1
|
Obied B, Richard S, Zahavi A, Fixler D, Girshevitz O, Goldenberg-Cohen N. Structure-Function Correlation in Cobalt-Induced Brain Toxicity. Cells 2024; 13:1765. [PMID: 39513872 PMCID: PMC11545114 DOI: 10.3390/cells13211765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cobalt toxicity is difficult to detect and therefore often underdiagnosed. The aim of this study was to explore the pathophysiology of cobalt-induced oxidative stress in the brain and its impact on structure and function. Thirty-five wild-type C57B16 mice received intraperitoneal cobalt chloride injections: a single high dose with evaluations at 24, 48, and 72 h (n = 5, each) or daily low doses for 28 (n = 5) or 56 days (n = 15). A part of the 56-day group also received minocycline (n = 5), while 10 mice served as controls. Behavioral changes were evaluated, and cobalt levels in tissues were measured with particle-induced X-ray emission. Brain sections underwent magnetic resonance imaging (MRI), electron microscopy, and histological, immunohistochemical, and molecular analyses. High-dose cobalt caused transient illness, whereas chronic daily low-dose administration led to long-term elevations in cobalt levels accompanied by brain inflammation. Significant neurodegeneration was evidenced by demyelination, increased blood-brain barrier permeability, and mitochondrial dysfunction. Treated mice exhibited extended latency periods in the Morris water maze test and heightened anxiety in the open field test. Minocycline partially mitigated brain injury. The observed signs of neurodegeneration were dose- and time-dependent. The neurotoxicity after acute exposure was reversible, but the neurological and functional changes following chronic cobalt administration were not.
Collapse
Affiliation(s)
- Basel Obied
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
| | - Stephen Richard
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
| | - Alon Zahavi
- Department of Ophthalmology and Laboratory of Eye Research, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 4941492, Israel;
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (D.F.); (O.G.)
| | - Olga Girshevitz
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (D.F.); (O.G.)
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa 31048, Israel
| |
Collapse
|
2
|
Ajibo DN, Orish CN, Ruggieri F, Bocca B, Battistini B, Frazzoli C, Orish FC, Orisakwe OE. An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:3538-3564. [PMID: 38017235 DOI: 10.1007/s12011-023-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
There is increasing evidence that the imbalance of metals as cobalt (Co) and chromium (Cr) may increase the risk of development and progression of neurodegenerative diseases (NDDs). The human exposure to Co and Cr is derived mostly from industry, orthopedic implants, and polluted environments. Neurological effects of Co and Cr include memory deficit, olfactory dysfunction, spatial disorientation, motor neuron disease, and brain cancer. Mechanisms of Co and Cr neurotoxicity included DNA damage and genomic instability, epigenetic changes, mitochondrial disturbance, lipid peroxidation, oxidative stress, inflammation, and apoptosis. This paper seeks to overview the Co and Cr sources, the mechanisms by which these metals induce NDDs, and their levels in fluids of the general population and patients affected by NDDs. To this end, evidence of Co and Cr unbalance in the human body, mechanistic data, and neurological symptoms were collected using in vivo mammalian studies and human samples.
Collapse
Affiliation(s)
- Doris Nnena Ajibo
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome Viale Regina Elena, 29900161, Rome, Italy
| | | | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
3
|
Yoo JY, Kim HB, Lee YJ, Kim YJ, Yoo SY, Choi Y, Lee MJ, Kim IS, Baik TK, Lee JH, Woo RS. Neuregulin-1 reverses anxiety-like behavior and social behavior deficits induced by unilateral micro-injection of CoCl 2 into the ventral hippocampus (vHPC). Neurobiol Dis 2023; 177:105982. [PMID: 36592864 DOI: 10.1016/j.nbd.2022.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Neuregulin-1 (NRG1) is an epidermal growth factor family member with essential roles in the developing and adult nervous systems. In recent years, establishing evidence has collectively suggested that NRG1 is a new modulator of central nervous system (CNS) injury and disease, with multifaceted roles in neuroprotection, remyelination, neuroinflammation, and other repair mechanisms. NRG1 signaling exerts its effects via the tyrosine kinase receptors ErbB2-ErbB4. The NRG1/ErbB network in CNS pathology and repair has evolved, primarily in recent years. In the present study, we demonstrated that a unilateral microinjection of CoCl2 into the ventral hippocampus (vHPC) induced hypoxic insult and led to anxiety-related behaviors and deficit sociability in mice. NRG1 treatment significantly alleviated the CoCl2-induced increase of hypoxic-related molecules and behavioral abnormalities. Furthermore, NRG1 reduced the CoCl2-induced neuroinflammation and neuronal deficits in the vHPC or primary hippocampal neurons in mice. Collectively, these results suggest that NRG1 ameliorates hypoxia by alleviating synaptic deficits and behavioral abnormalities of the CoCl2-induced vHPC hypoxic model.
