1
|
Xin ZZ, Zhang XT, Zhou M, Chen JY, Zhu ZQ, Zhang JY. Differential molecular responses of hemolymph and hepatopancreas of swimming crab, Portunus trituberculatus, infected with Ameson portunus (Microsporidia). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109324. [PMID: 38134977 DOI: 10.1016/j.fsi.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Ameson portunus (Microsporidia) has caused serious economic losses to the aquaculture industry of swimming crab, Portunus trituberculatus. The hemolymph and hepatopancreas are the main immune organs of P. trituberculatus, and the main sites of A. portunus infection. Elucidating the response characteristics of hemolymph and hepatopancreas to microsporidian infection facilitates the development of microsporidiosis prevention and control strategy. This study performed comparative transcriptomic analysis of hemolymph (PTX/PTXA) and hepatopancreas (PTG/PTGA) of P. trituberculatus uninfected and infected with A. portunus. The results showed that there were 223 and 1309 differentially expressed genes (DEGs) in PTX/PTXA and PTG/PTGA, respectively. The lysosome pathway was significantly enriched after the invasion of the hemolymph by A. portunus. Also, immune-related genes were all significantly up-regulated in the hemolymph and hepatopancreas, suggesting that the invasion by A. portunus may activate host immune responses. Unlike hemolymph, antioxidant and detoxification-related genes were also significantly up-regulated in the hepatopancreas. Moreover, metabolism-related genes were significantly down-regulated in the hepatopancreas, suggesting that energy synthesis, resistance to pathogens, and regulation of oxidative stress were suppressed in the hepatopancreas. Hemolymph and hepatopancreas have similarity and tissue specificity to microsporidian infection. The differential genes and pathways identified in this study can provide references for the prevention and control of microsporidiosis.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xin-Tong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Min Zhou
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jiu-Yang Chen
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhi-Qiang Zhu
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jin-Yong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Anju MV, Archana K, Anooja VV, Athira PP, Neelima S, Singh ISB, Philip R. A novel anti-lipopolysaccharide factor from blue swimmer crab Portunus pelagicus and its cytotoxic effect on the prokaryotic expression host, E. coli on heterologous expression. J Genet Eng Biotechnol 2023; 21:22. [PMID: 36805357 PMCID: PMC9941410 DOI: 10.1186/s43141-023-00478-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Invertebrates like crabs employ their own immune systems to fight against a number of invasive infections. Anti-lipopolysaccharide factors (ALFs) are an important class of antimicrobial peptides (AMPs) exhibiting binding and neutralizing activities against lipopolysaccharides. RESULTS This study identified and characterized a novel homolog of ALF (Pp-ALF) from the blue swimmer crab Portunus pelagicus. Pp-ALF has a 369bp open-reading frame encoding a protein with 123 amino acids. The deduced protein featured an LPS-binding domain and a signal peptide. The predicted tertiary structure of Pp-ALF contains three α helices packed against four β sheets. The deduced amino acid sequence of Pp-ALF had a net positive charge of +10.75 and an isoelectric point of 9.8. Phylogenetic analysis revealed that Pp-ALF has a strong ancestral relationship with crab ALFs. CONCLUSION Antibacterial, antiviral, antifungal, anticancer, and antibiofilm activities of Pp-ALF could be revealed by in silico prediction tools. Recombinant expression of Pp-ALF was unsuccessful in the Escherichia coli Rosetta-gami expression system due to the cytotoxic effect of the peptide to the host. The toxic effect of Pp-ALF to the host was displayed by membrane permeabilization and death of the host cells by fluorescent staining with Syto9-Propidium Iodide and CTC-DAPI- FITC.
Collapse
Affiliation(s)
- M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - K Archana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - V V Anooja
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - P P Athira
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - S Neelima
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
3
|
Ren T, Liu J, Liu K, Zhang Z, Ma Z, Dan SF, Lan Z, Lu M, Fang H, Zhang Y, Zhu P, Liao Y. Cloning and expression of two anti-lipopolysaccharide factors in Eriocheir hepuensis under Vibrio alginolyticus-induced stress. JOURNAL OF FISH BIOLOGY 2023; 102:349-357. [PMID: 36317548 DOI: 10.1111/jfb.15261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Anti-lipopolysaccharide factors (ALFs) are small basic proteins that exhibit broad-spectrum antiviral properties and antibacterial activity. In this research, we cloned and studied two Eriocheir hepuensis ALFs, EhALF2 and EhALF3. The results showed that the open reading frame lengths of EhALF2 and EhALF3 were 363 and 372 bp, encoding 120 and 123 amino acids, respectively. Their sequences both contained an Lipopolysaccharide-binding (LPS) domain and were highly similarity to other crab ALFs. qRT-PCR showed that EhALF2 and EhALF3 were detected in nine examined tissues and were expressed the highest in the haemocytes. After challenge with Vibrio alginolyticus, in the hepatopancreas, the expression levels of EhALF2 and EhALF3 reached the highest levels at 48 and 3 h, respectively. In the heart, the expression levels of the two genes were highest at 12 h. These results indicate that EhALF2 and EhALF3 could participate in the resistance of E. hepuensis to V. alginolyticus stress within a short time. They have potential applications in the study of environmental stress markers and disease-resistance factors in E. hepuensis.
