1
|
García-Márquez J, Álvarez-Torres D, Cerezo IM, Domínguez-Maqueda M, Figueroa FL, Alarcón FJ, Acién G, Martínez-Manzanares E, Abdala-Díaz RT, Béjar J, Arijo S. Combined Dietary Administration of Chlorella fusca and Ethanol-Inactivated Vibrio proteolyticus Modulates Intestinal Microbiota and Gene Expression in Chelon labrosus. Animals (Basel) 2023; 13:3325. [PMID: 37958080 PMCID: PMC10648860 DOI: 10.3390/ani13213325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The use of functional feeds in aquaculture is currently increasing. This study aimed to assess the combined impact of dietary green microalgae Chlorella fusca and ethanol-inactivated Vibrio proteolyticus DCF12.2 (CVP diet) on thick-lipped grey mullet (Chelon labrosus) juvenile fish. The effects on intestinal microbiota and the transcription of genes related to metabolism, stress, and the immune system were investigated after 90 days of feeding. Additionally, the fish were challenged with Aeromonas hydrophila and polyinosinic-polycytidylic acid (poly I:C) to evaluate the immune response. Microbiota analysis revealed no significant differences in alpha and beta diversity between the anterior and posterior intestinal sections of fish fed the control (CT) and CVP diets. The dominant genera varied between the groups; Pseudomonas and Brevinema were most abundant in the CVP group, whereas Brevinema, Cetobacterium, and Pseudomonas were predominant in the CT group. However, microbial functionality remained unaltered. Gene expression analysis indicated notable changes in hif3α, mhcII, abcb1, mx, and tnfα genes in different fish organs on the CVP diet. In the head kidney, gene expression variations were observed following challenges with A. hydrophila or poly I:C, with higher peak values seen in fish injected with poly I:C. Moreover, c3 mRNA levels were significantly up-regulated in the CVP group 72 h post-A. hydrophila challenge. To conclude, incorporating C. fusca with V. proteolyticus in C. labrosus diet affected the microbial species composition in the intestine while preserving its functionality. In terms of gene expression, the combined diet effectively regulated the transcription of stress and immune-related genes, suggesting potential enhancement of fish resistance against stress and infections.
Collapse
Affiliation(s)
- Jorge García-Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Daniel Álvarez-Torres
- Centro Experimental Grice Hutchinson, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Isabel M. Cerezo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
- Unidad de Bioinformática–SCBI, Parque Tecnológico, Universidad de Málaga, 29590 Málaga, Spain
| | - Marta Domínguez-Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Félix L. Figueroa
- Centro Experimental Grice Hutchinson, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Gabriel Acién
- Departamento de Ingeniería Química, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Eduardo Martínez-Manzanares
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Roberto T. Abdala-Díaz
- Departamento de Ecología y Geología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Julia Béjar
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Salvador Arijo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
2
|
Sanahuja I, Ruiz A, Firmino JP, Reyes-López FE, Ortiz-Delgado JB, Vallejos-Vidal E, Tort L, Tovar-Ramírez D, Cerezo IM, Moriñigo MA, Sarasquete C, Gisbert E. Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J Anim Sci Biotechnol 2023; 14:90. [PMID: 37422657 DOI: 10.1186/s40104-023-00895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/11/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The development of a sustainable business model with social acceptance, makes necessary to develop new strategies to guarantee the growth, health, and well-being of farmed animals. Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i) promote cell proliferation and differentiation, ii) have immunostimulatory effects, iii) modulate gut microbiota, and/or iv) enhance the digestive function. To provide inside into the effects of D. hansenii on juveniles of gilthead seabream (Sparus aurata) condition, we integrated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition, through histological and microbiota state, and its transcriptomic profiling. RESULTS After 70 days of a nutritional trial in which a diet with low levels of fishmeal (7%) was supplemented with 1.1% of D. hansenii (17.2 × 105 CFU), an increase of ca. 12% in somatic growth was observed together with an improvement in feed conversion in fish fed a yeast-supplemented diet. In terms of intestinal condition, this probiotic modulated gut microbiota without affecting the intestine cell organization, whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells. Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria, especially those characterized as opportunistic groups. The microarrays-based transcriptomic analysis found 232 differential expressed genes in the anterior-mid intestine of S. aurata, that were mostly related to metabolic, antioxidant, immune, and symbiotic processes. CONCLUSIONS Dietary administration of D. hansenii enhanced somatic growth and improved feed efficiency parameters, results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated. This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis, which demonstrated its safety as a feed additive. At the transcriptomic level, D. hansenii promoted metabolic pathways, mainly protein-related, sphingolipid, and thymidylate pathways, in addition to enhance antioxidant-related intestinal mechanisms, and to regulate sentinel immune processes, potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Joana P Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Isabel M Cerezo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
- SCBI, Bioinformatic Unit, University of Malaga, 29590, Malaga, Spain
| | - Miguel A Moriñigo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain.