Collapse
Affiliation(s)
- Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Ye-Ji Lee
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Yu-Jin Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Mi-Jo Lee
- Department of Radiation Oncology, Eulji University Hospital, Daejeon 35233, Republic of Korea
| | - In-Sik Kim
- Department of Biomedical Laboratory Science, School of Medicine and Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon 34520, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| |
Collapse
|
4
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Heidrun Potschka,
| |
Collapse
|
5
|
Wang YC, Chen YS, Hsieh ST. Neuroprotective Effects of a Cardioplegic Combination (Adenosine, Lidocaine, and Magnesium) in an Ischemic Stroke Model. Mol Neurobiol 2022; 59:7045-7055. [PMID: 36074233 DOI: 10.1007/s12035-022-03020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Adenosine, lidocaine, and magnesium (ALM) are clinically available cardioplegic solutions. We examined the effects of low-dose ALM on ischemic stroke in cell and animal models. Cobalt chloride (CoCl2)-treated SH-SY5Y cells were used as a surrogate model to mimic oxygen-glucose deprivation conditions. The cells were incubated with different dilutions of ALM authentic solution (1.0 mM adenosine, 2.0 mM lidocaine, and5 mM MgSO4 in Earle's balanced salt solution). At a concentration of 2.5%, ALM significantly reduced CoCl2-induced cell loss. This protective effect persisted even when ALM was administered 1 h after the insult. We used transient middle cerebral artery occlusion to investigate the therapeutic effects of ALM in vivo. Rats were randomly assigned to two groups-the experimental (ALM) and control (saline) groups-and infusion was administered during the ischemia for 1 h. The infarction area was significantly reduced in the ALM group compared with the control group (5.0% ± 2.0% vs. 23.5% ± 5.5%, p = 0.013). Neurological deficits were reduced in the ALM group compared with the control group (modified Longa score: 0 [0-1] vs. 2 [1-2], p = 0.047). This neuroprotective effect was substantiated by a reduction in the levels of various neuronal injury markers in plasma. These results demonstrate the neuroprotective effects of ALM and may provide a new therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yi-Chia Wang
- Department of Anesthesiology, National Taiwan University College of Medicine and National University Hospital, Taipei, Taiwan
- Graduate Institutes of Anatomy and Cell Biology, National Taiwan University College of Medicine, 1 Jen-Ai Road, Section 1, Taipei, 100233, Taiwan
| | - Yih-Sharng Chen
- Department of Surgery, National Taiwan University College of Medicine and National University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Graduate Institutes of Anatomy and Cell Biology, National Taiwan University College of Medicine, 1 Jen-Ai Road, Section 1, Taipei, 100233, Taiwan.
- Department of Neurology, National Taiwan University College of Medicine and National University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
7
|
Differential Effects of Cytopathic Hypoxia on Human Retinal Endothelial Cellular Behavior: Implication for Ischemic Retinopathies. Int J Mol Sci 2022; 23:ijms23084274. [PMID: 35457092 PMCID: PMC9027301 DOI: 10.3390/ijms23084274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Loss of barrier integrity of retinal endothelial cells (RECs) is an early feature of ischemic retinopathies (IRs), but the triggering mechanisms remain incompletely understood. Previous studies have reported mitochondrial dysfunction in several forms of IRs, which creates a cytopathic hypoxic environment where cells cannot use oxygen for energy production. Nonetheless, the contribution of cytopathic hypoxia to the REC barrier failure has not been fully explored. In this study, we dissect in-depth the role of cytopathic hypoxia in impairing the barrier function of REC. We employed the electric cell-substrate impedance sensing (ECIS) technology to monitor in real-time the impedance (Z) and hence the barrier functionality of human RECs (HRECs) under cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). Furthermore, data were deconvoluted to test the effect of cytopathic hypoxia on the three key components of barrier integrity; Rb (paracellular resistance between HRECs), α (basolateral adhesion between HRECs and the extracellular matrix), and Cm (HREC membrane capacitance). Our results showed that CoCl2 decreased the Z of HRECs dose-dependently. Specifically, the Rb parameter of the HREC barrier was the parameter that declined first and most significantly by the cytopathic hypoxia-inducing agent and in a dose-dependent manner. When Rb began to fall to its minimum, other parameters of the HREC barrier, including α and Cm, were unaffected. Interestingly, the compromised effect of cytopathic hypoxia on Rb was associated with mitochondrial dysfunction but not with cytotoxicity. In conclusion, our results demonstrate distinguishable dielectric properties of HRECs under cytopathic hypoxia in which the paracellular junction between adjacent HRECs is the most vulnerable target. Such selective behavior could be utilized to screen agents or genes that maintain and strengthen the assembly of HRECs tight junction complex.
Collapse
|
8
|
Liu J, Kong L, Chen D, Tang H, Lu Y, Yuan Y, Qian F, Hou S, Zhao W, Zhang M. Bilirubin oxidation end product B prevents CoCl 2-induced primary cortical neuron apoptosis by promoting cell survival Akt/mTOR/p70S6K signaling pathway. Biochem Biophys Res Commun 2022; 602:27-34. [PMID: 35247701 DOI: 10.1016/j.bbrc.2022.02.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/12/2023]
Abstract
Bilirubin oxidation end products (BOXes) are associated with the late-developing neurological deficits after subarachnoid hemorrhage (SAH) possibly by direct constricting the cerebral arteries, but their specific impacts on neurons especially in the state of hypoxia, a prominent feature during the late stage of SAH, remain unclear. Here, we explored the effects of BOXes on the primary cortical neurons subjected to CoCl2-induced hypoxia by evaluating the morphological and apoptotic changes of neurons. The present study showed that Z-BOX B but not Z-BOX A greatly alleviated CoCl2-induced neuronal cell deterioration and apoptosis. Immunocytochemical staining assay showed Z-BOX B significantly increased neurite length, the numbers of both secondary and tertiary branches, and the protein level of Synaptophysin. Caspase 3/7 apoptosis assay and DAPI staining showed that Z-BOX B markedly reduced primary cortical neurons apoptosis. The expression of cleaved Caspase-3 was suppressed by Z-BOX B treatment, while the expression of Bcl-xL was upregulated. To further discover the mechanism of the neuroprotective effect observed in Z-BOX B, we found Z-BOX B increased the expression of p-mTOR, p-Akt, and p-p70S6K. In general, our results implicated Z-BOX B may prevent CoCl2-induced primary cortical neurons apoptosis by activating sAkt/mTOR/p70S6K signaling pathway. Hence, the present data may provide new insights into the pathophysiological mechanism of delayed neurological dysfunction after SAH and novel targets for treating SAH.
