1
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
2
|
Ramalingam A, Arumugam T, Sagaama A, Sambandam S, ISSAOUI N, Al-Dossary OM. Study of new p-tolylpiperidin-4-one as an anti-Parkinson agent: Synthesis, spectral, XRD-crystal, in silico study, electronic and intermolecular interaction investigations by the DFT method. MATERIALS CHEMISTRY AND PHYSICS 2024; 320:129447. [DOI: 10.1016/j.matchemphys.2024.129447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
3
|
Mathew B, Oh JM, Parambi DGT, Sudevan ST, Kumar S, Kim H. Enzyme Inhibition Assays for Monoamine Oxidase. Methods Mol Biol 2024; 2761:329-336. [PMID: 38427248 DOI: 10.1007/978-1-0716-3662-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines with two isoforms, namely, MAO-A and MAO-B, in mitochondrial outer membranes. These two types of MAO-A and MAO-B participate in changes in levels of neurotransmitter such as serotonin (5-hydroxytryptamine) and dopamine. Selective MAO-A inhibitors have been targeted for anti-depression treatment, while selective MAO-B inhibitors are targets of therapeutic agents for Alzheimer's disease and Parkinson's disease. For this reason, study on the development of MAO inhibitors has recently become important. Here, we describe methods of MAO activity assay, especially continuous spectrophotometric methods, which give relatively high accuracy. MAO-A and MAO-B can be assayed using kynuramine and benzylamine as substrates, respectively, at 316 nm and 250 nm, respectively, to measure their respective products, 4-hydroxyquinoline and benzaldehyde. Inhibition degree and pattern can be analyzed by using the Lineweaver-Burk and secondary plots in the presence of inhibitor, and reversibility of inhibitor can be determined by using the dialysis method.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | | | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea.
| |
Collapse
|
4
|
Tapias V, González-Andrés P, Peña LF, Barbero A, Núñez L, Villalobos C. Therapeutic Potential of Heterocyclic Compounds Targeting Mitochondrial Calcium Homeostasis and Signaling in Alzheimer's Disease and Parkinson's Disease. Antioxidants (Basel) 2023; 12:1282. [PMID: 37372013 DOI: 10.3390/antiox12061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the elderly. The key histopathological features of these diseases are the presence of abnormal protein aggregates and the progressive and irreversible loss of neurons in specific brain regions. The exact mechanisms underlying the etiopathogenesis of AD or PD remain unknown, but there is extensive evidence indicating that excessive generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with a depleted antioxidant system, mitochondrial dysfunction, and intracellular Ca2+ dyshomeostasis, plays a vital role in the pathophysiology of these neurological disorders. Due to an improvement in life expectancy, the incidence of age-related neurodegenerative diseases has significantly increased. However, there is no effective protective treatment or therapy available but rather only very limited palliative treatment. Therefore, there is an urgent need for the development of preventive strategies and disease-modifying therapies to treat AD/PD. Because dysregulated Ca2+ metabolism drives oxidative damage and neuropathology in these diseases, the identification or development of compounds capable of restoring Ca2+ homeostasis and signaling may provide a neuroprotective avenue for the treatment of neurodegenerative diseases. In addition, a set of strategies to control mitochondrial Ca2+ homeostasis and signaling has been reported, including decreased Ca2+ uptake through voltage-operated Ca2+ channels (VOCCs). In this article, we review the modulatory effects of several heterocyclic compounds on Ca2+ homeostasis and trafficking, as well as their ability to regulate compromised mitochondrial function and associated free-radical production during the onset and progression of AD or PD. This comprehensive review also describes the chemical synthesis of the heterocycles and summarizes the clinical trial outcomes.