Collapse
Affiliation(s)
| | - Jinxia Liu
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Ke Liu
- Beibu Gulf University, Qinzhou, Guangxi, China
- School of Marine Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | | | - Zihang Ma
- Beibu Gulf University, Qinzhou, Guangxi, China
| | | | - Zhenyu Lan
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Min Lu
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Huaiyi Fang
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Yan Zhang
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Peng Zhu
- Beibu Gulf University, Qinzhou, Guangxi, China
- School of Marine Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | | |
Collapse
|
4
|
Wu J, Lei K, Wu Z, Zhang Y, Gao W, Zhang W, Mai K. Effects of recombinant anti-lipopolysaccharide factor expressed by Pichia pastoris on the growth performance, immune response and disease resistance of Litopenaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 129:231-242. [PMID: 36067907 DOI: 10.1016/j.fsi.2022.08.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The codon-optimized anti-lipopolysaccharide factor (ALF) sequence was introduced into pPICZαA vector and transformed into Pichia pastoris GS115. The recombinant ALF yeast supernatant (rALF-mix) was freeze-dried and evaluated as a feed additive for Litopenaeus vannamei. It was found by antibacterial activity test in vitro that the rALF-mix had antibacterial activity under different pH and temperature conditions. The 0, 0.00375%, 0.0075%, 0.015%, 0.03% and 0.06% of rALF-mix were added respectively to make the six experimental diets. After a 10-week feeding trial with shrimps (2.36 ± 0.02 g), it was found that the weight gain rate (WGR) and protein efficiency ratio (PER) of shrimp in the groups with 0.0075%, 0.015% and 0.03% of dietary rALF-mix supplementation were significantly higher than those in the control group (P < 0.05). Dietary rALF-mix supplementation significantly increased the total haemocyte count, respiratory burst, phagocytic activity, total anti-oxidative capacity (T-AOC), phenol oxidase activity, nitric oxide synthase activity, lysozyme (LYZ) activity, serum antibacterial capacity in the hemolymph and the T-AOC, LYZ in the hepatopancreas of shrimps (P < 0.05). The malondialdehyde contents in hemolymph and hepatopancreas were significantly decreased (P < 0.05). Meanwhile, the expression levels of toll, immune deficiency, heat shock protein 70, crustin and lipopolysaccharide-β-glucan binding protein in the gill of shrimps were significantly increased (P < 0.05). After the challenge test, it was showed that dietary rALF-mix supplementation significantly improved the resistance of L. vannamei to Vibrio parahaemolyticus (P < 0.05). In conclusion, the rALF-mix can be used as a functional feed additive to improve the growth, immunity and disease resistance of shrimp. Based on the quadratic regression analysis for WGR, the optimal supplemental level of rALF-mix in diet for shrimp was estimated to be 0.02813%.
Collapse
Affiliation(s)
- Jing Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Keke Lei
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Weihua Gao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| |
Collapse
|
5
|
Wang Z, Wu Q, Liao G, Fan L. New insights into the regulation mechanism of Litopenaeus vannamei hepatopancreas after lipopolysaccharide challenge using transcriptome analyses. FISH & SHELLFISH IMMUNOLOGY 2022; 128:466-473. [PMID: 35987503 DOI: 10.1016/j.fsi.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Litopenaeus vannamei (L. vannamei) is the most economically valuable cultured shrimp in the world, while Gram-negative bacteria infection causes huge economic losses to shrimp culture. In this study, we performed transcriptome sequencing of the hepatopancreas in L. vannamei after lipopolysaccharide (LPS, the cell wall component of Gram-negative bacteria) injection to investigate the response of shrimp under Gram-negative bacteria invasion. A total of 306 differentially expressed genes (DEGs) (70 up- and 236 down-regulated) were identified in the LPS treatment group (L group) when compared to their expression levels in the control group (C group). The oxidoreductase activity (GO:0016491) in the molecular function category was enriched in the LPS-responsive DEGs in GO annotation, and the metabolism of xenobiotics by cytochrome P450 (ko00980) was the most enriched pathway in KEGG annotation. The transcriptome profiling revealed that the toll like receptor, C-type lectin receptor, and β-1,3-glucan binding protein were involved in the recognition of LPS during its early invasion stage. Although LPS could reduce the metabolic ability of exogenous substances, induce inflammation and reduce antioxidant capacity, L. vannamei could maintain its homeostasis by improving immunity, enhancing anti-stress ability and reducing apoptosis. Our research provides the first transcriptome profiling for the L. vannamei hepatopancreas after LPS injection. These results could offer a valuable reference on the mechanism of shrimp against Gram-negative bacteria and could provide guidance for shrimp farming.
Collapse
Affiliation(s)
- Zhenlu Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qiuping Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guowei Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022; 20:501. [PMID: 36005504 PMCID: PMC9409781 DOI: 10.3390/md20080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - Fernando Gushque
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Jenny Rodriguez
- Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil 090211, Ecuador;
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090708, Ecuador
| | - Marco Esteban Gudiño-Gomezjurado
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Markus P. Tellkamp
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Frank Alexis
- Politecnico, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|