1
|
Santamarina AB, Nehmi Filho V, Freitas JAD, Franco LAM, Fonseca JV, Martins RC, Turri JAO, Silva BFRBD, Gusmão AF, Olivieri EHR, Otoch JP, Pessoa AFM. Nutraceutical Capsules LL1 and Silymarin Supplementation Act on Mood and Sleep Quality Perception by Microbiota-Gut-Brain Axis: A Pilot Clinical Study. Nutrients 2024; 16:3049. [PMID: 39339649 PMCID: PMC11435014 DOI: 10.3390/nu16183049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Stress, unhealthy lifestyle, and sleep disturbance worsen cognitive function in mood disorders, prompting a rise in the development of integrative health approaches. The recent investigations in the gut-brain axis field highlight the strong interplay among microbiota, inflammation, and mental health. Thus, this study aimed to investigate a new nutraceutical formulation comprising prebiotics, minerals, and silymarin's impact on microbiota, inflammation, mood, and sleep quality. The study evaluated the LL1 + silymarin capsule supplementation over 180 days in overweight adults. We analyzed the fecal gut microbiota using partial 16S rRNA sequences, measured cytokine expression via CBA, collected anthropometric data, quality of life, and sleep questionnaire responses, and obtained plasma samples for metabolic and hormonal analysis at baseline (T0) and 180 days (T180) post-supplementation. Our findings revealed significant reshaping in gut microbiota composition at the phylum, genus, and species levels, especially in the butyrate-producer bacteria post-supplementation. These changes in gut microbiota were linked to enhancements in sleep quality, mood perception, cytokine expression, and anthropometric measures which microbiota-derived short-chain fatty acids might enhance. The supplementation tested in this study seems to be able to improve microbiota composition, reflecting anthropometrics and inflammation, as well as sleep quality and mood improvement.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo 03317-000, SP, Brazil
| | - Victor Nehmi Filho
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo 03317-000, SP, Brazil
| | - Jéssica Alves de Freitas
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo 03317-000, SP, Brazil
| | - Lucas Augusto Moysés Franco
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Joyce Vanessa Fonseca
- Laboratório de Investigação Médica em Protozoologia, Bacteriologia e Resistência Antimicrobiana (LIM-49), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Roberta Cristina Martins
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - José Antônio Orellana Turri
- Grupo de Pesquisa em Economia da Saúde, Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Bruna Fernanda Rio Branco da Silva
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Laboratório Interdisciplinar em Fisiologia e Exercício, Universidade Federal de São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Arianne Fagotti Gusmão
- International Research Center, A.C. Camargo Cancer Center, São Paulo 01508-010, SP, Brazil
| | | | - José Pinhata Otoch
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Hospital Universitário da Universidade de São Paulo, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Ana Flávia Marçal Pessoa
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| |
Collapse
|
2
|
Zhao Y, Zheng Y, Xie K, Hou Y, Liu Q, Jiang Y, Zhang Y, Man C. Combating Obesity: Harnessing the Synergy of Postbiotics and Prebiotics for Enhanced Lipid Excretion and Microbiota Regulation. Nutrients 2023; 15:4971. [PMID: 38068829 PMCID: PMC10707991 DOI: 10.3390/nu15234971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Obesity is a chronic metabolic disease that can be induced by a high-fat diet (HFD) and predisposes to a variety of complications. In recent years, various bioactive substances, such as probiotics, prebiotics, and postbiotics, have been widely discussed because of their good anti-lipid and anti-inflammatory activities. In this paper, soybean protein isolate was used as a substrate to prepare the postbiotic. Compound prebiotics (galactose oligosaccharides, fructose oligosaccharides, and lactitol) preparation Aunulife Postbiotics and Prebiotics Composition (AYS) is the research object. Weight loss and bowel movements in mice induced by a high-fat diet were studied. Moreover, qualitative and quantitative analyses of small-molecule metabolites in AYS were performed to identify the functional molecules in AYS. After 12 weeks of feeding, the weight gain of mice that were fed with high-dose AYS (group H) and low-dose AYS (group L) from 4 to 12 weeks was 6.72 g and 5.25 g (p < 0.05), both of which were significantly lower than that of the high-fat diet (group DM, control group) group (7.73 g) (p < 0.05). Serum biochemical analysis showed that TC, TG, and LDL-C levels were significantly lower in mice from the H and L groups (p < 0.05). In addition, the fecal lipid content of mice in the L group reached 5.89%, which was significantly higher than that of the DM group at 4.02% (p < 0.05). The study showed that AYS changed the structure of the intestinal microbiota in mice on a high-fat diet, resulting in a decrease in the relative abundance of Firmicutes and Muribaculaceae and an increase in the relative abundance of Bacteroidetes, Verrucomicrobia, and Lactobacillus. The metabolomics study results of AYS showed that carboxylic acids and derivatives, and organonitrogen compounds accounted for 51.51% of the AYS metabolites, among which pantothenate, stachyose, betaine, and citrate had the effect of preventing obesity in mice. In conclusion, the administration of prebiotics and postbiotic-rich AYS reduces weight gain and increases fecal lipid defecation in obese mice, potentially by regulating the intestinal microbiota of mice on a high-fat diet.
