1
|
Ma X, Wang Q, Ren K, Xu T, Zhang Z, Xu M, Rao Z, Zhang X. A Review of Antimicrobial Peptides: Structure, Mechanism of Action, and Molecular Optimization Strategies. FERMENTATION-BASEL 2024; 10:540. [DOI: 10.3390/fermentation10110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) are bioactive macromolecules that exhibit antibacterial, antiviral, and immunomodulatory functions. They come from a wide range of sources and are found in all forms of life, from bacteria to plants, vertebrates, and invertebrates, and play an important role in controlling the spread of pathogens, promoting wound healing and treating tumors. Consequently, AMPs have emerged as promising alternatives to next-generation antibiotics. With advancements in systems biology and synthetic biology technologies, it has become possible to synthesize AMPs artificially. We can better understand their functional activities for further modification and development by investigating the mechanism of action underlying their antimicrobial properties. This review focuses on the structural aspects of AMPs while highlighting their significance for biological activity. Furthermore, it elucidates the membrane targeting mechanism and intracellular targets of these peptides while summarizing molecular modification approaches aimed at enhancing their antibacterial efficacy. Finally, this article outlines future challenges in the functional development of AMPs along with proposed strategies to overcome them.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Kexin Ren
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Tongtong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zigang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
2
|
Giraldo-Lorza JM, Leidy C, Manrique-Moreno M. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. MEMBRANES 2024; 14:220. [PMID: 39452832 PMCID: PMC11509253 DOI: 10.3390/membranes14100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Cholesterol is a biological molecule that is essential for cellular life. It has unique features in terms of molecular structure and function, and plays an important role in determining the structure and properties of cell membranes. One of the most recognized functions of cholesterol is its ability to increase the level of lipid packing and rigidity of biological membranes while maintaining high levels of lateral mobility of the bulk lipids, which is necessary to sustain biochemical signaling events. There is increased interest in designing bioactive peptides that can act as effective antimicrobial agents without causing harm to human cells. For this reason, it becomes relevant to understand how cholesterol can affect the interaction between bioactive peptides and lipid membranes, in particular by modulating the peptides' ability to penetrate and disrupt the membranes through these changes in membrane rigidity. Here we discuss cholesterol and its role in modulating lipid bilayer properties and discuss recent evidence showing how cholesterol modulates bioactive peptides to different degrees.
Collapse
Affiliation(s)
- Juan M. Giraldo-Lorza
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
3
|
Manobala T. Peptide-based strategies for overcoming biofilm-associated infections: a comprehensive review. Crit Rev Microbiol 2024:1-18. [PMID: 39140129 DOI: 10.1080/1040841x.2024.2390597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Biofilms represent resilient microbial communities responsible for inducing chronic infections in human subjects. Given the escalating challenges associated with antibiotic therapy failures in clinical infections linked to biofilm formation, a peptide-based approach emerges as a promising alternative to effectively combat these notoriously resistant biofilms. Contrary to conventional antimicrobial peptides, which predominantly target cellular membranes, antibiofilm peptides necessitate a multifaceted approach, addressing various "biofilm-specific factors." These factors encompass Extracellular Polymeric Substance (EPS) degradation, membrane targeting, cell signaling, and regulatory mechanisms. Recent research endeavors have been directed toward assessing the potential of peptides as potent antibiofilm agents. However, to translate these peptides into viable clinical applications, several critical considerations must be meticulously evaluated during the peptide design process. This review serves to furnish an all-encompassing summary of the pivotal factors and parameters that necessitate contemplation for the successful development of an efficacious antibiofilm peptide.