Collapse
Affiliation(s)
- Jingting Liu
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lingxuan Kong
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Dongxin Chen
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Huirong Tang
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Yao Yuan
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng Qian
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shangwei Hou
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wenjuan Zhao
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Man Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
9
|
Gómez-Arnaiz S, Tate RJ, Grant MH. Cobalt Neurotoxicity: Transcriptional Effect of Elevated Cobalt Blood Levels in the Rodent Brain. TOXICS 2022; 10:toxics10020059. [PMID: 35202246 PMCID: PMC8878729 DOI: 10.3390/toxics10020059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Metal-on-metal (MoM) hip implants made of cobalt chromium (CoCr) alloy have shown early failure compared with other bearing materials. A consequence of the abnormal wear produced by these prostheses is elevated levels of cobalt in the blood of patients, which can lead to systemic conditions involving cardiac and neurological symptoms. In order to better understand the implications for patients with these implants, we carried out metal content and RNA-Seq analysis of excised tissue from rats treated intraperitonially for 28 days with low concentrations of cobalt. Cobalt blood levels in dosed rats were found to be similar to those seen in some patients with MoM implants (range: 4–38 μg/L Co in blood). Significant accumulation of cobalt was measured in a range of tissues including kidney, liver, and heart, but also in brain tissue. RNA-Seq analysis of neural tissue revealed that exposure to cobalt induces a transcriptional response in the prefrontal cortex (pref. cortex), cerebellum, and hippocampus. Many of the most up- and downregulated genes appear to correspond to choroid plexus transcripts. These results indicate that the choroid plexus could be the brain tissue most affected by cobalt. More specifically, the differentially expressed genes show a disruption of steroidogenesis and lipid metabolism. Several other transcripts also demonstrate that cobalt induces an immune response. In summary, cobalt exposure induces alterations in the brain transcriptome, more specifically, the choroid plexus, which is in direct contact with neurotoxicants at the blood–cerebrospinal fluid barrier.
Collapse
Affiliation(s)
- Sara Gómez-Arnaiz
- Wolfson Centre, Biomedical Engineering Department, University of Strathclyde, Glasgow G4 0NW, UK;
| | - Rothwelle J. Tate
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Mary Helen Grant
- Wolfson Centre, Biomedical Engineering Department, University of Strathclyde, Glasgow G4 0NW, UK;
- Correspondence:
| |
Collapse
|
10
|
Hypoxic Processes Induce Complement Activation via Classical Pathway in Porcine Neuroretinas. Cells 2021; 10:cells10123575. [PMID: 34944083 PMCID: PMC8700265 DOI: 10.3390/cells10123575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Considering the fact that many retinal diseases are yet to be cured, the pathomechanisms of these multifactorial diseases need to be investigated in more detail. Among others, oxidative stress and hypoxia are pathomechanisms that take place in retinal diseases, such as glaucoma, age-related macular degeneration, or diabetic retinopathy. In consideration of these diseases, it is also evidenced that the immune system, including the complement system and its activation, plays an important role. Suitable models to investigate neuroretinal diseases are organ cultures of porcine retina. Based on an established model, the role of the complement system was studied after the induction of oxidative stress or hypoxia. Both stressors led to a loss of retinal ganglion cells (RGCs) accompanied by apoptosis. Hypoxia activated the complement system as noted by higher C3+ and MAC+ cell numbers. In this model, activation of the complement cascade occurred via the classical pathway and the number of C1q+ microglia was increased. In oxidative stressed retinas, the complement system had no consideration, but strong inflammation took place, with elevated TNF, IL6, and IL8 mRNA expression levels. Together, this study shows that hypoxia and oxidative stress induce different mechanisms in the porcine retina inducing either the immune response or an inflammation. Our findings support the thesis that the immune system is involved in the development of retinal diseases. Furthermore, this study is evidence that both approaches seem suitable models to investigate undergoing pathomechanisms of several neuroretinal diseases.
Collapse
|
11
|
Gómez-Arnaiz S, Tate R, Grant M. Cytotoxicity of cobalt chloride in brain cell lines - a comparison between astrocytoma and neuroblastoma cells. Toxicol In Vitro 2020; 68:104958. [DOI: 10.1016/j.tiv.2020.104958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
|
12
|
Tsai T, Mueller-Buehl AM, Satgunarajah Y, Kuehn S, Dick HB, Joachim SC. Protective effect of the extremolytes ectoine and hydroxyectoine in a porcine organ culture. Graefes Arch Clin Exp Ophthalmol 2020; 258:2185-2203. [PMID: 32710140 PMCID: PMC8478759 DOI: 10.1007/s00417-020-04854-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Hypoxic damage to the retina is a relevant component of neurodegenerative pathologies such as glaucoma or retinal ischemia. In porcine retina organ cultures, hypoxic damage can be induced by applying cobalt chloride (CoCl2). The aim of our study was to investigate possible neuroprotective effects of the extremolytes ectoine and hydroxyectoine in this hypoxia-damaged retina model. Methods To simulate hypoxia, porcine retina organ cultures were damaged with 300 μM CoCl2 for 48 h starting on day 1 (n = 8–9/group). In order to investigate the possible neuroprotective effects of ectoine and hydroxyectoine, 0.5 mM of each extremolyte was added to the culture at the same time as the stressor and for the same duration. On day 8, the retina organ cultures were taken for (immuno)-histochemical examinations. Retinal ganglion cells (RGCs), macroglia, and apoptotic and hypoxic cells were detected with appropriate markers followed by cell counts and group comparisons. Results Treatment with ectoine resulted in RGC protection (p < 0.05) and reduced rate of apoptosis (p < 0.001) in hypoxia-treated retina organ cultures. However, the macroglia area and the amount of hypoxic, HIF-1α+ cells were unaffected by the ectoine treatment (p = 0.99). Treatment with hydroxyectoine also protected RGCs (p < 0.01) by inhibiting apoptosis (p < 0.001). In addition, the number of hypoxic, HIF-1α+ cells could be significantly reduced by treatment with hydroxyectoine (p < 0.05). The macroglia area on the other hand was unchanged after CoCl2 and treatment with hydroxyectoine. Conclusion Both extremolytes had a protective effect on CoCl2-induced hypoxia in the porcine retina organ culture. Regarding the reduction of hypoxic stress, hydroxyectoine appears to be more effective. Thus, both extremolytes represent an interesting potential new therapeutic approach for patients with ocular diseases in which hypoxic processes play a significant role.
