1
|
Patel A. Aflatoxin removal and biotransformation aptitude of food grade bacteria from milk and milk products- at a glance. Toxicon 2024; 249:108084. [PMID: 39216796 DOI: 10.1016/j.toxicon.2024.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microorganisms are the only entities in the biosphere with an incomparable ability to employ diverse organic and inorganic compounds for growth and convert it to simple form that is no longer harmful to human health and environment. Food grade microorganisms such as lactic acid bacteria, bifidobacteria, propionibacteria as well as several yeast species are associated with food fermentation processes as well as have gained probiotic status owing to their noteworthy offerings in health stimulation as a natural gut microbiota in animals and humans. However, as biological agents little is known about their application for bioremediation and biotransformation aptitude. In context to this, aflatoxin M1 is a class of mycotoxins often associated with milk through consumption of fungus contaminated feed & fodders by cattle and well documented for their adverse health effects. Therefore, current review summarizes significance of aflatoxins present in milk and dairy products in human life, their source, types & health implications; food grade bacteria including probiotic strains and their mechanism of action involved in the removal of aflatoxin; and last section discusses the outcome of major studies showing aflatoxin reduction potential of food grade bacteria in milk and milk based products.
Collapse
Affiliation(s)
- Ami Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Mehsana, 384002, Gujarat state, India.
| |
Collapse
|
2
|
Salehi A, Shariatifar N, Jahed-Khaniki G, Sadighara P, Hozoori M. Simple and rapid determination of tartrazine in fake saffron using the metal organic framework (Fe SA MOF@CNF) by HPLC/PDA. Sci Rep 2024; 14:8217. [PMID: 38589481 PMCID: PMC11002026 DOI: 10.1038/s41598-024-58825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
The present study of a novel metal-organic framework containing Fe single atoms doped on electrospun carbon nanofibers (Fe SA-MOF@CNF) based on dispersive micro solid phase extraction (D-μ-SPE) using HPLC-PDA for detection tartrazine in fake saffron samples was designed. The Fe SA-MOF@CNF sorbent was extensively characterized through various techniques including N2 adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The specific area of surface of the sorbent was 577.384 m2/g. The study variables were optimized via the central composite design (CCD), which included a sorbent mass of 15 mg, a contact time of 6 min, a pH of 7.56, and a tartrazine concentration of 300 ng/ml. Under the optimum condition, the calibration curve of this method was linear in the range of 5-1000 ng/mL, with a correlation coefficient of 0.992. The LOD and LOQ values were ranged 0.38-0.74 and 1.34-2.42 ng/ml, respectively. This approach revealed significant improvements, including high extraction recovery (98.64), recovery rates (98.43-102.72%), and accuracy (RSDs < 0.75 to 3.6%). the enrichment factors were obtained in the range of 80.6-86.4 with preconcentration factor of 22.3. Consequently, the D-μ-SPE method based on synthesized Fe SA-MOF@CNF could be recommended as a sustainable sorbent for detecting tartrazine in saffron samples.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Saffron Institute University of Torbat Heydarieh, Torbat Heydarieh, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Jahed-Khaniki
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hozoori
- Department of Family and Community Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
3
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
4
|
Wang Y, Jiang L, Zhang Y, Ran R, Meng X, Liu S. Research advances in the degradation of aflatoxin by lactic acid bacteria. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230029. [PMID: 37901116 PMCID: PMC10601132 DOI: 10.1590/1678-9199-jvatitd-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites that often contaminate food and animal feed, causing huge economic losses and serious health hazards. Aflatoxin contamination has become a major concern worldwide. Biological methods have been used to reduce aflatoxins in food and feed by inhibiting toxin production and detoxification. Among biological methods, lactic acid bacteria are of significant interest because of their safety, efficiency, and environmental friendliness. This study aimed to review the mechanisms by which lactic acid bacteria degrade aflatoxins and the factors that influence their degradation efficiency, including the action of the lactic acid bacteria themselves (cell wall adsorption) and the antifungal metabolites produced by the lactic acid bacteria. The current applications of lactic acid bacteria to food and feed were also reviewed. This comprehensive analysis provided insight into the binding mechanisms between lactic acid bacteria and aflatoxins, facilitating the practical applications of lactic acid bacteria to food and agriculture.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Ran