Collapse
Affiliation(s)
- T Manobala
- School of Arts and Sciences, Sai University, Chennai, India
| |
Collapse
|
4
|
Frigini EN, Porasso RD, Beke-Somfai T, López Cascales JJ, Enriz RD, Pantano S. The Mechanism of Antimicrobial Small-Cationic Peptides from Coarse-Grained Simulations. J Chem Inf Model 2023; 63:6877-6889. [PMID: 37905818 DOI: 10.1021/acs.jcim.3c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Antimicrobial cationic peptides (AMPs) are excellent candidates for use as therapeutic antimicrobial agents. Among them, short peptides possessing sequences of 9-11 amino acids have some advantages over long-sequence peptides. However, one of the main limitations of short peptides is that their mechanism of action at the molecular level is not well-known. In this article, we report a model based on multiscale molecular dynamics simulations of short peptides interacting with vesicles containing palmitoyl-oleoyl-phosphatidylglycerol (POPG)/palmitoyl-oleoyl-phosphatidylethanolamine (POPE). Simulations using this approach have allowed us to understand the different behaviors of peptides with antimicrobial activity with respect to those that do not produce this effect. We found remarkable agreement with a series of experimental results directly supporting our model. Moreover, these results allow us to understand the mechanism of action at the molecular level of these short peptides. Our simulations suggest that mechanical inhomogeneities appear in the membrane, promoting membrane rupture when a threshold concentration of peptides adsorbed on the membrane is achieved. These results explain the high structural demand for these peptides to maintain a delicate balance between the affinity for the bilayer surface, a low peptide-peptide repulsion (in order to reach the threshold concentration), and an acceptable tendency to penetrate into the bilayer. This mechanism is different from those proposed for peptides with long amino acid sequences. Such information is very useful from the medicinal chemistry point of view for the design of new small antimicrobial peptides.
Collapse
Affiliation(s)
- Ezequiel N Frigini
- Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis 5700, Argentina
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Rodolfo D Porasso
- Instituto de Matemáticas Aplicada San Luis (IMASL), CONICET, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, San Luis 5700, Argentina
| | - Tamás Beke-Somfai
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - José Javier López Cascales
- Universidad Politécnica de Cartagena, Grupo de Bioinformática y Macromoleculas (BioMac), Area de Química Física, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Murcia, Spain
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis 5700, Argentina
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
5
|
Peng J, Lu Q, Yuan L, Zhang H. Synthetic Cationic Lipopeptide Can Effectively Treat Mouse Mastitis Caused by Staphylococcus aureus. Biomedicines 2023; 11:biomedicines11041188. [PMID: 37189805 DOI: 10.3390/biomedicines11041188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows is one of the most common clinical diseases in dairy cattle. Unfortunately, traditional antibiotic treatment has resulted in the emergence of drug-resistant strains of bacteria, making this disease more difficult to treat. Therefore, novel lipopeptide antibiotics are becoming increasingly important in treating bacterial diseases, and developing novel antibiotics is critical in controlling mastitis in dairy cows. We designed and synthesized three cationic lipopeptides with palmitic acid, all with two positive charges and dextral amino acids. The lipopeptides' antibacterial activity against S. aureus was determined using MIC and scanning electron microscopy. The safety concentration range of lipopeptides for clinical usage was then estimated using the mouse erythrocyte hemolysis assay and CCK8 cytotoxicity. Finally, lipopeptides with high antibacterial activity and minimal cytotoxicity were selected for the treatment experiments regarding mastitis in mice. The observation of histopathological changes, bacterial tissue load and expression of inflammatory factors determined the therapeutic effects of lipopeptides on mastitis in mice. The results showed that all three lipopeptides displayed some antibacterial activity against S. aureus, with C16dKdK having a strong antibacterial impact and being able to treat the mastitis induced by S. aureus infection in mice within a safe concentration range. The findings of this study can be used as a starting point for the development of new medications for the treatment of mastitis in dairy cows.