| |
Collapse
|
3
|
Hoque F, Abraham TJ, Joardar S, Paria P, Behera BK, Das BK. Effects of dietary supplementation of Pseudomonas aeruginosa FARP72 on the immunomodulation and resistance to Edwardsiella tarda in Pangasius pangasius. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100071. [PMID: 36419609 PMCID: PMC9680098 DOI: 10.1016/j.fsirep.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa FARP72 (PA) supplemented diet impacts the innate immunity. Innate immune responses of P. pangasius are differentially stimulated by PA diet. It improved the resistance of P. pangasius against E. tarda infection significantly. IL-1β & C3 genes upregulated significantly in kidney of PA diet-fed challenged fish. Highest upregulation of transferrin seen in liver of PA diet-fed challenged fish.
Edwardsiella tarda is one of the serious bacterial pathogens infecting both cultured and wild catfish urging an immediate need for effective protection strategies. This study assessed the effects of dietary supplementation of Pseudomonas aeruginosa FARP72 at 108 cells/g feed (PA diet) for 30 days on the innate immunity parameters, viz., respiratory oxidative burst (ROB) activity, lysozyme, ceruloplasmin, myeloperoxidase, in-vitro nitric oxide (NO) production in addition to the expression of immune genes encoding interleukin-1β, C3 and transferrin in yellowtail catfish Pangasius pangasius and their resistance to Edwardsiella tarda challenge at a sub-lethal dose of 1.50 × 107 cells/fish. A significant increase in the innate immunity parameters was noted in PA diet-fed catfish on 30 dpf compared to the control. Post E. tarda challenge, the levels of immune parameters increased significantly and peaked at 5 dpi irrespective of feeding to confer protection against E. tarda. Their levels, however, decreased on and from 10 dpi. The results on the expression of immune genes encoding interleukin-1β, C3 and transferrin in the kidney and liver tissue samples of PA diet-fed P. pangasius upon challenge with E. tarda further confirmed the ability of P. aeruginosa to stimulate primary immune organs at the gene level. The effects of feeding P. aeruginosa FARP72 on the immune functions of catfish as examined by the functional immune assays, thus, demonstrating the innate immune responses of catfish that are differentially stimulated by the PA diet. The findings of our study would help evolve management strategies to confer protection against E. tarda infection in commercial catfish aquaculture.
Collapse
|
4
|
Aeromonas hydrophila Induces Skin Disturbance through Mucosal Microbiota Dysbiosis in Striped Catfish ( Pangasianodon hypophthalmus). mSphere 2022; 7:e0019422. [PMID: 35766485 PMCID: PMC9429897 DOI: 10.1128/msphere.00194-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens are well equipped to adhere to and initiate infection in teleost fish. Fish skin mucus serves as the first barrier against environmental pathogens. The mucus harbors commensal microbes that impact host physiological and immunological responses. However, how the skin mucosal microbiota responds to the presence of pathogens remains largely unexplored. Thus, little is known about the status of skin mucus prior to infection with noticeable symptoms. In this study, we investigated the interactions between pathogens and the skin mucosal microbiota as well as the fish skin immune responses in the presence of pathogens. Striped catfish (Pangasianodon hypophthalmus) were challenged with different concentrations of the bacterial pathogen Aeromonas hydrophila (AH), and the skin immune response and the mucosal microbiota were examined by quantitative PCR (qPCR) and 16S rRNA gene sequence analysis. We determined that the pathogen concentration needed to stimulate the skin immune response was associated with significant mucosal microbiota changes, and we reconfirmed these observations using an ex vivo fish skin model. Further analysis indicated that changes in the microbiota were attributed to a significant increase in opportunistic pathogens over AH. We concluded that the presence and increase of AH result in dysbiosis of the mucosal microbiota that can stimulate skin immune responses. We believe that our work sheds light on host-pathogen-commensal microbiota interactions and therefore contributes to aquaculture fish health. IMPORTANCE The fish skin mucosal microbiota is essential in modulating the host response to the presence of pathogens. Our study provides a platform to study both the correlation and causation of the interactions among the pathogen, fish skin, and the skin mucosal microbiota. Based on these findings, we provide the first mechanistic information on how mucosal microbiota changes induced by the pathogen AH result in skin disturbance with immune stimulation in striped catfish in the natural state and a potential direction for early-infection screening. Thus, this study is highly significant in the prevention of fish disease.
