1
|
Shi YC, Wu SC, Lin YC, Zheng YJ, Huang CH, Lee BH. Development of fermented Atemoya (Annona cherimola × Annona squamosa)-Amazake increased intestinal next-generation probiotics. Food Chem 2024; 459:140373. [PMID: 38986198 DOI: 10.1016/j.foodchem.2024.140373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Akkermansia muciniphila and Faecalibacterium prausnitzii are next-generation probiotics, which has been reported to protect disease and effectively utilize various carbohydrates (starch and pectin) as nutrients for growth. Atemoya exhibiting fruity flavor, which is suitable for enhancing aroma and attenuating unpleasant taste caused by the koji metabolites. Results indicated that malic acid was increased (from 42.4 to 70.1 mg/100 g) in fermented Atemoya-Amazake. In addition, fermented Atemoya-Amazake elevated growthes in A. muciniphila and F. prausnitzii. Similarly, the populations of Parabacteroides (5.7 fold) and Akkermansia (1.66 fold) were elevated by fermented Atemoya-Amazake treatment in an in vitro simulated gastrointestinal system compared to the control group. Results revealed that fermented Atemoya-Amazake modulated the intestinal microbiota through increasing the production of short-chain fatty acids (exhibiting anti-pathogenic activity) for 2.1, 2.5, 2.6, and 2.1 folds in acetic acid, propionic acid, isobutyric acid, and butyric acid, respectively; suggesting this fermented Atemoya-Amazake could be applied in intestinal protection.
Collapse
Affiliation(s)
- Yeu-Ching Shi
- Department of Food Sciences, National Chiayi University, Chiayi, Taiwan
| | - She-Ching Wu
- Department of Food Sciences, National Chiayi University, Chiayi, Taiwan.
| | - Yi-Ching Lin
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan
| | - Yu-Juan Zheng
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Hao Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bao-Hong Lee
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
2
|
Kamber A, Bulut Albayrak C, Harsa HS. Studies on the Probiotic, Adhesion, and Induction Properties of Artisanal Lactic Acid Bacteria: to Customize a Gastrointestinal Niche to Trigger Anti-obesity Functions. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10357-6. [PMID: 39382740 DOI: 10.1007/s12602-024-10357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
The primary goals of this work are to explore the potential of probiotic lactic acid bacteria's (LAB) mucin/mucus layer thickening properties and to identify anti-obesity candidate strains that improve appropriate habitat for use with the Akkermansia group population in the future. The HT-29 cell binding, antimicrobial properties, adhesion to the mucin/mucus layer, growth in the presence of mucin, stability during in vitro gastrointestinal (GI) conditions, biofilm formation, and mucin/mucus thickness increment abilities were all assessed for artisanal LAB strains. Sixteen LAB strains out of 40 were chosen for further analysis based on their ability to withstand GI conditions. Thirteen strains remained viable in simulated intestinal fluid, while most showed high viability in gastric juice simulation. Furthermore, 35.9-65.4% of those 16 bacteria adhered to the mucin layer. Besides, different lactate levels were produced, and Streptococcus thermophilus UIN9 exhibited the highest biofilm development. In the HT-29 cell culture, the highest mucin levels were 333.87 µg/mL with O. AK8 at 50 mM lactate, 313.38 µg/mL with Lactobacillus acidophilus NRRL-B 1910 with initial mucin, and 311.41 µg/mL with Lacticaseibacillus casei NRRL-B 441 with initial mucin and 50 mM lactate. Nine LAB strains have been proposed as anti-obesity candidates, with olive isolates of Lactiplantibacillus plantarum being particularly important due to their ability to avoid mucin sugar consumption. Probiotic LAB's attachment to the colonic mucosa and its ability to stimulate HT-29 cells to secrete mucus are critical mechanisms that may support the development of Akkermansia.
Collapse
Affiliation(s)
- A Kamber
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye
| | - C Bulut Albayrak
- Food Engineering Department, Aydın Adnan Menderes University, Engineering Faculty, 09100, Aydın, Türkiye
| | - H S Harsa
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye.
| |
Collapse
|
3
|
Mendes-Frias A, Moreira M, Vieira MC, Gaifem J, Costa P, Lopes L, Silvestre R. Akkermansia muciniphila and Parabacteroides distasonis as prognostic markers for relapse in ulcerative colitis patients. Front Cell Infect Microbiol 2024; 14:1367998. [PMID: 39027140 PMCID: PMC11254828 DOI: 10.3389/fcimb.2024.1367998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ulcerative colitis is an inflammatory disorder characterized by chronic inflammation in the gastrointestinal tract, mainly in the colon and rectum. Although the precise etiology of ulcerative colitis remains unclear, recent research has underscored the significant role of the microbiome in its development and progression. Methods The aim of this study was to establish a relationship between the levels of specific gut bacterial species and disease relapse in ulcerative colitis. For this study, we recruited 105 ulcerative colitis patients in remission and collected clinical data, blood, and stool samples. Akkermansia muciniphila and Parabacteroides distasonis levels were quantified in the stool samples of ulcerative colitis patients. Binary logistic regression was applied to collected data to predict disease remission. Results The median time in remission in this cohort was four years. A predictive model incorporating demographic information, clinical data, and the levels of Akkermansia muciniphila and Parabacteroides distasonis was developed to understand remission patterns. Discussion Our findings revealed a negative correlation between the levels of these two microorganisms and the duration of remission. These findings highlight the importance of the gut microbiota in ulcerative colitis for disease prognosis and for personalized treatments based on microbiome interventions.