Collapse
Affiliation(s)
- Yueming Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Kui Xie
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yanmei Hou
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Qingjing Liu
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| |
Collapse
|
3
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. Oligosaccharides as Potential Therapeutics against Atherosclerosis. Molecules 2023; 28:5452. [PMID: 37513323 PMCID: PMC10386248 DOI: 10.3390/molecules28145452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the major cause of cardiovascular-disease-related death worldwide, resulting from the subendothelial accumulation of lipoprotein-derived cholesterol, ultimately leading to chronic inflammation and the formation of clinically significant atherosclerotic plaques. Oligosaccharides have been widely used in biomedical research and therapy, including tissue engineering, wound healing, and drug delivery. Moreover, oligosaccharides have been consumed by humans for centuries, and are cheap, and available in large amounts. Given the constantly increasing number of obesity, diabetes, and hyperlipidaemia cases, there is an urgent need for novel therapeutics that can economically and effectively slow the progression of atherosclerosis. In this review, we address the current state of knowledge in oligosaccharides research, and provide an update of the recent in vitro and in vivo experiments that precede clinical studies. The application of oligosaccharides could help to eliminate the residual risk after the application of other cholesterol-lowering medicines, and provide new therapeutic opportunities to reduce the associated burden of premature deaths because of atherosclerosis.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
4
|
Dimov I, Mollova D, Vasileva T, Bivolarski V, Nikolova M, Bivolarska A, Iliev I. Metabolic profiling of probiotic strain Lactobacillus delbrueckii subsp. bulgaricus L14 cultivated in presence of prebiotic oligosaccharides and polysaccharides in simulating in vitro gastrointestinal tract system. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2023.2178825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Affiliation(s)
- Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Daniela Mollova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| |
Collapse
|
5
|
Nehmi-Filho V, Santamarina AB, de Freitas JA, Trarbach EB, de Oliveira DR, Palace-Berl F, de Souza E, de Miranda DA, Escamilla-Garcia A, Otoch JP, Pessoa AFM. Novel nutraceutical supplements with yeast β-glucan, prebiotics, minerals, and Silybum marianum (silymarin) ameliorate obesity-related metabolic and clinical parameters: A double-blind randomized trial. Front Endocrinol (Lausanne) 2023; 13:1089938. [PMID: 36778595 PMCID: PMC9912840 DOI: 10.3389/fendo.2022.1089938] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/26/2022] [Indexed: 01/28/2023] Open
Abstract
Purpose It is known that obesity has a multifactorial etiology that involves genetic and environmental factors. The WHO estimates the worldwide prevalence of 1.9 billion overweight adults and more than 650 million people with obesity. These alarming data highlight the high and growing prevalence of obesity and represent a risk factor for the development and aggravation of other chronic diseases, such as nonalcoholic fatty liver disease (NAFLD) that is frequently considered the hepatic outcome of type 2 diabetes. The use of non-pharmacological therapies such as food supplements, nutraceuticals, and natural integrative therapies has grown as an alternative tool for obesity-related diseases compared to conventional medications. However, it is a still little explored research field and lacks scientific evidence of therapeutic effectiveness. Considering this, the aim is to evaluate whether a new nutraceutical supplement composition can improve and supply essential mineral nutrients, providing an improvement of obesity-related metabolic and endocrine parameters. Methods Sedentary volunteers (women and men) with body mass index (BMI) ≤34.9 kg/m2 were divided into two groups: Novel Nutraceutical Supplement_(S) (n = 30) and Novel Nutraceutical Supplement (n = 29), differing in the absence (S) or presence of silymarin, respectively. Volunteers were instructed to take two capsules in the morning and two capsules in the evening. No nutritional intervention was performed during the study period. The data (anthropometrics and anamneses) and harvest blood (biochemistry and hormonal exams) were collected at three different time points: baseline time [day 0 (T0)], day 90 (T90), and day 180 (T180) post-supplementation. Results In the anthropometric analysis, the waist circumference in middle abdomen (WC-mid) and waist circumference in iliac crest (WC-IC) were reduced. Also, the waist-to-height ratio (WHt R) and waist-to-hip ratio (WHR) seem to slightly decrease alongside the supplementation period with both nutraceutical supplements tested as well as transaminase enzyme ratio [aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio (AAR)], a known as a biomarker of NAFLD, and endocrine hormones cortisol and thyroid-stimulating hormone (TSH) at 90 and 180 days post-supplementation. Conclusions In a condition associated with sedentary and no nutritional intervention, the new nutraceutical supplement composition demonstrated the ability to be a strong and newfangled tool to improve important biomarkers associated with obesity and its comorbidities.