Collapse
Affiliation(s)
- Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiangsheng Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hecheng Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Jangpromma N, Konkchaiyaphum M, Punpad A, Sosiangdi S, Daduang S, Klaynongsruang S, Tankrathok A. Rational Design of RN15m4 Cathelin Domain-Based Peptides from Siamese Crocodile Cathelicidin Improves Antimicrobial Activity. Appl Biochem Biotechnol 2023; 195:1096-1108. [PMID: 36327032 DOI: 10.1007/s12010-022-04210-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial peptides are becoming a new generation of antibiotics due to their therapeutic potential and ability to decrease drug-resistant bacteria development. Cathelicidins are known as effective peptides of vertebrate immunity that play crucial roles in the defensive strategy against pathogens. To improve its potency, the RN15 antibacterial peptide derived from the cathelin domain of Crocodylus siamensis cathelicidin has been modified and its antimicrobial properties investigated. Peptides were derived by template-based and physicochemical designation. The RN15 derivative peptides were predicted through their structure modeling, antimicrobial potency, and peptide-membrane calculation. The antimicrobial and cytotoxic activities of candidate peptides were investigated. Simultaneous consideration of physicochemical characteristics, secondary structure modeling, and the result of antimicrobial peptide tools prediction indicated that RN15m4 peptide was a candidate derivative antimicrobial peptide. The RN15m4 peptide expresses antimicrobial activity against most Gram-positive and Gram-negative bacteria and fungi with a lower minimum inhibition concentration (MIC) than the parent peptide. Besides, the time-killing assay shows that the designed peptide performed its ability to quickly kill bacteria better than the original peptide. Scanning electron microscopy (SEM) displayed the destruction of the bacterial cell membrane caused by the RN15m4 peptide. In addition, the RN15m4 peptide exhibits low hemolytic activity and low cytotoxic activity as good as the template peptide. The RN15m4 peptide performs a range of antimicrobial activities with low cell toxicity. Our study has illustrated the combination approach to peptide design for potent antibiotic peptide discovery.
Collapse
Affiliation(s)
- Nisachon Jangpromma
- Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, 40000, Khon Kaen, Thailand.,Faculty of Science, Department of Integrated Science, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Monruedee Konkchaiyaphum
- Faculty of Science, Department of Biochemistry, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Arpaporn Punpad
- Faculty of Agricultural Technology, Department of Biotechnology, Kalasin University, 46000, Kalasin, Thailand
| | - Sirinthip Sosiangdi
- Faculty of Science, Department of Biochemistry, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Sakda Daduang
- Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, 40000, Khon Kaen, Thailand.,Faculty of Pharmaceutical Sciences, Division of Pharmacognosy and Toxicology, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Sompong Klaynongsruang
- Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, 40000, Khon Kaen, Thailand.,Faculty of Science, Department of Biochemistry, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Anupong Tankrathok
- Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, 40000, Khon Kaen, Thailand. .,Faculty of Agricultural Technology, Department of Biotechnology, Kalasin University, 46000, Kalasin, Thailand.
| |
Collapse
|
7
|
Agadi N, Maity A, Jha AK, Chakrabarti R, Kumar A. Distinct mode of membrane interaction and disintegration by diverse class of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184047. [PMID: 36100074 DOI: 10.1016/j.bbamem.2022.184047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022]
Abstract
The exploitation of conventional antibiotics in conjunction with the adeptness of microbes has led to the emergence of multi-drug-resistant pathogens. This has posed a severe threat to combating life-threatening infectious diseases. Antimicrobial peptides (AMP), which are considered to be the first line of defense in all living organisms, are being developed for therapeutic use. Herein, we determined the NMR solution structure of Rhesus macaque Myeloid Alpha Defensin-4 (RMAD4), a defensin AMP. Additionally, the distinct modes of membrane perturbation for two structurally dissimilar classes of AMPs was studied using biophysical methods namely, Solid-state 31P NMR, DSC and cryo-TEM. The cathelicidin - Bovine myeloid antimicrobial peptide (BMAP-28 (1-18)), which adopts a helical conformation, and the defensin RMAD4 peptide that natively folds to form β-sheets appeared to engage differently with the bacterial membrane. The helical BMAP-28 (1-18) peptide initiates lipid segregation and membrane thinning followed by pore formation, while the β-stranded RMAD4 peptide demonstrates fragmentation of the bilayer by the carpet or detergent-like mechanism of action. Molecular dynamics studies sufficiently corroborated these findings. The structure and mechanism of action of the AMPs studied using experimental and computational approaches are believed to help in providing a platform for the rational design of new competent and cost-effective antimicrobial peptides for therapeutic applications.