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shukun Liu
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Mohamed SIA, Shehata SAM, Bassiony SM, Mahgoub SAM, Abd El-Hack ME. Does the Use of Different Types of Probiotics Possess Detoxification Properties Against Aflatoxins Contamination in Rabbit Diets? Probiotics Antimicrob Proteins 2023; 15:1382-1392. [PMID: 36161400 PMCID: PMC10491703 DOI: 10.1007/s12602-022-09990-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
The present work was carried out to study the ability of five probiotics on the in vitro degradation of Aflatoxins B1 (AFB1). The best results of in vitro were tested on the detoxification of AFB1 in rabbits. A total of 40 growing New Zealand White (NZW) male rabbits were assigned to five experimental groups. Animals were fed the following diets: basal diet (control), basal diet contaminated with 300 ppb AFB1, basal diet contaminated with 300 ppb AFB1. + probiotic 3 (0.5 g/kg diet), basal diet contaminated with 300 ppb AFB1 + ajowan (0.5 g/kg diet), and basal diet contaminated with 300 ppb AFB1 + probiotic 3 (0.5 g/kg diet) + ajowan (0.5 g/kg diet). Live body weight significantly (P < 0.05) decreased in rabbits fed AFB1 contaminated diet compared to the control rabbits. All additives improved (P < 0.05) the live body weight. The best improvement occurred with probiotics + ajowan. The addition of probiotics increased (P < 0.05) daily body weight gain in all weeks except the first week. Adding ajowan or ajowan + probiotic led to a significant (P < 0.05) increase in live body weight gain and feed intake compared to rabbits fed AFB1 alone. The digestion coefficients of dry matter (DM), organic matter (OM), crude fiber (CF), ether extract (EE), nitrogen-free extract (NFE), and digestible crude protein (DCP) significantly (P < 0.05) decreased in rabbits fed AFB1 contaminated diet. All additives improved (P < 0.05) the digestibility coefficients of DM, OM, EE, CF, NFE, and total digested nutrients (TDN)%. The best improvement occurred with probiotics + ajowan. Concentrations of serum total protein, albumin and globulin significantly (P < 0.05) decreased in rabbits fed AFB1 contaminated diet compared with the control rabbits. In conclusion, the addition of probiotic 3 (AVI-5-BAC) + ajowan could be recommended to eliminate the toxicity of AFB1 and improve growth performance criteria in rabbits.
Collapse
Affiliation(s)
- Said I A Mohamed
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sabry A M Shehata
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sabry M Bassiony
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samir A M Mahgoub
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
6
|
Maidana L, de Souza M, Bracarense APFRL. Lactobacillus plantarum and Deoxynivalenol Detoxification: A Concise Review. J Food Prot 2022; 85:1815-1823. [PMID: 36173895 DOI: 10.4315/jfp-22-077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mycotoxins are toxic secondary fungal metabolites that contaminate feeds, and their levels remain stable during feed processing. The economic impact of mycotoxins on animal production happens mainly due to losses related to direct effects on animal health and trade losses related to grain rejection. Deoxynivalenol (DON) is a trichothecene mycotoxin that has contaminated approximately 60% of the grains worldwide. Ingestion of DON induces many toxic effects on human and animal health. Detoxification strategies to decrease DON levels in food and feeds include physical and chemical methods; however, they are not very effective when incorporated into the industrial production process. A valuable alternative to achieve this aim is the use of lactic acid bacteria. These bacteria can control fungal growth and thus overcome DON production or can detoxify the mycotoxin through adsorption and biotransformation. Some Lactobacillus spp. strains, such as Lactobacillus plantarum, have demonstrated preventive effects against DON toxicity in poultry and swine. This beneficial effect is associated with a binding capacity of lactic acid bacteria cell wall peptidoglycan with mycotoxins. Moreover, several antifungal compounds have been isolated from L. plantarum supernatants, including lactic, acetic, caproic, phenyl lactic, 3-hydroxylated fatty, and cyclic dipeptide acids. Biotransformation of DON by L. plantarum into other products is also hypothesized, but the mechanism remains unknown. In this concise review, we highlight the use of L. plantarum as an alternative approach to reduce DON levels and toxicity. Although the action mechanism of L. plantarum is still not fully understood, these bacteria are a safe, efficient, and low-cost strategy to reduce economic losses from mycotoxin contamination cases. HIGHLIGHTS
