.jafc.9b07962] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We determined that consuming chungkookjang fermented by Bacillus subtilis (BS) or Bacillus amyloliquefaciens (BA) alleviated hyperglycemia in partially pancreatectomized (Px) rats, an Asian type 2 diabetic (T2D) animal model. Px rats had deteriorated glucose metabolism with decreased glucose-stimulated insulin secretion and insulin sensitivity. Insulin secretion capacity was improved in the ascending order of the Px-control, positive control (3 mg of metformin/kg of body weight), BS (4.5% BS diet), BA (4.5% BA diet), and normal-control (sham-operated rats). BA and BS increased β-cell mass and decreased malondialdehyde contents and tumor necrosis factor α expression in the islets. BA increased hepatic peroxisome proliferator-activated receptor (PPAR)-α and PPAR-β similar to the positive control. Bacillales, Lactobacillales, and Verrucomicrobiales (Akkermensia muciniphila) increased and Enterobacteriales decreased in the BA and BS compared to the Px-control. BA prevented the decrease in the villi area and the number of goblet cells in intestinal tissues. In conclusion, BA improved glucose regulation by potentiating insulin secretion and reducing insulin resistance while maintaining gut mucin contents by improving gut microbiota in lean T2D rats.
Collapse
Affiliation(s)
- Do Yeon Jeong
- Department of Research and Development, Sunchang Research Center for Fermentation Microbes, Sunchang 56048, Korea
| | - James W Daily
- Department of Research and Development, Daily Manufacturing, Incorporated, Rockwell, North Carolina 28138, United States
| | - Gae Ho Lee
- Korea Research Institute of Analytical Technology (KRIAT), Daejeon 34024, Korea
| | - Myeong Seon Ryu
- Department of Research and Development, Sunchang Research Center for Fermentation Microbes, Sunchang 56048, Korea
| | - Hee-Jong Yang
- Department of Research and Development, Sunchang Research Center for Fermentation Microbes, Sunchang 56048, Korea
| | - Seong-Yeop Jeong
- Department of Research and Development, Sunchang Research Center for Fermentation Microbes, Sunchang 56048, Korea
| | - Jing Yi Qiu
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| | - Ting Zhang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| |
Collapse
|
3
|
Rosinger AY. Biobehavioral variation in human water needs: How adaptations, early life environments, and the life course affect body water homeostasis. Am J Hum Biol 2019; 32:e23338. [PMID: 31631450 DOI: 10.1002/ajhb.23338] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 01/22/2023] Open
Abstract
Body water homeostasis is critical for optimal physiological and cognitive function for humans. The majority of research has illustrated the negative biological consequences of failing to meet water needs. The human body has several mechanisms for detecting, regulating, and correcting body water deficits and excesses. However, variation exists in total water intake and how people meet those water needs as well as thirst thresholds and how well people tolerate water restriction. An evolutionary and developmental framework provides an underexplored perspective into human water needs by examining how adaptations, early life experiences and environments, as well as life course changes in health states and behaviors may shape these critical factors in body water homeostasis. This article first reviews biological and behavioral adaptations to water scarcity among animals and humans. It then examines human variation in water intake in a mostly water secure environment through the analysis of National Health and Nutrition Examination Survey dietary data and the link between water intake patterns and hydration biomarkers. Next, it reviews existing evidence of how maternal water restriction in utero and during lactation shape vasopressin release, thirst thresholds, drinking patterns, and body water homeostasis for the infant. Early life water restriction appears to have implications for hydration status, body size, and cardiovascular health. Finally, it examines how life course changes in health states and behaviors, including obesity, sleep, and parasitic infection, affect body water homeostasis. This article poses new questions about the plasticity and shaping of human water needs, thirst, and hydration behaviors.
Collapse
Affiliation(s)
- Asher Y Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, State College, Pennsylvania.,Department of Anthropology, Pennsylvania State University, State College, Pennsylvania
| |
Collapse
|
4
|
Wada E, Hamano T, Matsui I, Yoshida M, Hayashi YK, Matsuda R. Renal involvement in the pathogenesis of mineral and bone disorder in dystrophin-deficient mdx mouse. J Physiol Sci 2019; 69:661-671. [PMID: 31079351 PMCID: PMC10717053 DOI: 10.1007/s12576-019-00683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy is a severe muscular disorder, often complicated with osteoporosis, and impaired renal function has recently been featured. We aimed to clarify the involvement of renal function in the pathogenesis of mineral and bone disorder in mdx mice, a murine model of the disease. We clearly revealed renal dysfunction in adult mdx mice, in which dehydration and hypercalcemia were contributed. We also examined the effects of dietary phosphorus (P) overload on phosphate metabolism. Serum phosphate and parathyroid hormone (PTH) levels were significantly increased in mdx mice by dietary P in a dose-dependent manner; however, bone alkaline phosphatase levels were significantly lower in mdx mice. Additionally, bone mineral density in mdx mice were even worsened by increased dietary P in a dose-dependent manner. These results suggested that the uncoupling of bone formation and resorption was enhanced by skeletal resistance to PTH due to renal failure in mdx mice.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, 160-8402, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| | - Takayuki Hamano
- Department of Comprehensive Kidney Disease Research, Osaka University Graduate of School Medicine, B6-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Isao Matsui
- Department of Comprehensive Kidney Disease Research, Osaka University Graduate of School Medicine, B6-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mizuko Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, 160-8402, Japan
| | - Ryoichi Matsuda
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| |
Collapse
|