Collapse
Affiliation(s)
- Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Yathavan Satgunarajah
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
13
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
14
|
Auzmendi J, Palestro P, Blachman A, Gavernet L, Merelli A, Talevi A, Calabrese GC, Ramos AJ, Lazarowski A. Cannabidiol (CBD) Inhibited Rhodamine-123 Efflux in Cultured Vascular Endothelial Cells and Astrocytes Under Hypoxic Conditions. Front Behav Neurosci 2020; 14:32. [PMID: 32256321 PMCID: PMC7090129 DOI: 10.3389/fnbeh.2020.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the constant development of new antiepileptic drugs (AEDs), more than 30% of patients develop refractory epilepsy (RE) characterized by a multidrug-resistant (MDR) phenotype. The “transporters hypothesis” indicates that the mechanism of this MDR phenotype is the overexpression of ABC transporters such as P-glycoprotein (P-gp) in the neurovascular unit cells, limiting access of the AEDs to the brain. Recent clinical trials and basic studies have shown encouraging results for the use of cannabinoids in RE, although its mechanisms of action are still not fully understood. Here, we have employed astrocytes and vascular endothelial cell cultures subjected to hypoxia, to test the effect of cannabidiol (CBD) on the P-gp-dependent Rhodamine-123 (Rho-123) efflux. Results show that during hypoxia, intracellular Rho-123 accumulation after CBD treatment is similar to that induced by the P-gp inhibitor Tariquidar (Tq). Noteworthy, this inhibition is like that registered in non-hypoxia conditions. Additionally, docking studies predicted that CBD could behave as a P-gp substrate by the interaction with several residues in the α-helix of the P-gp transmembrane domain. Overall, these findings suggest a direct effect of CBD on the Rho-123 P-gp-dependent efflux activity, which might explain why the CBD add-on treatment regimen in RE patients results in a significant reduction in seizure frequency.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo Palestro
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Agustín Blachman
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Amalia Merelli
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Graciela Cristina Calabrese
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Hurst J, Mueller-Buehl AM, Hofmann L, Kuehn S, Herms F, Schnichels S, Joachim SC. iNOS-inhibitor driven neuroprotection in a porcine retina organ culture model. J Cell Mol Med 2020; 24:4312-4323. [PMID: 32130787 PMCID: PMC7171393 DOI: 10.1111/jcmm.15091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Nitrite oxide plays an important role in the pathogenesis of various retinal diseases, especially when hypoxic processes are involved. This degeneration can be simulated by incubating porcine retinal explants with CoCl2. Here, the therapeutic potential of iNOS‐inhibitor 1400W was evaluated. Degeneration through CoCl2 and treatment with the 1400W were applied simultaneously to porcine retinae explants. Three groups were compared: control, CoCl2, and CoCl2 + iNOS‐inhibitor (1400W). At days 4 and 8, retinal ganglion cells (RGCs), bipolar, and amacrine cells were analysed. Furthermore, the influence on the glia cells and different stress markers were evaluated. Treatment with CoCl2 resulted in a significant loss of RGCs already after 4 days, which was counteracted by the iNOS‐inhibitor. Expression of HIF‐1α and its downstream targets confirmed the effective treatment with 1400W. After 8 days, the CoCl2 group displayed a significant loss in amacrine cells and also a drastic reduction in bipolar cells was observed, which was prevented by 1400W. The decrease in microglia could not be prevented by the inhibitor. CoCl2 induces strong degeneration in porcine retinae by mimicking hypoxia, damaging certain retinal cell types. Treatment with the iNOS‐inhibitor counteracted these effects to some extent, by preventing loss of retinal ganglion and bipolar cells. Hence, this inhibitor seems to be a very promising treatment for retinal diseases.