Collapse
|
5
|
Husain F, Duraisamy S, Balakrishnan S, Ranjith S, Chidambaram P, Kumarasamy A. Phenotypic assessment of safety and probiotic potential of native isolates from marine fish Moolgarda seheli towards sustainable aquaculture. Biologia (Bratisl) 2022; 77:775-790. [PMID: 35034969 PMCID: PMC8744026 DOI: 10.1007/s11756-021-00957-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023]
Abstract
Aquaculture is a highly productive and fast-growing agricultural sector. The occurrence of epidemic or sporadic disease outbreak is a major limiting factor in this sector, thus better alternatives are the need of the hour. Use of indigenous probiotics is a promising strategy to control infectious diseases. Thus, the present study was aimed to screen and characterize potent indigenous probiotics from marine fish, Moolgarda seheli, towards enhancing sustainable aquaculture production. Totally 347 bacterial isolates were obtained from M. seheli gastrointestinal tract, out of these, four isolates (KAF121, 124, 135, 136) were confirmed as potent probiotics in terms of biosafety, highly resistant to acidic pH, gastric juice, bile salt, high hydrophobicity to solvents, auto and co-aggregation potential. These four isolates also exhibited virtuous antioxidant activity. Further the isolates, KAF124 and 135 proved their efficiency in growth and survival of fish after challenged againt Aeromonas hydrophila. The isolates were identified based on their 16S rRNA gene sequence and the data were submitted to Genbank as Pseudomonas aeruginosa KAF121 (MH393516), Bacillus cereus KAF124 (MH393226), Bacillus thuringiensis KAF135 (MH393230), and Pseudomonas otitidis KAF136 (MH393230). The results conclude that two isolates, KAF124 and KAF135 are highly safe and potent probiotics which are first time isolated from the marine fish M. seheli. The two Bacillus strains could be used as better alternatives to antibiotics and other chemical-based drugs to prevent/control infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Fazal Husain
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Senthilkumar Balakrishnan
- Department of Medical and Molecular Microbiology, Microtech Laboratories, Attur, Tamil Nadu 636 102 India
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Prahalathan Chidambaram
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| |
Collapse
|
6
|
Sam-on MFS, Mustafa S, Yusof MT, Mohd Hashim A, Abbasiliasi S, Zulkifly S, Jahari MA, Roslan MAH. Evaluation of three Bacillus spp. isolated from the gut of giant freshwater prawn as potential probiotics against pathogens causing Vibriosis and Aeromonosis. Microb Pathog 2022; 164:105417. [DOI: 10.1016/j.micpath.2022.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
|
7
|
Priyadarsani L, Abraham TJ, Adikesavalu H, Dash G, Nagesh TS. Effects of dietary supplementation of vitamin-E and commercial probiotics on the innate immunity of Labeo rohita against Aeromonas hydrophila infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100013. [DOI: 10.1016/j.fsirep.2021.100013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022] Open
|
8
|