Collapse
Affiliation(s)
- Leila Maidana
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil.,Department of Pathological Sciences, Veterinary Sciences Faculty, Universidad Nacional de Asunción, San Lorenzo, 111408, Paraguay
| | - Marielen de Souza
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| |
Collapse
|
7
|
Abdolmaleki K, Javanmardi F, Gavahian M, Phimolsiripol Y, Ruksiriwanich W, Mir SA, Mousavi Khaneghah A. Emerging technologies in combination with probiotics for aflatoxins removal: An updated review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Khadije Abdolmaleki
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohsen Gavahian
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology 1, Shuefu Road Neipu Pingtung 91201 Taiwan, ROC
| | | | | | - Shabir Ahmad Mir
- Department of Food Science and Technology Government College for Women MA Road Srinagar, Jammu, and Kashmir India
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology Warsaw Poland
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas, São Paulo Brazil
| |
Collapse
|
8
|
Huang G, Ma J, Li J, Yan L. Study on the interaction between aflatoxin M1 and DNA and its application in the removal of aflatoxin M1. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Alrosan M, Tan TC, Koh WY, Easa AM, Gammoh S, Alu'datt MH. Overview of fermentation process: structure-function relationship on protein quality and non-nutritive compounds of plant-based proteins and carbohydrates. Crit Rev Food Sci Nutr 2022; 63:7677-7691. [PMID: 35266840 DOI: 10.1080/10408398.2022.2049200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Demands for high nutritional value-added food products and plant-based proteins have increased over the last decade, in line with the growth of the human population and consumer health awareness. The quality of the plant-based proteins depends on their digestibility, amino acid content, and residues of non-nutritive compounds, such as phenolic compounds, anti-nutritional compounds, antioxidants, and saponins. The presence of these non-nutritive compounds could have detrimental effects on the quality of the proteins. One of the solutions to address these shortcomings of plant-based proteins is fermentation, whereby enzymes that present naturally in microorganisms used during fermentation are responsible for the cleavage of the bonds between proteins and non-nutritive compounds. This mechanism has pronounced effects on the non-nutritive compounds, resulting in the enhancement of protein digestibility and functional properties of plant-based proteins. We assert that the types of plant-based proteins and microorganisms used during fermentation must be carefully addressed to truly enhance the quality, functional properties, and health functionalities of plant-based proteins.Supplemental data for this article is available online at here. show.
Collapse
Affiliation(s)
- Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Faculty of Agriculture, Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Wee Yin Koh
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Sana Gammoh
- Faculty of Agriculture, Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammad H Alu'datt
- Faculty of Agriculture, Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Chaudhary HJ, Patel AR. Removal of aflatoxin M1 from milk and aqueous medium by indigenously isolated strains of W. confusa H1 and L. plantarum S2. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Ghadaksaz A, Nodoushan SM, Sedighian H, Behzadi E, Fooladi AAI. Evaluation of the Role of Probiotics As a New Strategy to Eliminate Microbial Toxins: a Review. Probiotics Antimicrob Proteins 2022; 14:224-237. [PMID: 35031968 DOI: 10.1007/s12602-021-09893-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 01/17/2023]
Abstract
Probiotics are living microorganisms that have favorable effects on human and animal health. The most usual types of microorganisms recruited as probiotics are lactic acid bacteria (LAB) and bifidobacteria. To date, numerous utilizations of probiotics have been reported. In this paper, it is suggested that probiotic bacteria can be recruited to remove and degrade different types of toxins such as mycotoxins and algal toxins that damage host tissues and the immune system causing local and systemic infections. These microorganisms can remove toxins by disrupting, changing the permeability of the plasma membrane, producing metabolites, inhibiting the protein translation, hindering the binding to GTP binding proteins to GM1 receptors, or by preventing the interaction between toxins and adhesions. Here, we intend to review the mechanisms that probiotic bacteria use to eliminate and degrade microbial toxins.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Mousavi Nodoushan
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran.