Collapse
Affiliation(s)
- Victor Nehmi-Filho
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Research and Development Efeom Nutrition S/A, São Paulo, SP, Brazil
| | | | - Jéssica Alves de Freitas
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Research and Development Efeom Nutrition S/A, São Paulo, SP, Brazil
| | - Ericka Barbosa Trarbach
- Laboratory of Cellular and Molecular Endocrinology (LIM25), Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Daniela Rodrigues de Oliveira
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fanny Palace-Berl
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | - Danielle Araujo de Miranda
- Departament of Physiology, Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio Escamilla-Garcia
- University Hospital of the University of São Paulo, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - José Pinhata Otoch
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Research and Development Efeom Nutrition S/A, São Paulo, SP, Brazil
- University Hospital of the University of São Paulo, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Ana Flávia Marçal Pessoa
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Research and Development Efeom Nutrition S/A, São Paulo, SP, Brazil
- Natural Products Committee, Brazilian Academic Consortium for Integrative Health (CABSIN), São Paulo, Brazil
| |
Collapse
|
6
|
In Vitro Production of Galactooligosaccharides by a Novel β-Galactosidase of Lactobacillus bulgaricus. Int J Mol Sci 2022; 23:ijms232214308. [PMID: 36430784 PMCID: PMC9697242 DOI: 10.3390/ijms232214308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
β-galactosidase is an enzyme with dual activity and important industrial application. As a hydrolase, the enzyme eliminates lactose in milk, while as a trans-galactosidase it produces prebiotic galactooligosaccharides (GOS) with various degrees of polymerization (DP). The aim of the present study is the molecular characterization of β-galactosidase from a Bulgarian isolate, Lactobacillus delbrueckii subsp. bulgaricus 43. The sequencing of the β-gal gene showed that it encodes a new enzyme with 21 amino acid replacements compared to all other β-galactosidases of this species. The molecular model revealed that the new β-galactosidase acts as a tetramer. The amino acids D207, H386, N464, E465, Y510, E532, H535, W562, N593, and W980 form the catalytic center and interact with Mg2+ ions and substrate. The β-gal gene was cloned into a vector allowing heterologous expression of E. coli BL21(DE3) with high efficiency, as the crude enzyme reached 3015 U/mL of the culture or 2011 U/mg of protein. The enzyme's temperature optimum at 55 °C, a pH optimum of 6.5, and a positive influence of Mg2+, Mn2+, and Ca2+ on its activity were observed. From lactose, β-Gal produced a large amount of GOS with DP3 containing β-(1→3) and β-(1→4) linkages, as the latter bond is particularly atypical for the L. bulgaricus enzymes. DP3-GOS formation was positively affected by high lactose concentrations. The process of lactose conversion was rapid, with a 34% yield of DP3-GOS in 6 h, and complete degradation of 200 g/L of lactose for 12 h. On the other hand, the enzyme was quite stable at 55 °C and retained about 20% of its activity after 24 h of incubation at this temperature. These properties expand our horizons as regards the use of β-galactosidases in industrial processes for the production of lactose-free milk and GOS-enriched foods.