Collapse
Affiliation(s)
- José Hurst
- Centre for Ophthalmology Tübingen, University Eye Hospital, Tübingen, Germany
| | - Ana Maria Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Lisa Hofmann
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Fenja Herms
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven Schnichels
- Centre for Ophthalmology Tübingen, University Eye Hospital, Tübingen, Germany
| | | |
Collapse
|
16
|
Park DW, Jeon H, So R, Kang SC. Centella asiatica extract prevents visual impairment by promoting the production of rhodopsin in the retina. Nutr Res Pract 2020; 14:203-217. [PMID: 32528628 PMCID: PMC7263902 DOI: 10.4162/nrp.2020.14.3.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/29/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVE Centella asiatica, also known as Gotu kola, is a tropical medicinal plant native to Madagascar, Southeast Asia, and South Africa. It is well known to have biological activities, including wound healing, anti-inflammatory, antidiabetic, cytotoxic, and antioxidant effects. The purpose of this study was to determine the efficacy of extracts of C. asiatica against age-related eye degeneration and to examine their physiological activities. MATERIALS/METHODS To determine the effects of CA-HE50 (C. asiatica 50% EtOH extract) on retinal pigment cells, we assessed the cytotoxicity of CoCl2 and oxidized-A2E in ARPE-19 cells and observed the protective effects of CA-HE50 against N-methyl-N-nitrosourea (MNU)-induced retinal damage in C57BL/6 mice. In particular, we measured factors related to apoptosis and anti-oxidation and the protein levels of rhodopsin/opsin. We also measured glucose uptake to characterize glucose metabolism, a major factor in cell protection. RESULTS Induction of cytotoxicity with CoCl2 and oxidized-A2E inhibited decreases in the viability of ARPE-19 cells when CA-HE50 was administered, and promoted glucose uptake under normal conditions (P < 0.05). In addition, CA-HE50 inhibited degeneration/apoptosis of the retina in the context of MNU-induced toxicity (P < 0.05). In particular, CA-HE50 at 200 mg/kg inhibited the cleavage of pro-caspase-3 and pro-poly (ADP-ribose)-polymerase and maintained the expressions of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 similar to normal control levels. Rhodopsin/opsin expression was maintained at a higher level than in normal controls. CONCLUSION A series of experiments confirmed that CA-HE50 was effective for inhibiting or preventing age-related eye damage/degeneration. Based on these results, we believe it is worthwhile to develop drugs or functional foods related to age-related eye degeneration using CA-HE50.
Collapse
Affiliation(s)
- Dae Won Park
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Hyelin Jeon
- Research Institute, Genencell Co. Ltd., Yongin 16950, Korea.,BioMedical Research Institute, Kyung Hee University, Yongin 17104, Korea
| | - Rina So
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea.,BioMedical Research Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
17
|
Liu L, Sha XY, Wu YN, Chen MT, Zhong JX. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res 2020; 15:1526-1531. [PMID: 31997818 PMCID: PMC7059572 DOI: 10.4103/1673-5374.274349] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The accumulation of excessive reactive oxygen species can exacerbate any injury of retinal tissue because free radicals can trigger lipid peroxidation, protein damage and DNA fragmentation. Increased oxidative stress is associated with the common pathological process of many eye diseases, such as glaucoma, diabetic retinopathy and ischemic optic neuropathy. Many studies have demonstrated that Lycium barbarum polysaccharides (LBP) protects against oxidative injury in numerous cells and tissues. For the model of hypoxia we used cultured retinal ganglion cells and induced hypoxia by incubating with 200 µM cobalt chloride (CoCl2) for 24 hours. To investigate the protective effect of LBP and its mechanism of action against oxidative stress injury, the retinal tissue was pretreated with 0.5 mg/mL LBP for 24 hours. The results of flow cytometric analysis showed LBP could effectively reduce the CoCl2-induced retinal ganglion cell apoptosis, inhibited the generation of reactive oxygen species and the reduction of mitochondrial membrane potential. These findings suggested that LBP could protect retinal ganglion cells from CoCl2-induced apoptosis by reducing mitochondrial membrane potential and reactive oxygen species.
Collapse
Affiliation(s)
- Lian Liu
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao-Yuan Sha
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Ning Wu
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Meng-Ting Chen
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Merelli A, Ramos AJ, Lazarowski A, Auzmendi J. Convulsive Stress Mimics Brain Hypoxia and Promotes the P-Glycoprotein (P-gp) and Erythropoietin Receptor Overexpression. Recombinant Human Erythropoietin Effect on P-gp Activity. Front Neurosci 2019; 13:750. [PMID: 31379495 PMCID: PMC6652211 DOI: 10.3389/fnins.2019.00750] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Erythropoietin (EPO) is not only a hormone that promotes erythropoiesis but also has a neuroprotective effect on neurons attributed to its known anti-apoptotic action. Previously, our group has demonstrated that recombinant-human EPO (rHu-EPO) can protect neurons and recovery motor activity in a chemical focal brain hypoxia model (Merelli et al., 2011). We and others also have reported that repetitive seizures can mimic a hypoxic- like condition by HIF-1α nuclear translocation and high neuronal expression P-gp. Here, we report that a single 20-min status epilepticus (SE) induces P-gp and EPO-R expression in cortical pyramidal neurons and only P-gp expression in astrocytes. In vitro, excitotoxic stress (300 μM glutamate, 5 min), can also induce the expression of EPO-R and P-gp simultaneously with both HIF-1α and NFkB nuclear translocation in primary cortical neurons. Primary astrocytes exposed to chemical hypoxia with CoCl2 (0.3 mM, 6 h) increased P-gp expression as well as an increased efflux of Rhodamine 123 (Rho123) that is a P-gp substrate. Tariquidar, a specific 3er generation P-gp-blocker was used as an efflux inhibitor control. Astrocytes treated with rHu-EPO showed a significant recovery of the Rho123 retention in a similar way as seen by Tariquidar, demonstrating for first time that rHu-EPO can inhibit the P-gp-dependent efflux activity. Taking together, these data suggest that stimulation of EPO depending signaling system could not only play a central role in brain cell protection, but this system could be a new tool for reverse the pharmacoresistant phenotype in refractory epilepsy as well as in other pharmacoresistant hypoxic brain diseases expressing P-gp.