Collapse
Affiliation(s)
- Nutan Agadi
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atanu Maity
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akash Kumar Jha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
8
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
9
|
Claro B, González-Freire E, Granja JR, Garcia-Fandiño R, Gallová J, Uhríková D, Fedorov A, Coutinho A, Bastos M. Partition of antimicrobial D-L-α-cyclic peptides into bacterial model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183729. [PMID: 34506796 DOI: 10.1016/j.bbamem.2021.183729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Fluorescence spectroscopy is used to characterize the partition of three second-generation D,L-α-cyclic peptides to two lipid model membranes. The peptides have proven antimicrobial activity, particularly against Gram positive bacteria, and the model membranes are formed of either with 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) or its mixture with 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), at a molar ratio of (1:1). The peptide's intrinsic fluorescence was used in the Steady State and/or Time Resolved Fluorescence Spectroscopy experiments, showing that the peptides bind to the membranes, and the extent of their partition is thereof quantified. The peptide-induced membrane leakage was followed using an encapsulated fluorescent dye. Overall, the partition is mainly driven by electrostatics, but also involves hydrophobic interactions. The introduction of a hydrocarbon tail in one of the residues of the parent peptide, CPR, adjacent to the tryptophan (Trp) residue, significantly improves the partition of the modified peptides, CPRT10 and CPRT14, to both membrane systems. Further, we show that the length of the tail is the main distinguishing factor for the extension of the partition process. The parent peptide induces very limited leakage, at odds with the peptides with tail, that promote fast leakage, increasing in most cases with peptide concentration, and being almost complete for the highest peptide concentration and negatively charged membranes. Overall, the results help the unravelling of the antimicrobial action of these peptides and are well in line with their proven high antimicrobial activity.
Collapse
Affiliation(s)
- Bárbara Claro
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eva González-Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandiño
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jana Gallová
- Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovak Republic
| | - Daniela Uhríková
- Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovak Republic
| | - Aleksander Fedorov
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Coutinho
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Margarida Bastos
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
10
|
Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int J Mol Sci 2021; 22:ijms222011172. [PMID: 34681833 PMCID: PMC8538224 DOI: 10.3390/ijms222011172] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid rise of multidrug-resistant (MDR) bacteria has once again caused bacterial infections to become a global health concern. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), offer a viable solution to these pathogens due to their diverse mechanisms of actions, which include direct killing as well as immunomodulatory properties (e.g., anti-inflammatory activity). HDPs may hence provide a more robust treatment of bacterial infections. In this review, the advent of and the mechanisms that lead to antibiotic resistance will be described. HDP mechanisms of antibacterial and immunomodulatory action will be presented, with specific examples of how the HDP aurein 2.2 and a few of its derivatives, namely peptide 73 and cG4L73, function. Finally, resistance that may arise from a broader use of HDPs in a clinical setting and methods to improve biocompatibility will be briefly discussed.