Orso G, Solovyev MM, Facchiano S, Tyrikova E, Sateriale D, Kashinskaya E, Pagliarulo C, Hoseinifar HS, Simonov E, Varricchio E, Paolucci M, Imperatore R. Chestnut Shell Tannins: Effects on Intestinal Inflammation and Dysbiosis in Zebrafish. Animals (Basel) 2021; 11:ani11061538. [PMID: 34070355 PMCID: PMC8228309 DOI: 10.3390/ani11061538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary With the increase in global population the production of animal proteins becomes increasingly crucial. Aquaculture is the first animal protein supply industry for human consumption. Intensive farming techniques are employed to increase productivity, but these may cause stressful conditions for fish, resulting in impaired growth and poor health conditions. Intestinal inflammation is one of the most common diseases of fish in intensive farming. Intestinal inflammation is usually accompanied by an alteration of the microbiota or dysbiosis. Inflammation and dysbiosis are so tightly intertwined that inflammation may contribute to or result from dysregulation of gut microbiota. Natural substances of plant origin rich in bioactive molecules or more simply phytochemicals, have been proved to be able to reduce inflammation and improve the general health status in various commercially relevant species. In this study, we evaluated the effect of tannins, a class of polyphenols, the most abundant phytochemicals, on intestinal inflammation and microbiota in zebrafish (Danio rerio), a small freshwater fish become an attractive biomedicine and aquaculture animal model during the last decades. The zebrafish has been employed in a vast array of studies aiming at investigating the essential processes underlying intestinal inflammation and injury due to its conservative gut morphology and functions. In this study, we administered a diet enriched with chestnut shell extract rich in tannins to a zebrafish model of intestinal inflammation. The treatment ameliorated the damaged intestinal morphophysiology and the microbiota asset. Our results sustain that products of natural origin with low environmental impact and low cost, such as tannins, may help to ease some of the critical issues affecting the aquaculture sector. Abstract The aim of the present study was to test the possible ameliorative efficacy of phytochemicals such as tannins on intestinal inflammation and dysbiosis. The effect of a chestnut shell (Castanea sativa) extract (CSE) rich in polyphenols, mainly represented by tannins, on k-carrageenan-induced intestinal inflammation in adult zebrafish (Danio rerio) was tested in a feeding trial. Intestinal inflammation was induced by 0.1% k-carrageenan added to the diet for 10 days. CSE was administered for 10 days after k-carrageenan induced inflammation. The intestinal morphology and histopathology, cytokine expression, and microbiota were analyzed. The k-carrageenan treatment led to gut lumen expansion, reduction of intestinal folds, and increase of the goblet cells number, accompanied by the upregulation of pro-inflammatory factors (TNFα, COX2) and alteration in the number and ratio of taxonomic groups of bacteria. CSE counteracted the inflammatory status enhancing the growth of health helpful bacteria (Enterobacteriaceae and Pseudomonas), decreasing the pro-inflammatory factors, and activating the anti-inflammatory cytokine IL-10. In conclusion, CSE acted as a prebiotic on zebrafish gut microbiota, sustaining the use of tannins as food additives to ameliorate the intestinal inflammation. Our results may be relevant for both aquaculture and medical clinic fields.
