1
|
Wang ZM, Wang S, Bai H, Zhu LL, Yan HB, Peng L, Wang YB, Li H, Song YD, Liu JZ. Characterization and application of Bacillus velezensis D6 co-producing α-amylase and protease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9617-9629. [PMID: 39087633 DOI: 10.1002/jsfa.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Research on the co-production of multiple enzymes by Bacillus velezensis as a novel species is still a topic that needs to be studied. This study aimed to investigate the fermentation characteristics of B. velezensis D6 co-producing α-amylase and protease and to explore their enzymatic properties and applications in fermentation. RESULTS The maximum co-production of α-amylase and protease reached 13.13 ± 0.72 and 2106.63 ± 64.42 U mL-1, respectively, under the optimal fermented conditions (nutrients: 20.0 g L-1 urea, 20.0 g L-1 glucose, 0.7 g L-1 MnCl2; incubation conditions: initial pH 7.0, temperature 41 °C, 8% inoculation size and 30% working volume). Moreover, the genetic co-expression of α-amylase and protease increased from 0 to 24 h and then decreased after 36 h at the transcriptional level, which coincided with the growth trend of B. velezensis D6. The optimal reaction temperature of α-amylase was 55-60 °C, while that of protease was 35-40 °C. The activities of α-amylase and protease were retained by over 80% after thermal treatment (90 °C, 1 h), which indicated that two enzymes co-produced by B. velezensis D6 demonstrated excellent thermal stability. Moreover, the two enzymes were stable over a wide pH range (pH 4.0-8.0 for α-amylase; pH 4.0-9.0 for protease). Finally, the degrees of hydrolysis of corn, rice, sorghum and soybeans by α-amylase from B. velezensis D6 reached 44.95 ± 2.95%, 57.16 ± 2.75%, 52.53 ± 4.01% and 20.53 ± 2.42%, respectively, suggesting an excellent hydrolysis effect on starchy raw materials. The hydrolysis degrees of mackerel heads and soybeans by protease were 43.93 ± 2.19% and 26.38 ± 1.72%, respectively, which suggested that the protease from B. velezensis D6 preferentially hydrolyzed animal-based protein. CONCLUSION This is a systematic study on the co-production of α-amylase and protease by B. velezensis D6, which is crucial in widening the understanding of this species co-producing multi-enzymes and in exploring its potential application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - He Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Heze, China
| | - Yue-Dong Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd, Liaocheng, China
| |
Collapse
|
2
|
Gomaa FAM, Selim HMRM, Alshahrani MY, Aboshanab KM. Central composite design for optimizing istamycin production by Streptomyces tenjimariensis. World J Microbiol Biotechnol 2024; 40:316. [PMID: 39249607 DOI: 10.1007/s11274-024-04118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Istamycins (ISMs) are 2-deoxyfortamine-containing aminoglycoside antibiotics (AGAs) produced by Streptomyces tenjimariensis ATCC 31603 with broad-spectrum bactericidal activities against most of the clinically relevant pathogens. Therefore, this study aimed to statistically optimize the environmental conditions affecting ISMs production using the central composite design (CCD). Both the effect of culture media composition and incubation time and agitation rate were studied as one factor at the time (OFAT). The results showed that both the aminoglycoside production medium and the protoplast regeneration medium gave the highest specific productivity. Results also showed that 6 days incubation time and 200 rpm agitation were optimum for their production. A CCD quadratic model of 17 runs was employed to test three key variables: initial pH, incubation temperature, and concentration of calcium carbonate. A significant statistical model was obtained including, an initial pH of 6.38, incubation temperature of 30 ˚C, and 5.3% CaCO3 concentration. This model was verified experimentally in the lab and resulted in a 31-fold increase as compared to the unoptimized conditions and a threefold increase to that generated by using the optimized culture media. To our knowledge, this is the first report about studying environmental conditions affecting ISM production as OFAT and through CCD design of the response surface methodology (RSM) employed for statistical optimization. In conclusion, the CCD design is an effective tool for optimizing ISMs at the shake flask level. However, the optimized conditions generated using the CCD model in this study should be scaled up in a fermenter for industrial production of ISMs by S. tenjimariensis ATCC 31603 considering the studied environmental conditions that significantly influence the production proces.