Collapse
Affiliation(s)
- Victor Tapias
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paula González-Andrés
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura F Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Asunción Barbero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
5
|
Abstract
Monoamine oxidase (MAO) enzymes (MAO A and B) catalyze the oxidative deamination of biogenic amines, neurotransmitters, and xenobiotic amines and contribute to the regulation of the content of these active substances in mammalian organisms. The oxidation of biogenic amines by MAO produces hydrogen peroxide (H2O2) and aldehydes that represent risk factors for oxidative injury. The inhibitors of MAO are useful as antidepressants and neuroprotective agents. Usually, the assays of MAO determine amine deamination products or measure the H2O2 released by using direct spectrophotometric or fluorimetric methods. Direct methods are more prone to interferences and can afford inaccurate results. Those limitations can be avoided by using chromatographic techniques. This work describes a chromatographic method to assay MAO A and MAO B activity by using kynuramine as a nonselective substrate and the subsequent analysis of 4-hydroxyquinoline by RP-HPLC-DAD-fluorescence and mass spectrometry (MS). Alternatively, the assay uses the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin as a substrate of MAO that is oxidized (bioactivated) to neurotoxic pyridinium cations which are analyzed by HPLC. These methods are applied to assess the inhibition of MAO by bioactive β-carboline alkaloids occurring in foods, plants, and biological systems.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Sung JS, Bong JH, Yun TG, Han Y, Park Y, Jung J, Lee SJ, Kang MJ, Jose J, Lee M, Pyun JC. Antibody-Mediated Screening of Peptide Inhibitors for Monoamine Oxidase-B (MAO-B) from an Autodisplayed F V Library. Bioconjug Chem 2022; 33:1166-1178. [PMID: 35587267 DOI: 10.1021/acs.bioconjchem.2c00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibitors for monoamine oxidase-B (MAO-B) were screened from an FV library with a randomized complementarity-determining region 3 (CDR3) region using a monoclonal antibody against dopamine. As the first step, the FV library was expressed on the outer membrane of E. coli by site-directed mutagenesis of the randomized CDR3 region. Among the FV library, variants with a binding affinity to monoclonal antibodies against dopamine were screened and cloned. From the comparison of the binding activity of the screened clones to a control clone with a modified FV antibody (only with CDR1 and CDR2), the CDR3 regions of screened clones were determined to directly interact with the monoclonal antibody against dopamine. These CDR3 sequences were then synthesized as mimotopes (mimicking peptides) of dopamine. The inhibitory activity of two mimotopes against MAO-B was analyzed using HeLa cells overexpressing MAO-B, as well as using activated human astrocytes; their inhibitory activity was compared to that of a commercial inhibitor of MAO-B, selegiline. The inhibition efficiency of the two mimotopes (in comparison with selegiline) was estimated to be 67.2% and 69.4% in the HeLa cells and 64.4% and 58.0% in the human astrocytes. The gene expression pattern in astrocytes after treatment with the two mimotopes was also analyzed and compared with that in the human astrocytes treated with selegiline. Finally, the interaction between two mimotopes and MAO-B was analyzed using docking simulation, and the candidate regions of MAO-B for the interaction with each mimotope were explored through the docking simulation.
Collapse
Affiliation(s)
- Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Yeonju Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yusun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Soo Jeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, PharmaCampus, Westphalian Wilhelms-University Münster, Corrensstr. 48, Münster 48149, Germany
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.,Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Sharma K. Chromone Scaffolds in the Treatment of Alzheimer's and Parkinson's Disease: An Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202200540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kamlesh Sharma
- Department of Chemistry Faculty of Science Shree Guru Gobind Singh Tricentenary University Gurugram 122505 Haryana INDIA
| |
Collapse
|
8
|
Yang Y, Zhai H, Yuan J, Wang K, Zhang H. Recent Advances in Fluorescent Probes for Flavinase Activity: Design and Applications. Chem Asian J 2022; 17:e202200043. [PMID: 35174973 DOI: 10.1002/asia.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Indexed: 11/11/2022]
Abstract
Flavinases, including monoamine oxidase (MAO-A/MAO-B), quinone oxidoreductase (NQO1), thioredoxin reductase (TrxR), nitroreductase (NTR) and so on, are important redox enzymes in organisms. They are considered as biomarkers of cell energy metabolism and cell vitality. Importantly, their aberrant expression is related to various disease processes. Therefore, the accurate measurement of flavinase is useful for the early diagnosis of diseases, which has aroused great concern in the scientific community. Various methods are also available for the detection of flavinases, fluorescence probes are considered to be one of the best detection methods due to their easy and accurate sensing capability. This review aims to introduce the advances in the design and application of flavinase probes in the last five years. This study focuses on analyzing the design strategies and reaction mechanisms of flavinases fluorescent probes and discusses the current challenges, which will further advance the development of diagnostic and therapeutic approaches for flavinase-related diseases.