Collapse
Affiliation(s)
- Amalia Merelli
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" IBCN-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jeronimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" IBCN-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Maliha AM, Kuehn S, Hurst J, Herms F, Fehr M, Bartz-Schmidt KU, Dick HB, Joachim SC, Schnichels S. Diminished apoptosis in hypoxic porcine retina explant cultures through hypothermia. Sci Rep 2019; 9:4898. [PMID: 30894574 PMCID: PMC6427006 DOI: 10.1038/s41598-019-41113-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Simulation of hypoxic processes in vitro can be achieved through cobalt chloride (CoCl2), which induces strong neurodegeneration. Hypoxia plays an important role in the progression of several retinal diseases. Thus, we investigated whether hypoxia can be reduced by hypothermia. Porcine retinal explants were cultivated for four and eight days and hypoxia was mimicked by adding 300 µM CoCl2 from day one to day three. Hypothermia treatment (30 °C) was applied simultaneously. Retinal ganglion, bipolar and amacrine cells, as well as microglia were evaluated via immunohistological and western blot analysis. Furthermore, quantitative real-time PCR was performed to analyze cellular stress and apoptosis. In addition, the expression of specific marker for the previously described cell types were investigated. A reduction of ROS and stress markers HSP70, iNOS, HIF-1α was achieved via hypothermia. In accordance, an inhibition of apoptotic proteins (caspase 3, caspase 8) and the cell cycle arrest gene p21 was found in hypothermia treated retinae. Furthermore, neurons of the inner retina were protected by hypothermia. In this study, we demonstrate that hypothermia lowers hypoxic processes and cellular stress. Additionally, hypothermia inhibits apoptosis and protects neurons. Hence, this seems to be a promising treatment for retinal neurodegeneration.
Collapse
Affiliation(s)
- Ana M Maliha
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - José Hurst
- University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany
| | - Fenja Herms
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- Clinic for Small Animals, University of Veterinary Medicine, Hannover, Germany
| | - Michael Fehr
- Clinic for Small Animals, University of Veterinary Medicine, Hannover, Germany
| | - Karl U Bartz-Schmidt
- University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany.
| | - Sven Schnichels
- University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany.
| |
Collapse
|
20
|
Auzmendi J, Buchholz B, Salguero J, Cañellas C, Kelly J, Men P, Zubillaga M, Rossi A, Merelli A, Gelpi RJ, Ramos AJ, Lazarowski A. Pilocarpine-Induced Status Epilepticus Is Associated with P-Glycoprotein Induction in Cardiomyocytes, Electrocardiographic Changes, and Sudden Death. Pharmaceuticals (Basel) 2018; 11:ph11010021. [PMID: 29462915 PMCID: PMC5874717 DOI: 10.3390/ph11010021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the major cause of death in those patients suffering from refractory epilepsy (RE), with a 24-fold higher risk relative to the normal population. SUDEP risk increases with seizure frequency and/or seizure-duration as in RE and Status Epilepticus (SE). P-glycoprotein (P-gp), the product of the multidrug resistant ABCB1-MDR-1 gene, is a detoxifying pump that extrudes drugs out of the cells and can confer pharmacoresistance to the expressing cells. Neurons and cardiomyocytes normally do not express P-gp, however, it is overexpressed in the brain of patients or in experimental models of RE and SE. P-gp was also detected after brain or cardiac hypoxia. We have previously demonstrated that repetitive pentylenetetrazole (PTZ)-induced seizures increase P-gp expression in the brain, which is associated with membrane depolarization in the hippocampus, and in the heart, which is associated with fatal SE. SE can produce hypoxic-ischemic altered cardiac rhythm (HIACR) and severe arrhythmias, and both are related with SUDEP. Here, we investigate whether SE induces the expression of hypoxia-inducible transcription factor (HIF)-1α and P-gp in cardiomyocytes, which is associated with altered heart rhythm, and if these changes are related with the spontaneous death rate. SE was induced in Wistar rats once a week for 3 weeks, by lithium-pilocarpine-paradigm. Electrocardiograms, HIF-1α, and P-gp expression in cardiomyocytes, were evaluated in basal conditions and 72 h after SE. All spontaneous deaths occurred 48 h after each SE was registered. We observed that repeated SE induced HIF-1α and P-gp expression in cardiomyocytes, electrocardiographic (ECG) changes, and a high rate of spontaneous death. Our results suggest that the highly accumulated burden of convulsive stress results in a hypoxic heart insult, where P-gp expression may play a depolarizing role in cardiomyocyte membranes and in the development of the ECG changes, such as QT interval prolongation, that could be related with SUDEP. We postulate that this mechanism could explain, in part, the higher SUDEP risk in patients with RE or SE.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Bruno Buchholz
- Departamento de Patología, Instituto de Fisiopatología Cardiovascular (INFICA), Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires C1121ABG, Argentina.
| | - Jimena Salguero
- Departamento de Fisicomatemática, Laboratorio de Radioisótopos, Cátedra de Física, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires C1113AAD, Argentina.
| | - Carlos Cañellas
- Laboratorio Tecnonuclear SA, Arias 4176, Buenos Aires C1430CRP, Argentina.
| | - Jazmín Kelly
- Departamento de Patología, Instituto de Fisiopatología Cardiovascular (INFICA), Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires C1121ABG, Argentina.
| | - Paula Men
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires C1113AAD, Argentina.
| | - Marcela Zubillaga
- Departamento de Fisicomatemática, Laboratorio de Radioisótopos, Cátedra de Física, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires C1113AAD, Argentina.
| | - Alicia Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Amalia Merelli
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires C1113AAD, Argentina.
| | - Ricardo J Gelpi
- Departamento de Patología, Instituto de Fisiopatología Cardiovascular (INFICA), Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires C1121ABG, Argentina.