| |
Collapse
|
12
|
Muaz K, Riaz M, Oliveira CAFD, Akhtar S, Ali SW, Nadeem H, Park S, Balasubramanian B. Aflatoxin M1 in milk and dairy products: global occurrence and potential decontamination strategies. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1873387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khurram Muaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Riaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | | |
Collapse
|
13
|
da Cruz PO, de Matos CJ, Nascimento YM, Tavares JF, de Souza EL, Magalhães HIF. Efficacy of Potentially Probiotic Fruit-Derived Lactobacillus fermentum, L. paracasei and L. plantarum to Remove Aflatoxin M 1 In Vitro. Toxins (Basel) 2020; 13:toxins13010004. [PMID: 33374495 PMCID: PMC7822198 DOI: 10.3390/toxins13010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
This study evaluated the efficacy of potentially probiotic fruit-derived Lactobacillus isolates, namely, L. paracasei 108, L. plantarum 49, and L. fermentum 111, to remove aflatoxin M1 (AFM1) from a phosphate buffer solution (PBS; spiked with 0.15 µg/mL AFM1). The efficacy of examined isolates (approximately 109 cfu/mL) as viable and non-viable cells (heat-killed; 100 °C, 1 h) to remove AFM1 was measured after 1 and 24 h at 37 °C. The recovery of AFM1 bound to bacterial cells after washing with PBS was also evaluated. Levels of AFM1 in PBS were measured with high-performance liquid chromatography. Viable and non-viable cells of all examined isolates were capable of removing AFM1 in PBS with removal percentage values in the range of 73.9–80.0% and 72.9–78.7%, respectively. Viable and non-viable cells of all examined Lactobacillus isolates had similar abilities to remove AFM1. Only L. paracasei 108 showed higher values of AFM1 removal after 24 h for both viable and non-viable cells. Percentage values of recovered AFM1 from viable and non-viable cells after washing were in the range of 13.4–60.6% and 10.9–47.9%, respectively. L. plantarum 49 showed the highest AFM1 retention capacity after washing. L. paracasei 108, L. plantarum 49, and L. fermentum 111 could have potential application to reduce AFM1 to safe levels in foods and feeds. The cell viability of examined isolates was not a pre-requisite for their capacity to remove and retain AFM1.
Collapse
Affiliation(s)
- Paloma Oliveira da Cruz
- Laboratory of Toxicology, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (P.O.d.C.); (C.J.d.M.); (H.I.F.M.)
| | - Clarisse Jales de Matos
- Laboratory of Toxicology, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (P.O.d.C.); (C.J.d.M.); (H.I.F.M.)
| | - Yuri Mangueira Nascimento
- Unity for Characterization and Analysis, Institute for Research in Pharmaceuticals and Medications, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.N.); (J.F.T.)
| | - Josean Fechine Tavares
- Unity for Characterization and Analysis, Institute for Research in Pharmaceuticals and Medications, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.N.); (J.F.T.)
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
- Correspondence:
| | - Hemerson Iury Ferreira Magalhães
- Laboratory of Toxicology, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (P.O.d.C.); (C.J.d.M.); (H.I.F.M.)
| |
Collapse
|
14
|
Kariyawasam KMGMM, Lee NK, Paik HD. Fermented dairy products as delivery vehicles of novel probiotic strains isolated from traditional fermented Asian foods. Journal of Food Science and Technology 2020; 58:2467-2478. [PMID: 34194083 DOI: 10.1007/s13197-020-04857-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The screening of novel probiotic strains from various food sources including fruits, vegetables, herbs, and traditional fermented foods, have been of growing concern recently. Most of these potential probiotic lactic acid bacteria isolates were distinguished from the commercial probiotics based on multiple therapeutic effects and functionalities. Recent in vitro and in vivo investigates have also verified the usage of probiotics to lower the risk of diseases. Application of these novel strains in fermented dairy products is also an emerging trend to improve the physical and quality characteristics, functional properties, and safety of dairy products. Moreover, since dairy products are one of the highest consumed products in the globe, the dispatch channels for fermented dairy products are already established. Therefore, incorporating novel probiotic strains into fermented dairy products might be the most feasible approach for their delivery. In this context, our aim is to discuss the feasibility of dairy products as delivery vehicles for novel probiotic strains. Thus, we summarize the scientific evidence that points to a dynamic future for the production of fermented dairy-based probiotics.