Collapse
Affiliation(s)
- Yiting Yang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hongchen Zhai
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chenistry and chemical Engineering, CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Kui Wang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hua Zhang
- Henan Normal University, School of Chemistry and Chemical Engineering, 46 Jianshe Road, Muye Zone,, 453007, Xinxiang, CHINA
| |
Collapse
|
9
|
Chen K, Palagashvili T, Hsu W, Chen Y, Tabakoff B, Hong F, Shih AT, Shih JC. Brain injury and inflammation genes common to a number of neurological diseases and the genes involved in the genesis of GABAnergic neurons are altered in monoamine oxidase B knockout mice. Brain Res 2022; 1774:147724. [PMID: 34780749 PMCID: PMC8638699 DOI: 10.1016/j.brainres.2021.147724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Monoamine oxidase B (MAO B) oxidizes trace amine phenylethylamine (PEA), and neurotransmitters serotonin and dopamine in the brain. We reported previously that PEA levels increased significantly in all brain regions, but serotonin and dopamine levels were unchanged in MAO B knockout (KO) mice. PEA and dopamine are both synthesized from phenylalanine by aromatic L-amino acid decarboxylase in dopaminergic neurons in the striatum. A high concentration of PEA in the striatum may cause dopaminergic neuronal death in the absence of MAO B. We isolated the RNA from brain tissue of MAO B KO mice (2-month old) and age-matched wild type (WT) male mice and analyzed the altered genes by Affymetrix microarray. Differentially expressed genes (DEGs) in MAO B KO compared to WT mice were analyzed by Partek Genomics Suite, followed by Ingenuity Pathway Analysis (IPA) to assess their functional relationships. DEGs in MAO B KO mice are involved in brain inflammation and the genesis of GABAnergic neurons. The significant DEGs include four brain injury or inflammation genes (upregulated: Ido1, TSPO, AVP, Tdo2), five gamma-aminobutyric acid (GABA) receptors (down-regulated: GABRA2, GABRA3, GABRB1, GABRB3, GABRG3), five transcription factors related to adult neurogenesis (upregulated: Wnt7b, Hes5; down-regulated: Pax6, Tcf4, Dtna). Altered brain injury and inflammation genes in MAO B knockout mice are involved in various neurological disorders: attention deficit hyperactive disorder, panic disorder, obsessive compulsive disorder, autism, amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's disease, bipolar affective disorder. Many were commonly involved in these disorders, indicating that there are overlapping molecular pathways.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Tamara Palagashvili
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - W Hsu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Boris Tabakoff
- University of Colorado Health Science Center, Denver, CO, USA
| | - Frank Hong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Abigail T Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles CA, USA.
| |
Collapse
|
10
|
Uzbekov MG. Monoamine Oxidase as a Potential Biomarker of the Efficacy of Treatment of Mental Disorders. BIOCHEMISTRY (MOSCOW) 2021; 86:773-783. [PMID: 34225599 DOI: 10.1134/s0006297921060146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review summarizes the results of our own studies and published data on the biological markers of psychiatric disorders, with special emphasis on the activity of platelet monoamine oxidase. Pharmacotherapy studies in patients with the mixed anxiety-depressive disorder and first episode of schizophrenia have shown that the activity of platelet monoamine oxidase could serve as a potential biomarker of the efficacy of therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Marat G Uzbekov
- Moscow Research Institute of Psychiatry, Branch of Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, 107076, Russia.
| |
Collapse
|
11
|
Molecular cloning, sequence analysis, and tissue distribution of marmoset monoamine oxidases A and B. Drug Metab Pharmacokinet 2020; 35:479-482. [PMID: 32782138 DOI: 10.1016/j.dmpk.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
The common marmoset (Callithrix jacchus), a New World primate, is currently attracting much attention as a nonhuman primate model for pharmacological and pharmacokinetic studies in preclinical research. In this study, we newly isolated the cDNAs of marmoset monoamine oxidase A (MAO-A) and MAO-B from liver and brain, respectively. MAO-A and MAO-B cDNAs, respectively, contained open reading frames of 527 and 520 amino acids and were approximately 92% and 95% identical to their human orthologs. Marmoset MAOs were phylogenetically closer to primate MAOs, including human MAOs, than to pig, dog, or rodent MAOs. The genomic and gene structures of marmoset MAOs were similar to those of humans. Among the five marmoset tissue types analyzed, the expression levels of MAO-A mRNA were relatively abundant in lung, liver, kidney, and small intestine, whereas the expression levels of MAO-B mRNA were relatively abundant in brain, liver, kidney, and small intestine; these tissue distributions are similar to those of human MAOs. These results suggest that MAO-A and MAO-B are similar at a molecular level in marmosets and humans.