| | - Alberto J Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
21
|
Merelli A, Rodríguez JCG, Folch J, Regueiro MR, Camins A, Lazarowski A. Understanding the Role of Hypoxia Inducible Factor During Neurodegeneration for New Therapeutics Opportunities. Curr Neuropharmacol 2018; 16:1484-1498. [PMID: 29318974 PMCID: PMC6295932 DOI: 10.2174/1570159x16666180110130253] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/24/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration (NDG) is linked with the progressive loss of neural function with intellectual and/or motor impairment. Several diseases affecting older individuals, including Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Parkinson's disease, stroke, Multiple Sclerosis and many others, are the most relevant disorders associated with NDG. Since other pathologies such as refractory epilepsy, brain infections, or hereditary diseases such as "neurodegeneration with brain iron accumulation", also lead to chronic brain inflammation with loss of neural cells, NDG can be said to affect all ages. Owing to an energy and/or oxygen supply imbalance, different signaling mechanisms including MAPK/PI3K-Akt signaling pathways, glutamatergic synapse formation, and/or translocation of phosphatidylserine, might activate some central executing mechanism common to all these pathologies and also related to oxidative stress. Hypoxia inducible factor 1-α (HIF-1α) plays a twofold role through gene activation, in the sense that this factor has to "choose" whether to protect or to kill the affected cells. Most of the afore-mentioned processes follow a protracted course and are accompanied by progressive iron accumulation in the brain. We hypothesize that the neuroprotective effects of iron chelators are acting against the generation of free radicals derived from iron, and also induce sufficient -but not excessive- activation of HIF-1α, so that only the hypoxia-rescue genes will be activated. In this regard, the expression of the erythropoietin receptor in hypoxic/inflammatory neurons could be the cellular "sign" to act upon by the nasal administration of pharmacological doses of Neuro-EPO, inducing not only neuroprotection, but eventually, neurorepair as well.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Lazarowski
- Address correspondence to this author at the Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires-Argentina, Junín 954, Buenos Aires-Argentina; Tel: +54-11-5950-8674;, E-mail:
| |
Collapse
|
22
|
Heffernan AL, Gómez-Ramos MM, Gaus C, Vijayasarathy S, Bell I, Hof C, Mueller JF, Gómez-Ramos MJ. Non-targeted, high resolution mass spectrometry strategy for simultaneous monitoring of xenobiotics and endogenous compounds in green sea turtles on the Great Barrier Reef. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1251-1262. [PMID: 28521388 DOI: 10.1016/j.scitotenv.2017.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Chemical contamination poses a threat to ecosystem, biota and human health, and identifying these hazards is a complex challenge. Traditional hazard identification relies on a priori-defined targets of limited chemical scope, and is generally inappropriate for exploratory studies such as explaining toxicological effects in environmental systems. Here we present a non-target high resolution mass spectrometry environmental monitoring study with multivariate statistical analysis to simultaneously detect biomarkers of exposure (e.g. xenobiotics) and biomarkers of effect in whole turtle blood. Borrowing the concept from clinical chemistry, a case-control sampling approach was used to investigate the potential influence of xenobiotics of anthropogenic origin on free-ranging green sea turtles (Chelonia mydas) from a remote, offshore 'control' site; and two coastal 'case' sites influenced by urban/industrial and agricultural activities, respectively, on the Great Barrier Reef in North Queensland, Australia. Multiple biomarkers of exposure, including sulfonic acids (n=9), a carbamate insecticide metabolite, and other industrial chemicals; and five biomarkers of effect (lipid peroxidation products), were detected in case sites. Additionally, two endogenous biomarkers of neuroinflammation and oxidative stress were identified, and showed moderate-to-strong correlations with clinical measures of inflammation and liver dysfunction. Our data filtering strategy overcomes limitations of traditional a priori selection of target compounds, and adds to the limited environmental xenobiotic metabolomics literature. To our knowledge this is the first case-control study of xenobiotics in marine megafauna, and demonstrates the utility of green sea turtles to link internal and external exposure, to explain potential toxicological effects in environmental systems.
Collapse
Affiliation(s)
- Amy L Heffernan
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Maria M Gómez-Ramos
- Agrifood Campus of International Excellence (CeiA3), Department of Chemistry and Physics, University of Almeria, European Union Reference Laboratory for Pesticide Residues in Fruit and Vegetables, Almería, Spain
| | - Caroline Gaus
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Soumini Vijayasarathy
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Ian Bell
- Aquatic Species Program, Department of Environment and Heritage Protection, Townsville, Australia
| | - Christine Hof
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; Species Conservation and Indigenous Partnerships Unit, World Wildlife Fund for Nature-Australia, Brisbane, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Maria J Gómez-Ramos
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; Agrifood Campus of International Excellence (CeiA3), Department of Chemistry and Physics, University of Almeria, European Union Reference Laboratory for Pesticide Residues in Fruit and Vegetables, Almería, Spain
| |
Collapse
|
23
|
Cao S, Du J, Hei Q. Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Exp Ther Med 2017; 14:4919-4927. [PMID: 29201196 PMCID: PMC5704330 DOI: 10.3892/etm.2017.5127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/08/2017] [Indexed: 12/15/2022] Open
Abstract
The incidence of neurodegenerative diseases including Alzheimer's and Parkinson's disease has markedly increased over the past few decades. Oxidative stress is considered to be a common pathophysiological condition resulting in neurotoxicity. Lycium barbarum polysaccharide (LBP) is the major active component of Lycium barbarum L., which exhibit potent antioxidant activity. The current study investigated the neuroprotective effects of LBP in H2O2-treated PC12 cells in vitro and in CoCl2-treated rats in vivo. It was determined that LBP concentration-dependently reversed the H2O2-induced increase in reactive oxygen species (ROS) levels, decrease in cell viability, increase in TUNEL-stained cells, increase in caspase-3 and −9 activity and decrease in mitochondrial membrane potential, indicating the amelioration of mitochondrial apoptosis. Furthermore, LBP inhibited the H2O2-induced decrease in nuclear factor erythroid 2-related factor 2 (Nrf)2 and heme oxygenase (HO)-1 expression and binding of Nrf2 to the promoters of HO-1. Silencing of Nrf2 and inhibition of HO-1 by zinc protoporphyrin IX (ZnPP) reversed the protective effects of LBP against H2O2-resulted neurotoxicity in PC12 cells. In CoCl2-treated rats, it was demonstrated that LBP decreased brain tissue apoptosis, reduced the time spent by rats finding the platform site, decreased escape latencies and reduced the distance traveled to find the platform. In addition, LBP inhibited the CoCl2-induced decrease of Nrf2 and HO-1 expression. Administration of ZnPP also suppressed the protective effects of LBP against CoCl2-resulted neurotoxicity in rats. Thus, the current study indicated that LBP exhibits protective effects against neurotoxicity by upregulating Nrf2/HO-1 signaling. These data may increase understanding regarding the neuroprotective activities of LBP.