Collapse
|
7
|
Mei Z, Yuan J, Li D. Biological activity of galacto-oligosaccharides: A review. Front Microbiol 2022; 13:993052. [PMID: 36147858 PMCID: PMC9485631 DOI: 10.3389/fmicb.2022.993052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Galacto-oligosaccharides (GOS) are oligosaccharides formed by β-galactosidase transgalactosylation. GOS is an indigestible food component that can pass through the upper gastrointestinal tract relatively intact and ferment in the colon to produce short-chain fatty acids (SCFAs) that further regulate the body’s intestinal flora. GOS and other prebiotics are increasingly recognized as useful food tools for regulating the balance of colonic microbiota-human health. GOS performed well compared to other oligosaccharides in regulating gut microbiota, body immunity, and food function. This review summarizes the sources, classification, preparation methods, and biological activities of GOS, focusing on the introduction and summary of the effects of GOS on ulcerative colitis (UC), to gain a comprehensive understanding of the application of GOS.
Collapse
Affiliation(s)
- Zhaojun Mei
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People’s Hospital, Luzhou, China
| | - Jiaqin Yuan
- Department of Orthopedics, The Second People’s Hospital of Yibin, Yibin, China
| | - Dandan Li
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dandan Li,
| |
Collapse
|
8
|
Iqbal MW, Riaz T, Mahmood S, Liaqat H, Mushtaq A, Khan S, Amin S, Qi X. Recent Advances in the Production, Analysis, and Application of Galacto-Oligosaccharides. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Sonia Khan
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Punjab, Pakistan
| | - Sabahat Amin
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Santamarina AB, Moraes RCM, Nehmi Filho V, Murata GM, de Freitas JA, de Miranda DA, Cerqueira ARA, Costa SKP, Ferreira AFF, Britto LR, de Camargo JA, Rodrigues de Oliveira D, de Jesus FN, Otoch JP, Pessoa AFM. The Symbiotic Effect of a New Nutraceutical with Yeast β-Glucan, Prebiotics, Minerals, and Silybum marianum (Silymarin) for Recovering Metabolic Homeostasis via Pgc-1α, Il-6, and Il-10 Gene Expression in a Type-2 Diabetes Obesity Model. Antioxidants (Basel) 2022; 11:447. [PMID: 35326098 PMCID: PMC8944780 DOI: 10.3390/antiox11030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
The use of natural products and derivatives for the prevention and control of non-communicable chronic diseases, such as type-2 diabetes (T2D), obesity, and hepatic steatosis is a way to achieve homeostasis through different metabolic pathways. Thus, male C57BL/6 mice were divided into the following groups: high-fat diet (HFD) vehicle, HFD + Supplemented, HFD + Supplemented_S, and isolated compounds. The vehicle and experimental formulations were administered orally by gavage once a day over the four weeks of the diet (28 consecutive days). We evaluated the energy homeostasis, cytokines, and mitochondrial gene expression in these groups of mice. After four weeks of supplementation, only the new nutraceutical group (HFD + Supplemented) experienced reduced fasting glycemia, insulin, HOMA index, HOMA-β, dyslipidemia, ectopic fat deposition, and hepatic fibrosis levels. Additionally, the PPARγ coactivator 1 α (Pgc-1α), interleukin-6 (Il-6), and interleukin-10 (Il-10) gene expression were augmented, while hepatic steatosis decreased and liver parenchyma was recovered. The glutathione-S-transferase activity status was found to be modulated by the supplement. We discovered that the new nutraceutical was able to improve insulin resistance and hepatic steatosis mainly by regulating IL-6, IL-10, and Pgc-1α gene expression.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil;
| | - Ruan Carlos Macêdo Moraes
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo 01246-903, SP, Brazil; (R.C.M.M.); (V.N.F.); (J.A.d.F.); (D.R.d.O.); (J.P.O.)
| | - Victor Nehmi Filho
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo 01246-903, SP, Brazil; (R.C.M.M.); (V.N.F.); (J.A.d.F.); (D.R.d.O.); (J.P.O.)