Collapse
|
12
|
Experimental and DFT studies on the molecular structure, spectroscopic properties, and molecular docking of 4-phenylpiperazine-1-ium dihydrogen phosphate. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127762] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Dasgupta S, Mukherjee S, Sekar K, Mukhopadhyay BP. The conformational dynamics of wing gates Ile199 and Phe103 on the binding of dopamine and benzylamine substrates in human monoamine Oxidase B. J Biomol Struct Dyn 2020; 39:1879-1886. [PMID: 32093545 DOI: 10.1080/07391102.2020.1734483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Subrata Dasgupta
- Department of Chemistry, National Institute of Technology-Durgapur, West Bengal, Durgapur, India
| | - Soumita Mukherjee
- Department of Chemistry, National Institute of Technology-Durgapur, West Bengal, Durgapur, India
| | - Kanakaraj Sekar
- Laboratory for Structural Biology and Bio-Computing, Department of Computational and Data Sciences, Indian Institute of Science Bangalore, India
| | | |
Collapse
|
14
|
Tabata Y, Shidoji Y. Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells. J Lipid Res 2020; 61:778-789. [PMID: 32094232 PMCID: PMC7193968 DOI: 10.1194/jlr.ra119000610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/15/2020] [Indexed: 12/16/2022] Open
Abstract
Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation.
Collapse
Affiliation(s)
- Yuki Tabata
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki 851-2195, Japan
| | - Yoshihiro Shidoji
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki 851-2195, Japan. mailto:
| |
Collapse
|
15
|
Noureddine O, Gatfaoui S, Brandán SA, Marouani H, Issaoui N. Structural, docking and spectroscopic studies of a new piperazine derivative, 1-Phenylpiperazine-1,4-diium bis(hydrogen sulfate). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127351] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Bang M, Kim DG, Gonzales EL, Kwon KJ, Shin CY. Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes. Biomol Ther (Seoul) 2019; 27:530-539. [PMID: 31646843 PMCID: PMC6824621 DOI: 10.4062/biomolther.2019.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022] Open
Abstract
Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated β-galactosidase (SA-β-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-β-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including Phospho- Histone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.
Collapse
Affiliation(s)
- Minji Bang
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Gyeong Kim
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Moriguchi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, Rajkowska G, Wang J, Bagby M, Mizrahi R, Varughese B, Houle S, Meyer JH. Monoamine Oxidase B Total Distribution Volume in the Prefrontal Cortex of Major Depressive Disorder: An [11C]SL25.1188 Positron Emission Tomography Study. JAMA Psychiatry 2019; 76:634-641. [PMID: 30840042 PMCID: PMC6551845 DOI: 10.1001/jamapsychiatry.2019.0044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE Monoamine oxidase B (MAO-B) is an important, high-density enzyme in the brain that generates oxidative stress by hydrogen peroxide production, alters mitochondrial function, and metabolizes nonserotonergic monoamines. Recent advances in positron emission tomography radioligand development for MAO-B in humans enable highly quantitative measurement of MAO-B distribution volume (MAO-B VT), an index of MAO-B density. To date, this is the first investigation of MAO-B in the brain of major depressive disorder that evaluates regions beyond the raphe and amygdala. OBJECTIVE To investigate whether MAO-B VT is elevated in the prefrontal cortex in major depressive episodes (MDEs) of major depressive disorder. DESIGN, SETTING, AND PARTICIPANTS This case-control study was performed at a tertiary care psychiatric hospital from April 1, 2014, to August 30, 2018. Twenty patients with MDEs without current psychiatric comorbidities and 20 age-matched controls underwent carbon 11-labeled [11C]SL25.1188 positron emission tomography scanning to measure MAO-B VT. All participants were drug and medication free, nonsmoking, and otherwise healthy. MAIN OUTCOMES AND MEASURES The MAO-B VT in the prefrontal cortex (PFC). The second main outcome was to evaluate the association between MAO-B VT in the PFC and duration of major depressive disorder illness. RESULTS Twenty patients with MDEs (mean [SD] age, 34.2 [13.2] years; 11 women) and 20 healthy controls (mean [SD] age, 33.7 [13.1] years; 10 women) were recruited. Patients with MDEs had significantly greater MAO-B VT in the PFC (mean, 26%; analysis of variance, F1,38 = 19.6, P < .001). In individuals with MDEs, duration of illness covaried positively with MAO-B VT in the PFC (analysis of covariance, F1,18 = 15.2, P = .001), as well as most other cortex regions and the thalamus. CONCLUSIONS AND RELEVANCE Fifty percent (10 of 20) of patients with MDEs had MAO-B VT values in the PFC exceeding those of healthy controls. Greater MAO-B VT is an index of MAO-B overexpression, which may contribute to pathologies of mitochondrial dysfunction, elevated synthesis of neurotoxic products, and increased metabolism of nonserotonergic monoamines. Hence, this study identifies a common pathological marker associated with downstream consequences poorly targeted by the common selective serotonin reuptake inhibitor treatments. It is also recommended that the highly selective MAO-B inhibitor medications that are compatible for use with other antidepressants and have low risk for hypertensive crisis should be developed or repurposed as adjunctive treatment for MDEs.