Collapse
|
11
|
Tang Q, Yang C, Li W, Zhang Y, Wang X, Wang W, Ma Z, Zhang D, Jin Y, Lin D. Evaluation of Short-Chain Antimicrobial Peptides With Combined Antimicrobial and Anti-inflammatory Bioactivities for the Treatment of Zoonotic Skin Pathogens From Canines. Front Microbiol 2021; 12:684650. [PMID: 34456884 PMCID: PMC8386128 DOI: 10.3389/fmicb.2021.684650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
The incidence of zoonotic Staphylococcus pseudintermedius and Microsporum canis infections is rapidly growing worldwide in the context of an increasing frequency of close contact between animals and humans, presenting challenges in both human and veterinary medicine. Moreover, the development of microbial resistance and emergence of recalcitrant biofilms, accompanied by the insufficiency of new antimicrobial agents, have become major obstacles in treating superficial skin infections caused by various microbes including S. pseudintermedius and M. canis. Over recent years, the prospects of antimicrobial peptides as emerging antimicrobials to combat microbial infections have been demonstrated. In our study, two novel short-chain peptides, namely, allomyrinasin and andricin B, produced by Allomyrina dichotoma and Andrias davidianus, were revealed to exhibit potent antimicrobial efficacy against clinical isolates of S. pseudintermedius and M. canis with remarkable and rapid fungicidal and bactericidal effects, while allomyrinasin exhibited inhibition of biofilm formation and eradication of mature biofilm. These peptides displayed synergistic activity when combined with amoxicillin and terbinafine against S. pseudintermedius and M. canis. Cytoplasmic leakage via cytomembrane permeabilization serves as a mechanism of action. Extremely low hemolytic activity and serum stability in vitro, as well as superior anti-infective efficacy in reducing bacterial counts and relieving the inflammatory response in vivo, were detected. The potent antibacterial, antifungal, and anti-inflammatory activities of allomyrinasin and andricin B might indicate promising anti-infective alternatives for the treatment of S. pseudintermedius and M. canis infections in the context of human and veterinary medicine.
Collapse
Affiliation(s)
- Qiyu Tang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunyi Yang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weitian Li
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuhang Zhang
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinying Wang
- Modern Animal Research Center, Nanjing University, Nanjing, China
| | - Weixin Wang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiling Ma
- Research and Development Department, Artron BioResearch Inc., Vancouver, BC, Canada
| | - Di Zhang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Shi S, Shen T, Liu Y, Chen L, Wang C, Liao C. Porcine Myeloid Antimicrobial Peptides: A Review of the Activity and Latest Advances. Front Vet Sci 2021; 8:664139. [PMID: 34055951 PMCID: PMC8160099 DOI: 10.3389/fvets.2021.664139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional antibiotics have made great contributions to human health and animal husbandry since the discovery of penicillin in 1928, but bacterial resistance and drug residues are growing threats to global public health due to the long-term uncontrolled application of antibiotics. There is a critical need to develop new antimicrobial drugs to replace antibiotics. Antimicrobial peptides (AMPs) are distributed in all kingdoms of life, presenting activity against pathogens as well as anticancer, anti-inflammatory, and immunomodulatory activities; consequently, they have prospects as new potential alternatives to antibiotics. Porcine myeloid antimicrobial peptides (PMAPs), the porcine cathelicidin family of AMPs, have been reported in the literature in recent years. PMAPs have become an important research topic due to their strong antibacterial activity. This review focuses on the universal trends in the biochemical parameters, structural characteristics and biological activities of PMAPs.
Collapse
Affiliation(s)
- Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
13
|
Membrane proteins in magnetically aligned phospholipid polymer discs for solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183333. [PMID: 32371072 DOI: 10.1016/j.bbamem.2020.183333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Well-hydrated phospholipid bilayers provide a near-native environment for membrane proteins. They enable the preparation of chemically-defined samples suitable for NMR and other spectroscopic experiments that reveal the structure, dynamics, and functional interactions of the proteins at atomic resolution. The synthetic polymer styrene maleic acid (SMA) can be used to prepare detergent-free samples that form macrodiscs with diameters greater than 30 nm at room temperature, and spontaneously align in the magnetic field of an NMR spectrometer at temperatures above 35 °C. Here we show that magnetically aligned macrodiscs are particularly well suited for solid-state NMR experiments of membrane proteins because the SMA-lipid assembly both immobilizes the embedded protein and provides uniaxial order for oriented sample (OS) solid-state NMR studies. We show that aligned macrodiscs incorporating four different membrane proteins with a wide range of sizes and topological complexity yield high-resolution OS solid-state NMR spectra. The work is dedicated to Michelle Auger who made key contributions to the field of membrane and membrane protein biophysics.