Collapse
Affiliation(s)
- Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, 65779, Al-Bahah, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, 11651, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 9088, 61413, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University Organization of African Unity St, Abbassia Cairo, 11566, Egypt.
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam, Shah Alam 42300, Selangor, Malaysia.
| |
Collapse
|
3
|
Jeong SK, Han SE, Vasantha-Srinivasan P, Jung WJ, Maung CEH, Kim KY. Agro Active Potential of Bacillus subtilis PE7 against Didymella bryoniae (Auersw.), the Causal Agent of Gummy Stem Blight of Cucumis melo. Microorganisms 2024; 12:1691. [PMID: 39203532 PMCID: PMC11357386 DOI: 10.3390/microorganisms12081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial agents such as the Bacillus species are recognized for their role as biocontrol agents against various phytopathogens through the production of diverse bioactive compounds. This study evaluates the effectiveness of Bacillus subtilis PE7 in inhibiting the growth of Didymella bryoniae, the pathogen responsible for gummy stem blight (GSB) in cucurbits. Dual culture assays demonstrate significant antifungal activity of strain PE7 against D. bryoniae. Volatile organic compounds (VOCs) produced by strain PE7 effectively impede mycelial formation in D. bryoniae, resulting in a high inhibition rate. Light microscopy revealed that D. bryoniae hyphae exposed to VOCs exhibited abnormal morphology, including swelling and excessive branching. Supplementing a potato dextrose agar (PDA) medium with a 30% B. subtilis PE7 culture filtrate significantly decreased mycelial growth. Moreover, combining a 30% culture filtrate with half the recommended concentration of a chemical fungicide yielded a more potent antifungal effect than using the full fungicide concentration alone, inducing dense mycelial formation and irregular hyphal morphology in D. bryoniae. Strain PE7 was highly resilient and was able to survive in fungicide solutions. Additionally, B. subtilis PE7 enhanced the nutrient content, growth, and development of melon plants while mitigating the severity of GSB compared to fungicide and fertilizer treatments. These findings highlight B. subtilis PE7 as a promising biocontrol candidate for integrated disease management in crop production.
Collapse
Affiliation(s)
- Seo Kyoung Jeong
- Department of Plant Protection and Quarantine, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.J.); (W.J.J.)
| | - Seong Eun Han
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Prabhakaran Vasantha-Srinivasan
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Woo Jin Jung
- Department of Plant Protection and Quarantine, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.J.); (W.J.J.)
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Chaw Ei Htwe Maung
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Kil Yong Kim
- Department of Plant Protection and Quarantine, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.J.); (W.J.J.)
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| |
Collapse
|
4
|
Yuan C, Ji X, Zhang Y, Liu X, Ding L, Li J, Ren S, Liu F, Chen Z, Zhang L, Zhu W, Yu J, Wu J. Important role of Bacillus subtilis as a probiotic and vaccine carrier in animal health maintenance. World J Microbiol Biotechnol 2024; 40:268. [PMID: 39007987 DOI: 10.1007/s11274-024-04065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Bacillus subtilis is a widespread Gram-positive facultative aerobic bacterium that is recognized as generally safe. It has shown significant application value and great development potential in the animal farming industry. As a probiotic, it is frequently used as a feed growth supplement to effectively replace antibiotics due to its favourable effects on regulating the intestinal flora, improving intestinal immunity, inhibiting harmful microorganisms, and secreting bioactive substances. Consequently, the gut health and disease resistance of farmed animals can be improved. Both vegetative and spore forms of B. subtilis have also been utilized as vaccine carriers for delivering the antigens of infectious pathogens for over a decade. Notably, its spore form is regarded as one of the most prospective for displaying heterologous antigens with high activity and stability. Previously published reviews have predominantly focused on the development and applications of B. subtilis spore surface display techniques. However, this review aims to summarize recent studies highlighting the important role of B. subtilis as a probiotic and vaccine carrier in maintaining animal health. Specifically, we focus on the beneficial effects and underlying mechanisms of B. subtilis in enhancing disease resistance among farmed animals as well as its potential application as mucosal vaccine carriers. It is anticipated that B. subtilis will assume an even more prominent role in promoting animal health with in-depth research on its characteristics and genetic manipulation tools.