Collapse
Affiliation(s)
- Sho Moriguchi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Laura Miler
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neil Vasdev
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J. Kish
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson
| | - Junming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson
| | - Michael Bagby
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ben Varughese
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Yeung AWK, Georgieva MG, Atanasov AG, Tzvetkov NT. Monoamine Oxidases (MAOs) as Privileged Molecular Targets in Neuroscience: Research Literature Analysis. Front Mol Neurosci 2019; 12:143. [PMID: 31191248 PMCID: PMC6549493 DOI: 10.3389/fnmol.2019.00143] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/16/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Monoamine oxidases (MAOs) were discovered nearly a century ago. This article aims to analyze the research literature landscape associated with MAOs as privileged class of neuronal enzymes (neuroenzymes) with key functions in the processes of neurodegeneration, serving as important biological targets in neuroscience. With the accumulating publications on this topic, we aimed to evaluate the publication and citation performance of the contributors, reveal the popular research themes, and identify its historical roots. Methods: The electronic database of Web of Science (WoS) Core Collection was searched to identify publications related to MAOs, which were analyzed according to their publication year, authorship, institutions, countries/regions, journal title, WoS category, total citation count, and publication type. VOSviewer was utilized to visualize the citation patterns of the words appearing in the titles and abstracts, and author keywords. CRExplorer was utilized to identify seminal references cited by the MAO publications. Results: The literature analysis was based on 19,854 publications. Most of them were original articles (n = 15,148, 76.3%) and reviews (n = 2,039, 10.3%). The top five WoS categories of the analyzed MAO publications were Pharmacology/Pharmacy (n = 4,664, 23.5%), Neurosciences (n = 4,416, 22.2%), Psychiatry (n = 2,906, 14.6%), Biochemistry/Molecular Biology (n = 2,691, 13.6%), and Clinical Neurology (n = 1,754, 8.8%). The top 10 institutions are scattered in the United States, UK, France, Sweden, Canada, Israel, and Russia, while the top 10 countries/regions with the most intensive research on the field of MAOs are the United States, followed by European and Asian countries. More highly cited publications generally involved neurotransmitters, such as dopamine (DA), serotonin, and norepinephrine (NE), as well as the MAO-A inhibitors moclobemide and clorgyline, and the irreversible MAO-B inhibitors selegiline and rasagiline. Conclusion: Through decades of research, the literature has accumulated many publications investigating the therapeutic effects of MAO inhibitors (MAOIs) on various neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), and depression. We envision that MAO literature will continue to grow steadily, with more new therapeutic candidates being tested for better management of neurological conditions, in particular, with the development of multi-target acting drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
19
|
Qin H, Li L, Li K, Xiaoqi Y. Novel strategy of constructing fluorescent probe for MAO-B via cascade reaction and its application in imaging MAO-B in human astrocyte. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Garcia-Delgado AB, Valdés-Sánchez L, Calado SM, Diaz-Corrales FJ, Bhattacharya SS. Rasagiline delays retinal degeneration in a mouse model of retinitis pigmentosa via modulation of Bax/Bcl-2 expression. CNS Neurosci Ther 2018; 24:448-455. [PMID: 29372592 DOI: 10.1111/cns.12805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 12/15/2022] Open
Abstract
AIMS Retinitis pigmentosa (RP) is an inherited disease characterized by a progressive degeneration of rod photoreceptors. An imbalance between pro- and antiapoptotic factors, such as Bax/Bcl-2, has been involved in retinal degeneration. To date, no cure or effective treatments are available for RP. Rasagiline is an antiparkinsonian drug that has shown neuroprotective effects in part attributed to a modulation of Bax/Bcl-2 expression. In this study, we have evaluated the use of rasagiline as a potential treatment for RP. METHODS Newborn rd10 mice, a RP model, were treated with oral rasagiline during 30 days followed by a functional and morphological characterization of their mouse retinas. RESULTS Treated animals showed a significant improvement in visual acuity and in the electrical responses of photoreceptors to light stimuli. Rasagiline delayed photoreceptor degeneration, which was confirmed not only by a high photoreceptor nuclei counting, but also by a sustained expression of photoreceptor-specific markers. In addition, the expression of proapoptotic Bax decreased, whereas the antiapoptotic factor Bcl-2 increased after rasagiline treatment. CONCLUSION This study provides new evidences regarding the neuroprotective effect of rasagiline in the retina, and it brings new insight into the development of future clinical trials using this well-established antiparkinsonian drug to treat RP.