Collapse
|
14
|
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020; 12:E142. [PMID: 32046289 PMCID: PMC7076477 DOI: 10.3390/pharmaceutics12020142] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Based on the recent reports of World Health Organization, increased antibiotic resistance prevalence among bacteria represents the greatest challenge to human health. In addition, the poor solubility, stability, and side effects that lead to inefficiency of the current antibacterial therapy prompted the researchers to explore new innovative strategies to overcome such resilient microbes. Hence, novel antibiotic delivery systems are in high demand. Nanotechnology has attracted considerable interest due to their favored physicochemical properties, drug targeting efficiency, enhanced uptake, and biodistribution. The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide (ZnO), cobalt, selenium, and cadmium) nanosystems in the domain of antibacterial delivery. We provide a concise description of the characteristics of each system that render it suitable as an antibacterial delivery agent. We also highlight the recent promising innovations used to overcome antibacterial resistance, including the use of lipid polymer nanoparticles, nonlamellar liquid crystalline nanoparticles, anti-microbial oligonucleotides, smart responsive materials, cationic peptides, and natural compounds. We further discuss the applications of antimicrobial photodynamic therapy, combination drug therapy, nano antibiotic strategy, and phage therapy, and their impact on evading antibacterial resistance. Finally, we report on the formulations that made their way towards clinical application.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Sahar B. Hassan
- Department of Clinical pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy Sohag University, Sohag 82524, Egypt
| |
Collapse
|
15
|
Zhang N, Qi R, Li H, Guan B, Liu Y, Han Y, Wang Y. Interaction of phospholipid vesicles with gemini surfactants of different lysine spacer lengths. SOFT MATTER 2019; 15:9458-9467. [PMID: 31742300 DOI: 10.1039/c9sm02040c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peptide surfactants have shown many potential applications in biology and medicine; however, the mechanism of their interactions with biomembranes is still unclear. This work has studied the interactions of cationic peptide gemini surfactants based on lysine spacers (12-(Lys)n-12, n = 2, 4, and 6) with model biological membranes, which are represented by the vesicles separately formed by zwitterionic unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), anionic unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG, sodium salt) and the DOPC/DOPG (1 : 1) mixture. The experiment results show that the presence of negatively charged DOPG slightly affects the interaction manners of 12-(Lys)n-12 with the vesicles, while the interaction of 12-(Lys)2-12 with the phospholipid vesicles is significantly different from that of 12-(Lys)4-12 and 12-(Lys)6-12 with the vesicles. The binding strength decreases in the order of 12-(Lys)4-12 > 12-(Lys)6-12 > 12-(Lys)2-12. The 12-(Lys)4-12 surfactant solubilizes the DOPC vesicles, and makes the DOPC molecules join the surfactant stiff fibers and changes them into long and flexible wormlike micelles, while the 12-(Lys)6-12 and 12-(Lys)2-12 aggregates are disassembled by the DOPC vesicles, and the surfactant molecules join the DOPC vesicles and convert the unilamellar vesicles into multilamellar vesicles. This work should be helpful in understanding the interaction of peptide surfactants with phospholipid membranes.
Collapse
Affiliation(s)
- Na Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haofei Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Guan
- Analysis and Test Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Liu
- Analysis and Test Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuchun Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yilin Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol 2019; 10:2866. [PMID: 31921046 PMCID: PMC6927293 DOI: 10.3389/fmicb.2019.02866] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
The antibiotic crisis has led to a pressing need for alternatives such as antimicrobial peptides (AMPs). Recent work has shown that these molecules have great potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, anti-cancer agents and anti-inflammatories. A better understanding of the mechanism of action (MOA) of AMPs is an important part of the discovery of more potent and less toxic AMPs. Many models and techniques have been utilized to describe the MOA. This review will examine how biological assays and biophysical methods can be utilized in the context of the specific antibacterial and antibiofilm functions of AMPs.
Collapse
Affiliation(s)
- Nigare Raheem
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Zhen JB, Zhao MH, Ge Y, Liu Y, Xu LW, Chen C, Gong YK, Yang KW. Construction, mechanism, and antibacterial resistance insight into polypeptide-based nanoparticles. Biomater Sci 2019; 7:4142-4152. [DOI: 10.1039/c9bm01050e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Demonstration of the bactericidal mechanism of self-assembled nanoparticles.