Collapse
Affiliation(s)
- Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Moreira
- Department of Gastroenterology, Hospital Santa Luzia, Unidade Local de Saúde do Alto Minho, Viana do Castelo, Portugal
| | - Maria C. Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Lopes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Gastroenterology, Hospital Santa Luzia, Unidade Local de Saúde do Alto Minho, Viana do Castelo, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Inchingolo F, Inchingolo AD, Palumbo I, Trilli I, Guglielmo M, Mancini A, Palermo A, Inchingolo AM, Dipalma G. The Impact of Cesarean Section Delivery on Intestinal Microbiota: Mechanisms, Consequences, and Perspectives-A Systematic Review. Int J Mol Sci 2024; 25:1055. [PMID: 38256127 PMCID: PMC10816971 DOI: 10.3390/ijms25021055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The relationship between cesarean section (CS) delivery and intestinal microbiota is increasingly studied. CS-born infants display distinct gut microbial compositions due to the absence of maternal birth canal microorganisms. These alterations potentially link to long-term health implications like immune-related disorders and allergies. This correlation underscores the intricate connection between birth mode and the establishment of diverse intestinal microbiota. A systematic literature review was conducted on the PubMed, Scopus, and Web of Science databases by analyzing the articles and examining the intricate interactions between CS delivery and the infant's intestinal microbiota. The analysis, based on a wide-ranging selection of studies, elucidates the multifaceted dynamics involved in CS-associated shifts in the establishment of fetal microbiota. We also explore the potential ramifications of these microbial changes on neonatal health and development, providing a comprehensive overview for clinicians and researchers. By synthesizing current findings, this review contributes to a deeper understanding of the interplay between delivery mode and early microbial colonization, paving the way for informed clinical decisions and future investigations in the field of perinatal medicine.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Irene Palumbo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Mariafrancesca Guglielmo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| |
Collapse
|
5
|
Livingston DBH, Sweet A, Rodrigue A, Kishore L, Loftus J, Ghali F, Mahmoodianfard S, Celton C, Hosseinian F, Power KA. Dietary Flaxseed and Flaxseed Oil Differentially Modulate Aspects of the Microbiota Gut-Brain Axis Following an Acute Lipopolysaccharide Challenge in Male C57Bl/6 Mice. Nutrients 2023; 15:3542. [PMID: 37630732 PMCID: PMC10459276 DOI: 10.3390/nu15163542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota gut-brain axis (mGBA) is an important contributor to mental health and neurological and mood disorders. Lipopolysaccharides (LPS) are endotoxins that are components of Gram-negative bacteria cell walls and have been widely shown to induce both systemic and neuro-inflammation. Flaxseed (Linum usitatissimum) is an oilseed rich in fibre, n3-poly-unsaturated fatty acid (alpha-linolenic acid (ALA)), and lignan, secoisolariciresinol diglucoside, which all can induce beneficial effects across varying aspects of the mGBA. The objective of this study was to determine the potential for dietary supplementation with flaxseed or flaxseed oil to attenuate LPS-induced inflammation through modulation of the mGBA. In this study, 72 5-week-old male C57Bl/6 mice were fed one of three isocaloric diets for 3 weeks: (1) AIN-93G basal diet (BD), (2) BD + 10% flaxseed (FS), or (3) BD + 4% FS oil (FO). Mice were then injected with LPS (1 mg/kg i.p) or saline (n = 12/group) and samples were collected 24 h post-injection. Dietary supplementation with FS, but not FO, partially attenuated LPS-induced systemic (serum TNF-α and IL-10) and neuro-inflammation (hippocampal and/or medial prefrontal cortex IL-10, TNF-α, IL-1β mRNA expression), but had no effect on sickness and nest-building behaviours. FS-fed mice had enhanced fecal microbial diversity with increased relative abundance of beneficial microbial groups (i.e., Lachnospiraceae, Bifidobacterium, Coriobacteriaceae), reduced Akkermansia muciniphila, and increased production of short-chain fatty acids (SCFAs), which may play a role in its anti-inflammatory response. Overall, this study highlights the potential for flaxseed to attenuate LPS-induced inflammation, in part through modulation of the intestinal microbiota, an effect which may not be solely driven by its ALA-rich oil component.
Collapse
Affiliation(s)
- Dawson B. H. Livingston
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (D.B.H.L.); (A.S.); (A.R.)
| | - Allison Sweet
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (D.B.H.L.); (A.S.); (A.R.)
| | - Alexane Rodrigue
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (D.B.H.L.); (A.S.); (A.R.)
| | - Lalit Kishore
- Faculty of Health Science, School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (L.K.); (F.G.)
| | - Julia Loftus
- Faculty of Science, Department of Biochemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Farida Ghali
- Faculty of Health Science, School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (L.K.); (F.G.)
| | - Salma Mahmoodianfard
- Faculty of Health Science, School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Colleen Celton
- Faculty of Science, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (C.C.); (F.H.)
| | - Farah Hosseinian
- Faculty of Science, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (C.C.); (F.H.)
- Faculty of Science, Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Krista A. Power
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (D.B.H.L.); (A.S.); (A.R.)
- Faculty of Health Science, School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (L.K.); (F.G.)
| |
Collapse
|