Collapse
Affiliation(s)
- Ana B Garcia-Delgado
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Lourdes Valdés-Sánchez
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Sofia M Calado
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Francisco J Diaz-Corrales
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Shom S Bhattacharya
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| |
Collapse
|
21
|
Herraiz T, Flores A, Fernández L. Analysis of monoamine oxidase (MAO) enzymatic activity by high-performance liquid chromatography-diode array detection combined with an assay of oxidation with a peroxidase and its application to MAO inhibitors from foods and plants. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:136-144. [DOI: 10.1016/j.jchromb.2017.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 01/11/2023]
|
22
|
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 2017; 133:12-30. [PMID: 28341600 PMCID: PMC5555796 DOI: 10.1016/j.brainresbull.2017.03.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism.
Collapse
Affiliation(s)
- Annadurai Anandhan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Maria S Jacome
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Pablo Hernandez-Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | | | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States.
| |
Collapse
|
23
|
Bulteau AL, Mena NP, Auchère F, Lee I, Prigent A, Lobsiger CS, Camadro JM, Hirsch EC. Dysfunction of mitochondrial Lon protease and identification of oxidized protein in mouse brain following exposure to MPTP: Implications for Parkinson disease. Free Radic Biol Med 2017; 108:236-246. [PMID: 28365360 DOI: 10.1016/j.freeradbiomed.2017.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Compelling evidence suggests that mitochondrial dysfunction leading to reactive oxygen species (ROS) production and protein oxidation could represent a critical event in the pathogenesis of Parkinson's disease (PD). Pioneering studies have shown that the mitochondrial matrix contains the Lon protease, which degrades oxidized, dysfunctional, and misfolded protein. Using the PD animal model of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication in mice, we showed that Lon protease expression increased in the ventral mesencephalon of intoxicated animals, concomitantly with the appearance of oxidized proteins and dopaminergic cell loss. In addition, we report that Lon is inactivated by ROS. Moreover, proteomic experiments provide evidence of carbonylation in α-ketoglutarate dehydrogenase (KGDH), aconitase or subunits of respiratory chain complexes. Lon protease inactivation upon MPTP treatment in mice raises the possibility that Lon protease dysfunction is an early event in the pathogenesis of PD.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France.
| | - Natalia P Mena
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Millennium Institute of Cell Dynamics and Biotechnology, Santiago, Chile
| | - Françoise Auchère
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Irene Lee
- Case Western Reserve University Department of Chemistry, Cleveland, OH 44106, USA
| | - Annick Prigent
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Christian S Lobsiger
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Jean-Michel Camadro
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Etienne C Hirsch
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
24
|
Experimental FTIR and FT-Raman and theoretical studies on the molecular structures of monomer and dimer of 3-thiopheneacrylic acid. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.01.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Gu F, Chauhan V, Chauhan A. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism. J Neurosci Res 2017; 95:1965-1972. [DOI: 10.1002/jnr.24027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Feng Gu
- NYS Institute for Basic Research in Developmental Disabilities; Staten Island New York
| | - Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities; Staten Island New York
| | - Abha Chauhan
- NYS Institute for Basic Research in Developmental Disabilities; Staten Island New York
| |
Collapse
|
26
|
Issaoui N, Ghalla H, Bardak F, Karabacak M, Aouled Dlala N, Flakus H, Oujia B. Combined experimental and theoretical studies on the molecular structures, spectroscopy, and inhibitor activity of 3-(2-thienyl)acrylic acid through AIM, NBO,FT-IR, FT-Raman, UV and HOMO-LUMO analyses, and molecular docking. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Zhang Y, Avalos JL. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28067471 DOI: 10.1002/wsbm.1373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
28
|
Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats. Mol Neurobiol 2016; 54:5632-5645. [PMID: 27624385 DOI: 10.1007/s12035-016-0084-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich fraction of UD contain flavonoids and phenolic compounds, which have a promising approach in therapeutics of PD.
