1
|
Xie Y, Xu L, Zhang J, Zhang C, Hu Y, Zhang Z, Chen G, Qi S, Xu X, Wang J, Ren W, Lin J, Wu A. Precise diagnosis of tumor cells and hemocytes using ultrasensitive, stable, selective cuprous oxide composite SERS bioprobes assisted with high-efficiency separation microfluidic chips. MATERIALS HORIZONS 2024; 11:5752-5767. [PMID: 39264270 DOI: 10.1039/d4mh00791c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Efficient enrichment and accurate diagnosis of cancer cells from biological samples can guide effective treatment strategies. However, the accessibility and accuracy of rapid identification of tumor cells have been hampered due to the overlap of white blood cells (WBCs) and cancer cells in size. Therefore, a diagnosis system for the identification of tumor cells using reliable surface-enhanced Raman spectroscopy (SERS) bioprobes assisted with high-efficiency microfluidic chips for rapid enrichment of cancer cells was developed. According to this, a homogeneous flower-like Cu2O@Ag composite with high SERS performance was constructed. It showed a favorable spectral stability of 5.81% and can detect trace alizarin red (10-9 mol L-1). Finite-difference time-domain (FDTD) simulation of Cu2O, Ag and Cu2O@Ag, decreased the fluorescence lifetime of methylene blue after adsorption on Cu2O@Ag, and surface defects of Cu2O observed using a spherical aberration-corrected transmission electron microscope (AC-TEM) demonstrated that the combined effects of electromagnetic enhancement and promoted charge transfer endowed the Cu2O@Ag with good SERS activity. In addition, the modulation of the absorption properties of flower-like Cu2O@Ag composites significantly improved electromagnetic enhancement and charge transfer effects at 532 nm, providing a reliable basis for the label-free SERS detection. After the cancer cells in blood were separated by a spiral inertial microfluidic chip (purity >80%), machine learning-assisted linear discriminant analysis (LDA) successfully distinguished three types of cancer cells and WBCs with high accuracy (>90%). In conclusion, this study provides a profound reference for the rational design of SERS probes and the efficient diagnosis of malignant tumors.
Collapse
Affiliation(s)
- Yujiao Xie
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Lei Xu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Jiahao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Chenguang Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Yue Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Zhouxu Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Guoxin Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Shuyan Qi
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Xiawei Xu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Jing Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Wenzhi Ren
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Jie Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315201, China
| |
Collapse
|
2
|
Ren J, Qiao Y, Jin L, Mao C, Wang C, Wu S, Zheng Y, Li Z, Cui Z, Jiang H, Zhu S, Liu X. A Smart Bacteria-Capture-Killing Vector for Effectively Treating Osteomyelitis Through Synergy Under Microwave Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307406. [PMID: 38009734 DOI: 10.1002/smll.202307406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Indexed: 11/29/2023]
Abstract
Osteomyelitis caused by deep tissue infections is difficult to cure through phototherapy due to the poor penetration depth of the light. Herein, Cu/C/Fe3O4-COOH nanorod composites (Cu/C/Fe3O4-COOH) with nanoscale tip convex structures are successfully fabricated as a microwave-responsive smart bacteria-capture-killing vector. Cu/C/Fe3O4-COOH exhibited excellent magnetic targeting and bacteria-capturing ability due to its magnetism and high selectivity affinity to the amino groups on the surface of Staphylococcus aureus (S. aureus). Under microwave irradiation, Cu/C/Fe3O4-COOH efficiently treated S. aureus-infected osteomyelitis through the synergistic effects of microwave thermal therapy, microwave dynamic therapy, and copper ion therapy. It is calculated the electric field intensity in various regions of Cu/C/Fe3O4-COOH under microwave irradiation, demonstrating that it obtained the highest electric field intensity on the surface of copper nanoparticles of Cu/C/Fe3O4-COOH due to its high-curvature tips and metallic properties. This led to copper nanoparticles attracted more charged particles compared with other areas in Cu/C/Fe3O4-COOH. These charges are easier to escape from the high curvature surface of Cu/C/Fe3O4-COOH, and captured by adsorbed oxygen, resulting in the generation of reactive oxygen species. The Cu/C/Fe3O4-COOH designed in this study is expected to provide insight into the treatment of deep tissue infections under the irradiation of microwave.