Collapse
Affiliation(s)
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
15
|
Liu A, Zheng Y, Liu L, Chen S, He L, Ao X, Yang Y, Liu S. Decontamination of Aflatoxins by Lactic Acid Bacteria. Curr Microbiol 2020; 77:3821-3830. [PMID: 32979055 DOI: 10.1007/s00284-020-02220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Aflatoxins are toxic secondary metabolic products, which exert great hazards to human and animal health. Decontaminating aflatoxins from food ingredients to a threshold level is a prime concern for avoiding risks to the consumers. Biological decontamination processes of aflatoxins have received widespread attention due to their mild and environmental-friendly nature. Many reports have been published on the decontamination of aflatoxins by microorganisms, especially lactic acid bacteria (LAB), a well-explored probiotic and generally recognized as safe. The present review aims at updating the decontamination of produced aflatoxins using LAB, with an emphasis on the decontamination mechanism and influence factors for decontamination. This comprehensive analysis provides insights into the binding mechanisms between LAB and aflatoxins, facilitating the theoretical and practical application of LAB for decontaminating hazardous substances in food and agriculture.
Collapse
Affiliation(s)
- Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Yiliu Zheng
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020; 9:E644. [PMID: 32443392 PMCID: PMC7278662 DOI: 10.3390/foods9050644] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination continues to be a food safety concern globally, with the most toxic being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the contamination of foods, which affects the liver, immune system and reproduction after infiltration into human beings and animals. There are numerous reports on aflatoxins focusing on achieving appropriate methods for quantification, precise detection and control in order to ensure consumer safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2, G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern. Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes; aflatoxin contamination in foods and feeds; health effects in human beings and animals due to aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Department of Biotechnology, Sari Agricultural Science and Natural Resource University, 9th km of Farah Abad Road, Mazandaran 48181-68984, Iran;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, Polo III-Saúde, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
17
|
Nguyen T, Flint S, Palmer J. Control of aflatoxin M 1 in milk by novel methods: A review. Food Chem 2019; 311:125984. [PMID: 31855773 DOI: 10.1016/j.foodchem.2019.125984] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
Aflatoxin M1 (AFM1) in milk and milk products has been recognised as an issue for over 30 years. Controlling AFM1 in milk is important to protect human health and trade. Preventing contamination by avoiding fungal contamination of cattle feed is the best method of control, however this is hard to avoid in some countries. Treating milk containing AFM1 is an alternative control measure, however, there is no single approved method. The challenge is to select a treatment method that is effective but does not affect the organoleptic quality of milk. This study reviews the strategies for degrading AFM1 in milk including yeast, lactic acid bacteria, enzyme, peroxide, ozone, UV light and cold plasma. This review compares the efficacy, influencing factors, (possible) mechanisms of activity, advantages, limitations and potential future trends of these methods and provides some recommendations for the treatment of milk to reduce the risk of AFM1 contamination.
Collapse
Affiliation(s)
- Thu Nguyen
- School of Food and Advanced Technology, Massey University, New Zealand.
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, New Zealand.
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, New Zealand.
| |
Collapse
|
18
|
Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1403-1436. [PMID: 33336904 DOI: 10.1111/1541-4337.12481] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 12/18/2022]
Abstract
Fungal contamination of food and animal feed, especially by mycotoxigenic fungi, is not only a global food quality concern for food manufacturers, but it also poses serious health concerns because of the production of a variety of mycotoxins, some of which present considerable food safety challenges. In today's mega-scale food and feed productions, which involve a number of processing steps and the use of a variety of ingredients, fungal contamination is regarded as unavoidable, even good manufacturing practices are followed. Chemical preservatives, to some extent, are successful in retarding microbial growth and achieving considerably longer shelf-life. However, the increasing demand for clean label products requires manufacturers to find natural alternatives to replace chemically derived ingredients to guarantee the clean label. Lactic acid bacteria (LAB), with the status generally recognized as safe (GRAS), are apprehended as an apt choice to be used as natural preservatives in food and animal feed to control fungal growth and subsequent mycotoxin production. LAB species produce a vast spectrum of antifungal metabolites to inhibit fungal growth; and also have the capacity to adsorb, degrade, or detoxify fungal mycotoxins including ochratoxins, aflatoxins, and Fusarium toxins. The potential of many LAB species to circumvent spoilage associated with fungi has been exploited in a variety of human food and animal feed stuff. This review provides the most recent updates on the ability of LAB to serve as antifungal and anti-mycotoxigenic agents. In addition, some recent trends of the use of LAB as biopreservative agents against fungal growth and mycotoxin production are highlighted.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| |
Collapse
|