Collapse
|
29
|
Guo B, Zheng C, Cai W, Cheng J, Wang H, Li H, Sun Y, Cui W, Wang Y, Han Y, Lee SMY, Zhang Z. Multifunction of Chrysin in Parkinson's Model: Anti-Neuronal Apoptosis, Neuroprotection via Activation of MEF2D, and Inhibition of Monoamine Oxidase-B. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5324-5333. [PMID: 27245668 DOI: 10.1021/acs.jafc.6b01707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chrysin, a flavonoid compound existing in several plants, is applied as a dietary supplement because of its beneficial effects on general human health and alleviation of neurological disorders. However, mechanisms underlying neuroprotection of chrysin has not been fully elucidated, and the effects of chrysin on the Parkinson's disease (PD) model in vivo have not been investigated. It is here shown that chrysin protects primary granular neurons against 1-methyl-4-phenylpyridinium ion insult via antiapoptosis by reversing the dysregulated expression of Bcl-2, Bax, and caspase 3. The mechanisms also involved activating transcriptional factor myocyte enhancer factor 2D (MEF2D) via regulation of AKT-GSK3β signaling. In this in vivo model of PD, chrysin rescued the dopaminergic neurons loss and alleviated the decrease in dopamine level induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Moreover, chrysin markedly inhibited monoamine oxidase-B activity in vitro and in vivo. In conclusion, chrysin exerts beneficial effects to PD, possibly through multitarget mechanisms including antineuronal apoptosis, activation of the AKT-GSK3β/MEF2D pathway, and inhibition of the MAO-B activity.
Collapse
Affiliation(s)
- Baojian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Chengyou Zheng
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Wei Cai
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Jiehong Cheng
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Hongyu Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Haitao Li
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Wei Cui
- School of Medicine, Ningbo University , Zhejiang, 315211 China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University , Hung Hom, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| |
Collapse
|
30
|
Triplett JC, Zhang Z, Sultana R, Cai J, Klein JB, Büeler H, Butterfield DA. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease. J Neurochem 2015; 133:750-65. [PMID: 25626353 DOI: 10.1111/jnc.13039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is an age-related, neurodegenerative motor disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of α-synuclein-containing protein aggregates. Mutations in the mitochondrial Ser/Thr kinase PTEN-induced kinase 1 (PINK1) are associated with an autosomal recessive familial form of early-onset PD. Recent studies have suggested that PINK1 plays important neuroprotective roles against mitochondrial dysfunction by phosphorylating and recruiting Parkin, a cytosolic E3 ubiquitin ligase, to facilitate elimination of damaged mitochondria via autophagy-lysosomal pathways. Loss of PINK1 in cells and animals leads to various mitochondrial impairments and oxidative stress, culminating in dopaminergic neuronal death in humans. Using a 2-D polyacrylamide gel electrophoresis proteomics approach, the differences in expressed brain proteome and phosphoproteome between 6-month-old PINK1-deficient mice and wild-type mice were identified. The observed changes in the brain proteome and phosphoproteome of mice lacking PINK1 suggest that defects in signaling networks, energy metabolism, cellular proteostasis, and neuronal structure and plasticity are involved in the pathogenesis of familial PD. Mutations in PINK1 are associated with an early-onset form of Parkinson's disease (PD). This study examines changes in the proteome and phosphoproteome of the PINK1 knockout mouse brain. Alterations were noted in several key proteins associated with: increased oxidative stress, aberrant cellular signaling, altered neuronal structure, decreased synaptic plasticity, reduced neurotransmission, diminished proteostasis networks, and altered metabolism. 14-3-3ε, 14-3-3 protein epsilon; 3-PGDH, phosphoglycerate dehydrogenase; ALDOA, aldolase A; APT1, acyl-protein thioesterase 1; CaM, calmodulin; CBR3, carbonyl reductase [NADPH] 3; ENO2, gamma-enolase; HPRT, hypoxanthine-guanine phosphoribosyltransferase; HSP70, heat-shock-related 70 kDa protein 2; IDHc, cytoplasmic isocitrate dehydrogenase [NADP+]; MAPK1, mitogen-activated protein kinase 1; MEK1, MAP kinase kinase 1; MDHc, cytoplasmic malate dehydrogenase; NFM, neurofilament medium polypeptide; NSF, N-ethylmaleimide-sensitive fusion protein; PHB, prohibitin; PINK1, PTEN-induced putative kinase 1; PPIaseA, peptidyl-prolyl cis-trans isomerase A; PSA2, proteasome subunit alpha type-2; TK, transketolase; VDAC-2, voltage-dependent anion-selective channel protein 2.