- Research and Development Efeom Nutrition S/A, São Paulo 03317-000, SP, Brazil
| | - Gilson Masahiro Murata
- Laboratory of Medical Investigation (LIM-29), Clinic Medical Department, University of São Paulo Medical School, São Paulo 01246-903, SP, Brazil;
| | - Jéssica Alves de Freitas
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo 01246-903, SP, Brazil; (R.C.M.M.); (V.N.F.); (J.A.d.F.); (D.R.d.O.); (J.P.O.)
| | - Danielle Araujo de Miranda
- Department of Physiology, Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil;
| | - Anderson Romério Azevedo Cerqueira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.R.A.C.); (S.K.P.C.)
| | - Soraia Katia Pereira Costa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.R.A.C.); (S.K.P.C.)
| | - Ana Flávia Fernandes Ferreira
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.F.F.F.); (L.R.B.)
| | - Luiz Roberto Britto
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.F.F.F.); (L.R.B.)
| | - Juliana Alves de Camargo
- Laboratory of Medical Investigation (LIM-55), Urology Department, University of São Paulo Medical School, São Paulo 01246-903, SP, Brazil;
| | - Daniela Rodrigues de Oliveira
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo 01246-903, SP, Brazil; (R.C.M.M.); (V.N.F.); (J.A.d.F.); (D.R.d.O.); (J.P.O.)
- Genomic Sciences and Precision Medicine Center (GSPMC), Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Flavia Neto de Jesus
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine Alberta, Calgary, AB T2N 1N4, Canada;
| | - José Pinhata Otoch
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo 01246-903, SP, Brazil; (R.C.M.M.); (V.N.F.); (J.A.d.F.); (D.R.d.O.); (J.P.O.)
- Research and Development Efeom Nutrition S/A, São Paulo 03317-000, SP, Brazil
| | - Ana Flávia Marçal Pessoa
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo 01246-903, SP, Brazil; (R.C.M.M.); (V.N.F.); (J.A.d.F.); (D.R.d.O.); (J.P.O.)
- Research and Development Efeom Nutrition S/A, São Paulo 03317-000, SP, Brazil
- Brazilian Academic Consortium for Integrative Health (CABSIN), Natural Products Committee, São Paulo 05449-070, SP, Brazil
| |
Collapse
|
10
|
Blanco-Morales V, Silvestre RDLÁ, Hernández-Álvarez E, Donoso-Navarro E, Alegría A, Garcia-Llatas G. Influence of Galactooligosaccharides on the Positive Effect of Plant Sterol-Enriched Beverages on Cardiovascular Risk and Sterol Colon Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:532-542. [PMID: 35012310 PMCID: PMC9127961 DOI: 10.1021/acs.jafc.1c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In the present study, the impact of galactooligosaccharide (GOS) addition to a plant sterol (PS)-enriched beverage on the hypocholesterolemic effect and on the bioavailability and colonic metabolization of sterols was evaluated. A crossover trial was undertaken in postmenopausal women who intook a PS-enriched (2 g PS/day) or PS-GOS-enriched beverage (2 g PS/day and 4.3 g GOS/day) for 6 weeks. The presence of GOS did not modify the hypocholesterolemic effect of the PS-enriched beverage (total- and low-density lipoprotein-cholesterol reductions) or sterol bioavailability (increments of serum markers of dietary PS intake and of cholesterol synthesis). The consumption of both beverages led to an increase of sterol and metabolite excretion (with the exception of coprostanol, which decreased) and to slight changes in women's capacities for sterol conversion, regardless of the GOS presence. This study demonstrates the suitability of simultaneous enrichment with PS and GOS in milk-based fruit beverages, considering their hypocholesterolemic effect.
Collapse
Affiliation(s)
- Virginia Blanco-Morales
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| | - Ramona de los Ángeles Silvestre
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Elena Hernández-Álvarez
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Encarnación Donoso-Navarro
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Amparo Alegría
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| |
Collapse
|
11
|
Neuroprotective effect of both synbiotics and ketogenic diet in a pentylenetetrazol-induced acute seizure murine model. Epilepsy Res 2021; 174:106668. [PMID: 34020148 DOI: 10.1016/j.eplepsyres.2021.106668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We aimed to maximize the efficacy of both ketogenic diet (KD) and other treatments to protect brain from acute seizure. METHODS L. fermentum MSK 408 strain, galactooligosaccharide (GOS), and L. fermentum MSK 408 with GOS were administered with two different diets for 8 weeks. To reveal the relationships among gut microbiota, fecal short-chain fatty acids (SCFAs) and brain related action against pentylenetetrazole (PTZ)-induced kindling, qPCR, NGS, and GC-MS analyses were used. RESULTS KD administration significantly reduced PTZ-induced seizure through reducing cell damage in the specific part of the brain; this effect was not interrupted by co-administration of synbiotics. Additionally, the synbiotic-treated normal diet (ND) group showed reduced seizure-related scores. SCFA concentrations of both KDs and ND with synbiotics (NDS) were dramatically reduced compared to those with NDs. Interestingly, NDS group showed independently different SCFAs ratios compared to both ND and KD group, possibly related to a reduction in seizure symptoms compared with that by KD groups. The gut microbiota modulation by KD suggested that the gut microbiota aids the host in generating energy, thus increase the usage of SCFAs such as butyrate and acetate. SIGNIFICANCE The results suggest that KD could reduce PTZ-induced seizures through modulating various factors such as the neuroendocrine system, brain protection, gut microbiota, fecal SCFAs, and gene expression in the gut and brain. Additionally, synbiotic treatment with KD could be a better method to reduce the side effects of KD without interrupting its anti-seizure effect. However, ND with synbiotics seizure reducing effect requires further analysis.