Collapse
Affiliation(s)
- Chunmei Yuan
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiang Ji
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Xinli Liu
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Luogang Ding
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenxing Zhu
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- School of Life Sciences, Shandong Normal University, Jinan, China.
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
5
|
Sheng Y, Zhang S, Li X, Wang S, Liu T, Wang C, Yan L. Phenotypic and genomic insights into mutant with high nattokinase-producing activity induced by carbon ion beam irradiation of Bacillus subtilis. Int J Biol Macromol 2024; 271:132398. [PMID: 38754670 DOI: 10.1016/j.ijbiomac.2024.132398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Nattokinase (NK) is found in fermented foods and has high fibrinolytic activity, which makes it promising for biological applications. In this study, a mutant strain (Bacillus subtilis ZT-S1, 5529.56 ± 183.59 U/mL) with high NK-producing activity was obtained using 12C6+ heavy ion beam mutagenesis for the first time. The surface morphology of B. subtilis is also altered by changes in functional groups caused by heavy ion beams. Furthermore, B. subtilis ZT-S1 required more carbon and nitrogen sources and reached stabilization phase later. Comparative genome analysis revealed that most of the mutant implicated genes (oppA, appA, kinA, spoIIP) were related to spore formation. And the affected rpoA is related to the synthesis of the NK-coding gene aprE. In addition, the B. subtilis ZT-S1 obtained by mutagenesis had good genetic stability. This study further explores the factors affecting NK activity and provides a promising microbial resource for NK production in commercial applications.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xintong Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shicheng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
6
|
Rathore C, Yadav VK, Amari A, Meena A, Chinedu Egbosiuba T, Verma RK, Mahdhi N, Choudhary N, Sahoo DK, Chundawat RS, Patel A. Synthesis and characterization of titanium dioxide nanoparticles from Bacillus subtilis MTCC 8322 and its application for the removal of methylene blue and orange G dyes under UV light and visible light. Front Bioeng Biotechnol 2024; 11:1323249. [PMID: 38260746 PMCID: PMC10800539 DOI: 10.3389/fbioe.2023.1323249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last decade there has been a huge increase in the green synthesis of nanoparticles. Moreover, there is a continuous increase in harnessing the potential of microorganisms for the development of efficient and biocompatible nanoparticles around the globe. In the present research work, investigators have synthesized TiO2 NPs by harnessing the potential of Bacillus subtilis MTCC 8322 (Gram-positive) bacteria. The formation and confirmation of the TiO2 NPs synthesized by bacteria were carried out by using UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX/EDS). The size of the synthesized TiO2 NPs was 80-120 nm which was spherical to irregular in shape as revealed by SEM. FTIR showed the characteristic bands of Ti-O in the range of 400-550 cm-1 and 924 cm-1 while the band at 2930 cm-1 confirmed the association of bacterial biomolecules with the synthesized TiO2 NPs. XRD showed two major peaks; 27.5° (rutile phase) and 45.6° (anatase phase) for the synthesized TiO2 NPs. Finally, the potential of the synthesized TiO2 NPs was assessed as an antibacterial agent and photocatalyst. The remediation of Methylene blue (MB) and Orange G (OG) dyes was carried out under UV- light and visible light for a contact time of 150-240 min respectively. The removal efficiency for 100 ppm MB dye was 25.75% and for OG dye was 72.24% under UV light, while in visible light, the maximum removal percentage for MB and OG dye was 98.85% and 80.43% respectively at 90 min. Moreover, a kinetic study and adsorption isotherm study were carried out for the removal of both dyes, where the pseudo-first-order for MB dye is 263.269 and 475554.176 mg/g for OG dye. The pseudo-second-order kinetics for MB and OG dye were 188.679 and 1666.667 mg/g respectively. In addition to this, the antibacterial activity of TiO2 NPs was assessed against Bacillus subtilis MTCC 8322 (Gram-positive) and Escherichia coli MTCC 8933 (Gram-negative) where the maximum zone of inhibition in Bacillus subtilis MTCC 8322 was about 12 mm, and for E. coli 16 mm.