Collapse
Affiliation(s)
- Jian-Bin Zhen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Mu-Han Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Ying Ge
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Ya Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Li-Wei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| |
Collapse
|
18
|
Influence of hydrocarbon-stapling on membrane interactions of synthetic antimicrobial peptides. Bioorg Med Chem 2018; 26:1189-1196. [DOI: 10.1016/j.bmc.2017.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 11/22/2022]
|
19
|
He B, Ma S, Peng G, He D. TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:365-372. [PMID: 29170111 DOI: 10.1016/j.nano.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/26/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
The increasing emergence of drug resistant pathogenic bacteria poses a great challenge to clinical therapy and a threat to public health. Cationic peptides have received great attention for their unique antibacterial mechanism and ability to combat drug-resistant bacteria. In this study, we designed a TAT-modified cationic peptide PA-28 which self-assembled into nanoparticles of about 150 nm. These nanoparticles showed strong antimicrobial activities against both gram-positive and gram-negative bacteria, including drug-resistant bacteria. They were more potent than the unassembled counterpart peptide nonalysine (K9). Their antibacterial mechanism of directly destructing bacterial wall/membrane reduces the possibility of developing bacterial resistance. In vivo anti-infective experiments showed that these nanoparticles were able to penetrate the blood-brain barrier to inhibit bacterial growth in infected brains of rats. In addition, these nanoparticles induced low hemolysis below the minimum inhibitory concentration. Therefore, the peptide designed in this study is a promising and efficient antibacterial agent against bacterial infections.
Collapse
Affiliation(s)
- Bi He
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Shiyi Ma
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Guifu Peng
- Clinical Laboratory, Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Daohang He
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China.
| |
Collapse
|
20
|
|
21
|
Barreto-Santamaría A, Curtidor H, Arévalo-Pinzón G, Herrera C, Suárez D, Pérez WH, Patarroyo ME. A New Synthetic Peptide Having Two Target of Antibacterial Action in E. coli ML35. Front Microbiol 2016; 7:2006. [PMID: 28066341 PMCID: PMC5167725 DOI: 10.3389/fmicb.2016.02006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
The increased resistance of microorganisms to the different antimicrobials available to today has highlighted the need to find new therapeutic agents, including natural and/or synthetic antimicrobial peptides (AMPs). This study has evaluated the antimicrobial activity of synthetic peptide 35409 (RYRRKKKMKKALQYIKLLKE) against Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 15442 and Escherichia coli ML 35 (ATCC 43827). The results have shown that peptide 35409 inhibited the growth of these three bacterial strains, having 16-fold greater activity against E. coli and P. aeruginosa, but requiring less concentration regarding E. coli (22 μM). When analyzing this activity against E. coli compared to time taken, it was found that this peptide inhibited bacterial growth during the first 60 min and reduced CFU/mL 1 log after 120 min had elapsed. This AMP permeabilized the E. coli membrane by interaction with membrane phospholipids, mainly phosphatidylethanolamine, inhibited cell division and induced filamentation, suggesting two different targets of action within a bacterial cell. Cytotoxicity studies revealed that peptide 35409 had low hemolytic activity and was not cytotoxic for two human cell lines. We would thus propose, in the light of these findings, that the peptide 35409 sequence should provide a promising template for designing broad-spectrum AMPs.
Collapse
Affiliation(s)
- Adriana Barreto-Santamaría
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; Faculty of Sciences and Education, Universidad Distrital Francisco José de CaldasBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Hernando Curtidor
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Chonny Herrera
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Diana Suárez
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; School of Medicine and Health sciences, Universidad del RosarioBogotá, Colombia
| | - Walter H Pérez
- Escuela Colombiana de Carreras Industriales Bogotá, Colombia
| | - Manuel E Patarroyo
- Receptor-Ligand Department, Fundación Instituto de Inmunología de ColombiaBogotá, Colombia; Faculty of Medicine, Universidad Nacional de ColombiaBogotá, Colombia
| |
Collapse
|