Collapse
Affiliation(s)
- Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Scandroglio F, Tórtora V, Radi R, Castro L. Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production. Free Radic Res 2014; 48:684-93. [PMID: 24601712 DOI: 10.3109/10715762.2014.900175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (> 0.95). Aconitase-specific activity varied widely among tissues examined from ~60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2(●-) and H2O2 formation by the respiratory chain.
Collapse
Affiliation(s)
- F Scandroglio
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| | | | | | | |
Collapse
|
32
|
Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, Andersen JK. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson's disease. Free Radic Biol Med 2012; 53:993-1003. [PMID: 22705949 PMCID: PMC3418424 DOI: 10.1016/j.freeradbiomed.2012.05.024] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/25/2022]
Abstract
Alpha-synuclein has been reported to be present in the nucleus and levels enhanced by oxidative stress. Herein, we sought to investigate the mechanistic role of nuclear alpha-synuclein. We found that alpha-synuclein nuclear localization coincided with enhanced chromatin binding both in an in vitro and a corresponding in vivo brain oxidative stress model previously characterized by our laboratory as well as in PD brain tissues. Genome-wide chromatin immunoprecipitation (ChIP)-on-chip analysis of alpha-synuclein:promoter binding in response to oxidative stress in vitro revealed that binding occurs at several promoters belonging to a range of functional categories including transcriptional regulation. Interestingly, given the important role of mitochondrial dysfunction in PD, this included binding to the promoter for the master mitochondrial transcription activator, PGC1alpha in vitro, in vivo, and in human brain tissue with age and PD. To test the possible mechanistic impact of alpha-synuclein PGC1alpha promotor binding, we assessed PGC1alpha promoter activity, mRNA, and protein levels and expression of candidate PGC1alpha target genes in our in vitro model. All were found to be reduced in conjunction with increased levels of aberrant mitochondrial morphology and impaired mitochondrial function. Exogenous PGC1alpha expression was found to attenuate alpha-synuclein-mediated mitochondrial dysfunction and subsequent neurotoxicity in vitro. Our data suggest that nuclear alpha-synuclein localization under conditions of oxidative stress may impact on mitochondrial function in part via the protein's capacity to act as a transcriptional modulator of PGC1alpha. This represents a novel role for alpha-synuclein as it relates to mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Almas Siddiqui
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| | - Shankar J. Chinta
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| | | | | | - Ingrid Hanson
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| | - Anand Rane
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| | - Julie K. Andersen
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945
| |
Collapse
|
33
|
Racz B, Horvath G, Reglodi D, Gasz B, Kiss P, Gallyas F, Sumegi B, Toth G, Nemeth A, Lubics A, Tamas A. PACAP ameliorates oxidative stress in the chicken inner ear: an in vitro study. ACTA ACUST UNITED AC 2009; 160:91-8. [PMID: 19969027 DOI: 10.1016/j.regpep.2009.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/09/2009] [Accepted: 12/02/2009] [Indexed: 11/30/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide. Numerous studies prove that PACAP has neuroprotective effects in diverse neuronal systems in vitro and in vivo. The involvement of PACAP in visual and olfactory sensory processing has also been documented, but little is known about its effects in the auditory system. The presence of PACAP and its receptor, the specific PAC1 receptor, has been shown in the cochlea and in brain structures involved in auditory pathways. The aim of the present study was to investigate whether PACAP is protective in cochlear oxidative stress-induced cell death, which is known to play a role in several ototoxic insults. Chicken cochlear cells were exposed to 1mM H(2)O(2), which resulted in a marked reduction of cell viability and a parallel increase of apoptotic and necrotic cells assessed by MTT test, annexin V/propidium iodide flow cytometry and JC-1 apoptosis assay. Co-incubation with 100nM PACAP increased cell viability and reduced the percentage of apoptotic cells. Furthermore, oxidative stress increased the activation of caspase-3, while simultaneous PACAP treatment reduced it. In summary, our present results demonstrate that PACAP effectively protects cochlear cells against oxidative stress-induced apoptotic cell death.
Collapse
Affiliation(s)
- Boglarka Racz
- Department of Biochemistry and Medical Chemistry, University of Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|