Collapse
Affiliation(s)
- Chandani Rathore
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Abhishek Meena
- Department of Physics and Semiconductor Science, Dongguk University, Seoul, Republic of Korea
| | - Titus Chinedu Egbosiuba
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Noureddine Mahdhi
- Laboratory Materials Organizations and Properties, Tunis El Manar University, Tunis, Tunisia
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Rajendra Singh Chundawat
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
7
|
Wu D, Fu L, Cao Y, Dong N, Li D. Genomic insights into antimicrobial potential and optimization of fermentation conditions of pig-derived Bacillus subtilis BS21. Front Microbiol 2023; 14:1239837. [PMID: 37840708 PMCID: PMC10570807 DOI: 10.3389/fmicb.2023.1239837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacillus spp. have been widely used as probiotic supplements in animal feed as alternatives to antibiotics. In the present study, we screened a Bacillus subtilis strain named BS21 from pig feces. Antimicrobial activities, whole genome mining and UHPLC-MS/MS analysis were used to explore its antimicrobial mechanism. Strain BS21 showed Significant growth inhibition against a variety of animal pathogens, including Escherichia coli, Salmonella enterica Pullorum, Salmonella enterica Typhimurium, Citrobacter rodentium, Shigella flexneri and Staphylococcus aureus. Seven gene clusters involved in antimicrobial biosynthesis of secondary metabolites were encoded by strain BS21 genome, including four non-ribosomal peptides (bacillibactin, fengycin, surfactin and zwittermicin A), one ribosomal peptide (subtilosin A), one dipeptide (bacilysin) and one polyketide (bacillaene). Among them, production of surfactin, fengycin, bacillibactin, bacilysin and bacillaene was detected in the supernatant of B. subtilis strain BS21. To develop the potential application of BS21 in animal production, medium components and fermentation parameters optimization was carried out using response surface methodology (RSM). Production of antimicrobial secondary metabolites of strain BS21 was increased by 43.4%, and the best medium formula after optimization was corn flour 2%, soybean meal 1.7% and NaCl 0.5% with optimum culture parameters of initial pH 7.0, temperature 30°C, rotating speed at 220 rpm for 26 h. Our results suggested that strain BS21 has the potential for large-scale production and application as a potential source of probiotics and alternative to antibiotics for animal production.
Collapse
Affiliation(s)
| | | | | | - Na Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Vehapi M, İnan B, Kayacan-Cakmakoglu S, Sagdic O, Özçimen D. Production of Bacillus subtilis soil isolate as biocontrol agent under bioreactor conditions. Arch Microbiol 2023; 205:52. [PMID: 36600085 DOI: 10.1007/s00203-022-03381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
This study aimed to investigate the biomass production of Bacillus subtilis in flask and bioreactor conditions. It is necessary to carry the culture from the shake flask to the pH, air, temperature and stirring controlled bioreactor in order to reduce the working time and increase the production efficiency and product quality. In this study, Bacillus was isolated from soil and grown under flask and bioreactor conditions as biocontrol agent against Botrytis cinerea and Fusarium oxysporum. In this process, a pH value of 7.5, 100% O2 saturation, 30% dissolved O2, at the temperature of 37 °C, total flow of 0.1 Lmin-1 and mixing speed of 150 min-1 were preferred for optimal concerning high production yield of B. subtilis in bioreactor. To test whether B. subtilis has antifungal activity on the growth of B. cinerea and F. oxysporum, a dual culture assay in a PDA medium was carried out. Ultimately, high biomass production in a short incubation period by reaching 2.2 µg/mL after 9 h in the bioreactor. It was observed that the bacteria produced in the bioreactor cultivation grew stronger and showed high antifungal activity which resulted 33.33% inhibition percentage against B. cinerea. It was concluded that B. subtilis can be used as a green-fungicide against B. cinerea and F. oxysporum, and bacterial metabolites from B. subtilis could pave the way for the development of next generation green/biopesticides.
Collapse
Affiliation(s)
- Meyrem Vehapi
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Benan İnan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | | | - Osman Sagdic
- Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Didem Özçimen
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|