Collapse
Affiliation(s)
- Graziella Orso
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Mikhail M. Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| | - Serena Facchiano
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Evgeniia Tyrikova
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
- Department of Natural Sciences, Novosibirsk State University, 630091 Novosibirsk, Russia
| | - Daniela Sateriale
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Elena Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
| | - Caterina Pagliarulo
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Hossein S. Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, 49138-15739 Gorgan, Iran;
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia;
| | - Ettore Varricchio
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Marina Paolucci
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
- Correspondence:
| | - Roberta Imperatore
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| |
Collapse
|
9
|
Hoque F, Abraham TJ. Adhesion and colonization of potential probiont Pseudomonas aeruginosa FARP 72 in the intestine of yellowtail catfish, Pangasius pangasius. Arch Microbiol 2021; 203:2711-2717. [PMID: 33585990 DOI: 10.1007/s00203-021-02188-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2020] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
Adhesion is recognized as the first important step of a probiont for intestinal colonization. This study assessed the ability of an antagonistic Pseudomonas aeruginosa FARP72 to adhere and colonize the intestine of yellowtail catfish, Pangasius pangasius both in vitro and in vivo. For the in vitro assay, the whole intestines of each of two starved P. pangasius were introduced separately into tubes containing bluish-green pigment-producing P. aeruginosa FARP72 at 8.00 log10 CFU/mL and physiological saline (0.85% sodium chloride) and incubated for 1 h at 30 ± 1 °C. The homogenate mucus solutions from the intestine samples were serially diluted and plated onto Pseudomonas isolation agar to determine the counts of bluish-green pigment-producing P. aeruginosa (BPPAC). The difference between the numbers of BPPAC and presumptive Pseudomonas counts (PPC) in the treated and control intestines was attributed to the adherence of P. aeruginosa FARP72. The levels of BPPAC and PPC in the treated intestines were 6.09 ± 0.59 log10 CFU/g. Similarly, following 30 days of feeding P. pangasius with P. aeruginosa FARP72 supplemented diet, the intestine of catfish recorded the BPPAC of 5.83 ± 0.64 log CFU/g. In control samples, the BPPACs were recorded as < 3.00 log10 CFU/g. The scanning electron micrograph of the intestines of P. pangasius following the in vitro and in vivo adhesion assays confirmed the ability of this bacterium to strongly adhere to the intestine, thus making it most suitable candidate probiont for use in freshwater catfish aquaculture.
Collapse
Affiliation(s)
- Farhana Hoque
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700094, West Bengal, India. .,Regional Research Station, ICAR-Central Institute of Freshwater Aquaculture, Rahara, Kolkata, 700118, West Bengal, India.
| | - T Jawahar Abraham
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700094, West Bengal, India
| |
Collapse
|
10
|
Nair AV, K PN, M LA, Vijayan KK. Antibacterial assay guided isolation of a novel hydroxy-substituted pentacyclo ketonic compound from Pseudomonas aeruginosa MBTDCMFRI Ps04. Braz J Microbiol 2020; 52:335-347. [PMID: 33237498 DOI: 10.1007/s42770-020-00404-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022] Open
Abstract
Antimicrobial compounds from the natural source have gained greater relevance because of their wide spectrum of possible applications, especially in the aquaculture industry where pathogenic threat and antibacterial resistance are serious concerns. In this regard, Pseudomonas aeruginosa MBTDCMFRI Ps04 (P. aeruginosa Ps04) strain isolated from the tropical estuarine habitats of Cochin was evaluated for its antibacterial potential against major aquaculture pathogens. The physiological conditions for the maximum production of the active metabolite were also optimized. An activity-guided approach was employed further to isolate and characterize the secondary metabolite responsible for the inhibitory potential. It was found that the cell free supernatant (CFS) of P. aeruginosa Ps04 exhibited strong antibacterial activity against major aquaculture pathogens belonging to the genus Vibrio and Aeromonas and retained its potential even at 30% (v/v) dilution. The highest antibacterial activity was detected from 3rd day culture, grown in glycerol alanine media (1% each) as carbon and nitrogen source, respectively, at 30 °C, pH 7.0 and at a salinity of 20 parts per thousand (ppt). The activity of the antagonistic principle was found to be stable against variations in pH (pH 2-pH 12), temperature (up to 120 °C) and enzymatic treatments. Bioassay-guided purification followed by spectroscopic characterization of active fractions of P. aeruginosa Ps04 revealed that the compound 4-Hydroxy-11-methylpentacyclo [11.8.0.02,3.011, 12.016,17]henicosa-1,3,5,8(9),17-penten-14-one is responsible for its major antibacterial activity. The results of this study indicated that P. aeruginosa Ps04 has beneficial antibacterial properties which could be used in developing novel antimicrobial therapeutics against a variety of aquaculture pathogens.
Collapse
Affiliation(s)
- Anusree V Nair
- ICAR - Central Marine Fisheries Research Institute, Kochi, Kerala, India
| | - Praveen N K
- Department of Chemistry, NSS College Cherthala, Cherthala, Kerala, India
| | - Leo Antony M
- ICAR - Central Institute of Brackish Water Aquaculture, Chennai, India
| | - K K Vijayan
- ICAR - Central Institute of Brackish Water Aquaculture, Chennai, India.
| |
Collapse
|