Collapse
|
12
|
Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opin Ther Targets 2020; 24:1263-1282. [PMID: 33180654 PMCID: PMC9394230 DOI: 10.1080/14728222.2020.1841749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Gut dysbiosis is assumed to play a role in obstructive sleep apnea (OSA)-associated morbidities. Pre- and probiotics, short chain fatty acids (SCFA) and fecal matter transplantation (FMT) may offer potential as novel therapeutic strategies that target this gut dysbiosis. As more mechanisms of OSA-induced dysbiosis are being elucidated, these novel approaches are being tested in preclinical and clinical development. Areas covered: We examined the evidence linking OSA to gut dysbiosis and discuss the effects of pre- and probiotics on associated cardiometabolic, neurobehavioral and gastrointestinal disorders. The therapeutic potential of SCFA and FMT are also discussed. We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central between 2000 - 2020. Expert opinion: To date, there are no clinical trials and only limited evidence from animal studies describing the beneficial effects of pre- and probiotic supplementation on OSA-mediated dysbiosis. Thus, more work is necessary to assess whether prebiotics, probiotics and SCFA are promising future novel strategies for targeting OSA-mediated dysbiosis.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| | - Saif Mashaqi
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Arizona School of Medicine , Tucson, AZ, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| |
Collapse
|
13
|
Xavier-Santos D, Bedani R, Lima ED, Saad SMI. Impact of probiotics and prebiotics targeting metabolic syndrome. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103666] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Effects of prebiotic carbohydrates on the growth promotion and cholesterol-lowering abilities of compound probiotics in vitro. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Farhangi MA, Dehghan P, Namazi N. Prebiotic supplementation modulates advanced glycation end-products (AGEs), soluble receptor for AGEs (sRAGE), and cardiometabolic risk factors through improving metabolic endotoxemia: a randomized-controlled clinical trial. Eur J Nutr 2019; 59:3009-3021. [PMID: 31728681 DOI: 10.1007/s00394-019-02140-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/04/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE The oxidative stress plays a key role in the initiation, propagation, and development of the complications of type 2 diabetes mellitus (T2DM). This trial aimed to evaluate the effects of resistant dextrin as a prebiotic on the cardiometabolic risk factors and the status of oxidative stress in patients with T2DM. METHODS Sixty-five female subjects with T2DM were assigned to either the intervention (n = 33) or control (n = 32) groups receiving 10 g/day of resistant dextrin or placebo, respectively, for 8 weeks. Fasting blood samples were collected at baseline and post-intervention to determine the serum levels of glycemic indices, lipid profile, atherogenic indices, and soluble receptor for AGEs (sRAGE), carboxymethyl lysine (CML), pentosidine, malondialdehyde (MDA), 8-iso-prostaglandin F2α (8-iso-PGF2α), total antioxidant capacity (TAC), antioxidant enzymes activity, and uric acid. Data were analyzed using SPSS software 17. Paired, unpaired Student's t tests, and analysis of covariance were used to compare the quantitative variables. RESULTS Resistant dextrin caused a significant decrease in FPG (- 17.43 mg/dl, 9.80%), TG (- 40.25 mg/dl, 23.01%), TC/HDL (- 0.80, 21.87%), LDL-c/HDL-c (- 0.80, 17.85%), Atherogenic index (- 0.40, 15.80%), LPS (- 6.5 EU/ml, 23.40%) and hs-CRP (- 8.02 ng/ml, 54.00%), MDA (- 1.21 nmol/mL, 25.58%), CML (- 93.40 ng/ml, 26.30%), 8-iso-PGF2α (- 4.65 pg/ml, 15.00%), and a significant increase in TAC (0.33 mmol/L, 36.25%) and s-RAGE (2.10 ng/ml, 28.90%) in the intervention group compared with the control group. No significant changes were observed in glycosylated hemoglobin, total cholesterol, LDL-c, HDL-c, superoxide dismutase, glutathione peroxidase and catalase, pentosidine, and uric acid in the intervention group compared with the control group. CONCLUSIONS Supplementation with resistant dextrin may improve the advanced glycation end-products, sRAGE, and cardiometabolic risk factors in women with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mahdieh Abbasalizad Farhangi