Collapse
Affiliation(s)
- Jinzhi Ren
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Yuqian Qiao
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Liguo Jin
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Chaofeng Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
3
|
Chen C, Chen L, Mao C, Jin L, Wu S, Zheng Y, Cui Z, Li Z, Zhang Y, Zhu S, Jiang H, Liu X. Natural Extracts for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306553. [PMID: 37847896 DOI: 10.1002/smll.202306553] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Collapse
Affiliation(s)
- Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Lin Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
4
|
Xu J, Xia W, Sheng G, Jiao G, Liu Z, Wang Y, Zhang X. Progress of disinfection catalysts in advanced oxidation processes, mechanisms and synergistic antibiotic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169580. [PMID: 38154648 DOI: 10.1016/j.scitotenv.2023.169580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Human diseases caused by pathogenic microorganisms make people pay more attention to disinfection. Meanwhile, antibiotics can cause microbial resistance and increase the difficulty of disease treatment, resulting in risk of triggering a vicious circle. Advanced oxidation process (AOPs) has been widely studied in the field of synergistic treatment of the two contaminates. This paper reviews the application of catalytic materials and their modification strategies in the context of AOPs for disinfection and antibiotic degradation. It also delves into the mechanisms of disinfection such as the pathways for microbial inactivation and the related influencing factors, which are essential for understanding the pivotal role of catalytic materials in disinfection principles by AOPs. More importantly, the exploratory research on the combined use of AOPs for disinfection and antibiotic degradation is discussed, and the potential and prospects in this field is highlighted. Finally, the limitations and challenges associated with the application of AOPs in disinfection and antibiotic degradation are summarized. It aims to provide a starting point for future research efforts to facilitate the widespread use of advanced oxidation processes in the field of public health.
Collapse
Affiliation(s)
- Jin Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wannan Xia
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guo Sheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guanhao Jiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenhao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
5
|
Wei Y, Han Z, Mao X. Injectable Living Probiotic Dressing Built by Droplet-Based Microfluidics and Photo-Cross-Linking to Prevent Pathogenic Infection and Promote Wound Repair. Adv Healthc Mater 2024; 13:e2302423. [PMID: 37843361 DOI: 10.1002/adhm.202302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Indexed: 10/17/2023]
Abstract
The treatment of infected wounds faces great challenges due to the emergence of antibiotic resistance and the lack of persistence in drug release. Here, a living probiotic dressing is constructed by integrating droplet-shearing and photo-cross-linking. Saccharomyces boulardii (S. boulardii), the only probiotic used clinically, is encapsulated and attached to a wound under light irradiation. A double-layer hydrogel provides a protective barrier for cell growth and proliferation while preventing the escape of S. boulardii. The living probiotic dressing shows superior biosafety with fibroblast cells. Strikingly, in vitro and in vivo experiments indicate that the living probiotic dressing not only inhibits bacterial survival and colonization, but also alleviates inflammation and accelerates wound closure. More significantly, the living probiotic dressing promotes collagen deposition and neovascularization, which accelerates wound healing. This work can provide new ideas for clinical wound treatment and widen the application of probiotics in tissue engineering.
Collapse
Affiliation(s)
- Yunyun Wei
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Ziqiang Han
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xiaolong Mao
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| |
Collapse
|
6
|
Jin L, Wu S, Mao C, Wang C, Zhu S, Zheng Y, Zhang Y, Li Z, Cui Z, Jiang H, Liu X. Rapid and effective treatment of chronic osteomyelitis by conductive network-like MoS 2/CNTs through multiple reflection and scattering enhanced synergistic therapy. Bioact Mater 2024; 31:284-297. [PMID: 37663620 PMCID: PMC10469393 DOI: 10.1016/j.bioactmat.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 09/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus)-infected chronic osteomyelitis (COM) is one of the most devastating infectious diseases with a high recurrence rate, often leading to amputation and even death. It is incurable by all the current strategies involving the clinical use of radical debridement and systemic intravenous antibiotics. Here, we reported on a microwave (MW)-assisted therapy for COM by constructing a heterojunction formed by flake nanoflower-shaped molybdenum disulfide (MoS2) and tubular carbon nanotubes (CNTs). This composite could achieve a combination of MW thermal therapy (MTT) and MW dynamic therapy (MDT) to accurately and rapidly treat COM with deep tissue infection. In vitro and in vivo experiments showed that MoS2/CNTs were effective in non-invasively treating S. aureus-induced COM due to the heat and reactive oxygen species (ROS) produced under MW irradiation. The mechanism of heat and ROS generation was explained by MW network vector analysis, density of states (DOS), oxygen adsorption energy, differential charge and finite element (FEM) under MW irradiation. Since the Fermi layer was mainly contributed by the Mo-4d and C-2P orbitals, MoS2/CNTs could store a large amount of charge and easily release more electrons. In addition, charge accumulation and dissipation motion were strong on the surface of and inside MoS2/CNTs because of electromagnetic hot spots, resulting in the spilling out of a great deal of high-energy electrons. Due to the low oxygen adsorption energy of MoS2/CNTs-O2, these high-energy electrons combined further with the adsorbed oxygen to produce ROS.