- Drug Applied Research Center, Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Immunology Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Blanco-Morales V, López-García G, Cilla A, Garcia-Llatas G, Barberá R, Lagarda MJ, Sánchez-Siles LM, Alegría A. The impact of galactooligosaccharides on the bioaccessibility of sterols in a plant sterol-enriched beverage: adaptation of the harmonized INFOGEST digestion method. Food Funct 2018; 9:2080-2089. [PMID: 29594273 DOI: 10.1039/c8fo00155c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effect of the addition of galactooligosaccharides (GOS) on sterol bioaccessibility in three plant sterol (PS)-enriched milk-based fruit beverages (without GOS addition (MfB) and with 2.5 g (MfB-G2) and 5.0 g (MfB-G5) GOS per 250 mL) was evaluated after micellar gastrointestinal digestion. Cholesterol bioaccessibility was very similar among beverages, though a slight significant increase (from 80% to 85%) was observed by the addition of 5.0 g GOS. The addition of GOS did not affect total PS bioaccessibility (≈37%). Based on the results obtained after micellar digestion, it has been demonstrated that these beverages could be a suitable food matrix for simultaneous enrichment with PS and GOS. The harmonized in vitro digestion model INFOGEST was applied to the MfB beverage, but the cholesterol content could not be quantified due to its contribution of bile salts. Hence, it was proposed: (i) a change in porcine bile salt concentration from 10 mM to 1.4 mM (in order to compare with micellar digestion); or (ii) a change of bile salt origin (bovine instead of porcine), maintaining physiological concentration (10 mM, INFOGEST condition). Both options allowed cholesterol quantification, with bioaccessibilities of 62% (reduction of bile salts) and 38% (replacement of the bile salt source), whereas plant sterol bioaccessibilities were 22% and 14%, respectively. Therefore, the change of bile salt origin maintaining INFOGEST concentration is proposed as a method to evaluate sterol (cholesterol and PS) bioaccessibility in these beverages, demonstrating the need for the selection of appropriate conditions of the INFOGEST harmonized method according to the food matrix and compounds to be determined.
Collapse
Affiliation(s)
- Virginia Blanco-Morales
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 - Burjassot, Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct 2018; 9:3057-3068. [PMID: 29790546 DOI: 10.1039/c8fo00118a] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gastrointestinal (GIT) microbiota, which plays a crucial role in human health, is influenced by a number of factors including diet. Consumption of specific dietary ingredients, such as dietary fibers and prebiotics, is an avenue by which the microbiota can be positively modulated. These substances may also reduce serum cholesterol levels through various mechanisms. Interest has increased in methods of reducing blood cholesterol level, because dyslipidemia is recognized as a contributory risk factor for the development of cardiovascular diseases. Several drugs have been developed for the treatment of hypercholesterolemia; however, undesirable side effects were observed, which have caused concerns about their long-term therapeutic use. Alternatively, many nonpharmacological approaches were tested to reduce elevated serum cholesterol levels. Dietary fibers and prebiotics have particularly beneficial effects on the GIT microbiome, and can also reduce serum cholesterol level through various mechanisms. Lactic acid bacteria (LAB) are potentially capable of synthesizing different polysaccharides, e.g. exopolysaccharides (EPS), which may play a role as prebiotics. LAB-based EPS have the potential to affect the gastrointestinal microbiome and reduce cholesterol. However, as dietary fibers comprise a complex group of substances with remarkably diverse structures, properties, and impacts, EPS also differ greatly and show a multitude of beneficial health effects. This review discusses the current knowledge related to the effects of dietary fibers and prebiotics on the human GIT microbiome, the prebiotic properties of EPS produced by LAB, and the health-promoting benefits of these polymers with special emphasis being given to cholesterol lowering.