Collapse
Affiliation(s)
- Liguo Jin
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
7
|
Guan W, Gong C, Wu S, Cui Z, Zheng Y, Li Z, Zhu S, Liu X. Instant Protection Spray for Anti-Infection and Accelerated Healing of Empyrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306589. [PMID: 37703451 DOI: 10.1002/adma.202306589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Distinct from common injuries, deep burns often require a chronic recovery cycle for healing and long-term antibiotic treatment to prevent infection. The rise of drug-resistant bacteria has caused antibiotics to no longer be perfect, and continuous drug use can easily lead to repeated infection and even death. Inspired by wild animals that chew plants to prevent wound infection, probiotic extracts with a structure similar to the tailspike of phage are obtained from Lactobacillus casei and combined with different flavones to design a series of nonantibiotic bactericides. These novel antibacterial agents are combined with a rapid gelation spray with a novel cross-angle layout to form an instant protection spray (IPS) and provide a physical and anti-infectious barrier for burns within 30 s. This IPS is able to sterilize 100.00% and 96.14% of multidrug-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, respectively. In addition, it is found to effectively reduce inflammation in MRSA-infected burns in rats and to promote tissue healing.
Collapse
Affiliation(s)
- Wei Guan
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Caixin Gong
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Tianjin, 300401, China
| |
Collapse
|
8
|
Nazarov D, Kozlova L, Rogacheva E, Kraeva L, Maximov M. Atomic Layer Deposition of Antibacterial Nanocoatings: A Review. Antibiotics (Basel) 2023; 12:1656. [PMID: 38136691 PMCID: PMC10740478 DOI: 10.3390/antibiotics12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.
Collapse
Affiliation(s)
- Denis Nazarov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Lada Kozlova
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Ludmila Kraeva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Maxim Maximov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
| |
Collapse
|
9
|
Jin L, Liu X, Zheng Y, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Wu S. Interfacial and Defect Polarization Enhanced Microwave Noninvasive Therapy for Staphylococcus aureus-Infected Chronic Osteomyelitis. ACS NANO 2023; 17:18200-18216. [PMID: 37707356 DOI: 10.1021/acsnano.3c05130] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Chronic osteomyelitis (COM), is a long-term, constant, and intractable disease mostly induced by infection from the invasion of Staphylococcus aureus (S. aureus) into bone cells. Here, we describe a highly effective microwave (MW) therapeutic strategy for S. aureus-induced COM based on the in situ growth of interfacial oxygen vacancy-rich molybdenum disulfide (MoS2)/titanium carbide (Ti3C2Tx) MXene with oxygen-deficient titanium dioxide (TiO2-x) on Ti3C2Tx (labeled as HU-MoS2/Ti3C2Tx) by producing reactive oxygen species (ROS) and heat. HU-MoS2/Ti3C2Tx produced heat and ROS, which could effectively treat S. aureus-induced COM under MW irradiation. The underlying mechanism determined by density functional theory (DFT) and MW vector network analysis was that HU-MoS2/Ti3C2Tx formed a high-energy local electric field under MW irradiation, consequently generating more high-energy free electrons to pass and move across the interface at a high speed and accelerate by the heterointerface, which enhanced the charge accumulation on both sides of the interface. Moreover, these charges were captured by the oxygen species adsorbed at the HU-MoS2/Ti3C2Tx interface to produce ROS. MoS2 facilitated multiple reflections and scattering of electromagnetic waves as well as enhanced impedance matching. Ti3C2Tx enhanced the conduction loss of electromagnetic waves, while functional groups induced dipole polarization to enhance attenuation of MW.
Collapse
Affiliation(s)
- Liguo Jin
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Li R, Lu J, Bao J, Xiong F, Chen T, Zhang W. In-situelectrochemical fabrication of Ag@AgCl NW-PET film with superior photocatalytic bactericidal activity. NANOTECHNOLOGY 2022; 34:075703. [PMID: 36379057 DOI: 10.1088/1361-6528/aca2b2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Constructing a composite photocatalyst with efficient charge-transfer pathways is contribute to improving charge separation, which has attracted wide attention owing to its availability in photocatalysis applications. In this work, three-dimensional (3D) silver@silver chloride (Ag@AgCl) network structures are fabricated for photocatalytic inactivation ofEscherichia coli(E. coli) by thein situelectrochemical introducing AgCl shell on the surface of Ag nanowire (NW) networks that are coated on a polyethylene terephthalate (PET) substrate. The obtained Ag@AgCl NW-PET films exhibit good photocatalytic bactericidal activity againstE. coliunder simulated Sunlight irradiation, mainly due to their efficient charge-transport channel constructed by the Ag NWs network. It is worth noting that the content of converted AgCl shell is positively correlated with their photocatalytic bactericidal efficiency. The experimental results also demonstrate that the synergistic contribution of Ag+sustained release, rough surfaces and energy band structure optimization in photocatalytic sterilization. Besides, the prepared Ag@AgCl NW-PET film can be recycled, and the photocatalytic sterilization efficiency can still keep above 99% after three cycles. This work might provide new and more diverse opportunities for the development of excellent charge-transport, recyclable photocatalysts for photocatalytic sterilization.
Collapse
Affiliation(s)
- Rui Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jingwen Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiashuan Bao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Furong Xiong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tongtong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|