Collapse
Affiliation(s)
- E Korcz
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, Mosonmagyaróvár, Hungary.
| | | | | |
Collapse
|
18
|
Tan H, Chen W, Liu Q, Yang G, Li K. Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Front Immunol 2018; 9:1504. [PMID: 30013563 PMCID: PMC6036268 DOI: 10.3389/fimmu.2018.01504] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big challenge for exploring new effective medicine for treating CC. Natural product promoting human health has become a hot topic and attracted many researchers recently. Pectin, a complex polysaccharide in plant cell wall, mainly consists of four major types of polysaccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of which can be degraded into various pectin oligosaccharides (POS) and may provide abundant resource for exploring potential anticancer drugs. POS have been regarded as a novel class of potential functional food with multiple health-promoting properties. POS have antibacterial activities against some aggressive and recurrent bacterial infection and exert beneficial immunomodulation for controlling CC risk. However, the molecular functional role of POS in the prevention of CC risk and progression remains doubtful. The review focuses on antioxidant and anti-inflammatory roles of POS for promoting human health by regulating some potential oxidative and inflammation-activated pathways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling pathways increases the antioxidant and antiinflammatory activities, which will result in the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS may inhibit CC development by affecting antioxidant and antiinflammatory signaling pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant and anti-inflammatory properties and promote CC progression. Specific structural and structurally modified POS may be associated with their functions and should be deeply explored in the future. The present review paper lacks the important information for the linkage between the specific structure of POS and its function. To further explore the effects of prebiotic potential of POS and their derivatives on human immunomodulation in the prevention of CC, the specific POS with a certain degree of polymerization or purified polymers are highly demanded to be performed in clinical practice.
Collapse
Affiliation(s)
- Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
19
|
Eid HM, Wright ML, Anil Kumar NV, Qawasmeh A, Hassan STS, Mocan A, Nabavi SM, Rastrelli L, Atanasov AG, Haddad PS. Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Front Pharmacol 2017; 8:387. [PMID: 28713266 PMCID: PMC5493053 DOI: 10.3389/fphar.2017.00387] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/02/2017] [Indexed: 01/11/2023] Open
Abstract
Metabolic syndrome is a cluster of three or more metabolic disorders including insulin resistance, obesity, and hyperlipidemia. Obesity has become the epidemic of the twenty-first century with more than 1.6 billion overweight adults. Due to the strong connection between obesity and type 2 diabetes, obesity has received wide attention with subsequent coining of the term "diabesity." Recent studies have identified unique contributions of the immensely diverse gut microbiota in the pathogenesis of obesity and diabetes. Several mechanisms have been proposed including altered glucose and fatty acid metabolism, hepatic fatty acid storage, and modulation of glucagon-like peptide (GLP)-1. Importantly, the relationship between unhealthy diet and a modified gut microbiota composition observed in diabetic or obese subjects has been recognized. Similarly, the role of diet rich in polyphenols and plant polysaccharides in modulating gut bacteria and its impact on diabetes and obesity have been the subject of investigation by several research groups. Gut microbiota are also responsible for the extensive metabolism of polyphenols thus modulating their biological activities. The aim of this review is to shed light on the composition of gut microbes, their health importance and how they can contribute to diseases as well as their modulation by polyphenols and polysaccharides to control obesity and diabetes. In addition, the role of microbiota in improving the oral bioavailability of polyphenols and hence in shaping their antidiabetic and antiobesity activities will be discussed.
Collapse
Affiliation(s)
- Hoda M. Eid
- Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology and Physiology, Université de MontréalMontréal, QC, Canada
- Canadian Institutes of Health Research Team in Aboriginal Antidiabetic MedicinesMontréal, QC, Canada
- Department of Pharmacognosy, University of Beni-SuefBeni-Suef, Egypt
| | - Michelle L. Wright
- Nell Hodgson Woodruff School of Nursing, Emory UniversityAtlanta, GA, United States
| | - N. V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal UniversityManipal, India
| | | | - Sherif T. S. Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and PharmacyCluj-Napoca, Romania
- ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary MedicineCluj-Napoca, Romania
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of SalernoFisciano, Italy
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of SciencesJastrzebiec, Poland
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Pierre S. Haddad
- Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology and Physiology, Université de MontréalMontréal, QC, Canada
- Canadian Institutes of Health Research Team in Aboriginal Antidiabetic MedicinesMontréal, QC, Canada
| |
Collapse
|
20
|
Miremadi F, Sherkat F, Stojanovska L. Hypocholesterolaemic effect and anti-hypertensive properties of probiotics and prebiotics: A review. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|