Collapse
Affiliation(s)
- Shumei Cao
- Department of Anesthesiology, Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Jianlong Du
- Department of Anesthesiology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi 712000, P.R. China
| | - Qiaohong Hei
- Department of Anesthesiology, Xi'an High-Tech Hospital, Xi'an, Shaanxi 710075, P.R. China
| |
Collapse
|
24
|
Yang F, Luo WJ, Sun W, Wang Y, Wang JL, Yang F, Li CL, Wei N, Wang XL, Guan SM, Chen J. SDF1-CXCR4 Signaling Maintains Central Post-Stroke Pain through Mediation of Glial-Neuronal Interactions. Front Mol Neurosci 2017; 10:226. [PMID: 28785202 PMCID: PMC5519565 DOI: 10.3389/fnmol.2017.00226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022] Open
Abstract
Central post-stroke pain (CPSP) is an intractable central neuropathic pain that has been poorly studied mechanistically. Here we showed that stromal cell-derived factor 1 (SDF1 or CXCL12), a member of the CXC chemokine family, and its receptor CXCR4 played a key role in the development and maintenance of thalamic hemorrhagic CPSP through hypoxia inducible factor 1α (HIF-1α) mediated microglial-astrocytic-neuronal interactions. First, both intra-thalamic collagenase (ITC) and SDF1 injections could induce CPSP that was blockable and reversible by intra-thalamic administration of both AMD3100 (a selective CXCR4 antagonist) and inhibitors of microglial or astrocytic activation. Second, long-term increased-expression of SDF1 and CXCR4 that was accompanied by activations of both microglia and astrocytes following ITC could be blocked by both AMD-3100 and YC-1, a selective inhibitor of HIF-1α. AMD-3100 could also inhibit release of proinflammatory mediators (TNFα, IL1β and IL-6). Increased-expression of HIF-1α, SDF1, CXCR4, Iba1 and GFAP proteins could be induced by both ITC and intra-thalamic CoCl2, an inducer of HIF-1α that was blockable by both HIF-1α inhibition and CXCR4 antagonism. Finally, inhibition of HIF-1α was only effective in prevention, but not in treatment of ITC-induced CPSP. Taken together, the present study demonstrated that in the initial process of thalamic hemorrhagic state HIF-1α up-regulated SDF1-CXCR4 signaling, while in the late process SDF1-CXCR4 signaling-mediated positive feedback plays more important role in glial-glial and glial-neuronal interactions and might be a novel promising molecular target for treatment of CPSP in clinic.
Collapse
Affiliation(s)
- Fei Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical UniversityXi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China.,Beijing Institute for Brain DisordersBeijing, China
| |
Collapse
|
25
|
Tian SW, Ren Y, Pei JZ, Ren BC, He Y. Pigment epithelium-derived factor protects retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Int J Ophthalmol 2017; 10:1046-1054. [PMID: 28730105 DOI: 10.18240/ijo.2017.07.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/02/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the potential of pigment epithelium-derived factor (PEDF) to protect the immortalized rat retinal ganglion cells-5 (RGC-5) exposed to CoCl2-induced chemical hypoxia. METHODS After being differentiated with staurosporine (SS), RGC-5 cells were cultured in four conditions: control group cells cultured in Dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum, 100 µmol/mL streptomycin and penicillin (named as normal conditions); hypoxia group cells cultured in DMEM containing 300 µmol/mL CoCl2; cells in the group protected by PEDF were first pretreated with 100 ng/mL PEDF for 2h and then cultured in the same condition as hypoxia group cells; and PEDF group cells that were cultured in the presence of 100 ng/mL PEDF under normal conditions. The cell viability was assessed by MTT assay, the percentage of apoptotic cells was quantified using Annexin V-FITC apoptosis kit, and intra-cellar reactive oxygen species (ROS) was measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) probe. The mitochondria-mediated apoptosis was also examined to further study the underlying mechanism of the protective effect of PEDF. The opening of mitochondrial permeability transition pores (mPTPs) and membrane potential (Δψm) were tested as cellular adenosine triphosphate (ATP) level and glutathione (GSH). Also, the expression and distribution of Cyt C and apoptosis inducing factor (AIF) were observed. RESULTS SS induced differentiation of RGC-5 cells resulting in elongation of their neurites and establishing contacts between outgrowths. Exposure to 300 µmol/mL CoCl2 triggered death of 30% of the total cells in cultures within 24h. At the same time, pretreatment with 100 ng/mL PEDF significantly suppressed the cell death induced by hypoxia (P<0.05). The apoptosis induced by treatment of CoCl2 was that induced cell death accompanied with increasing intra-cellar ROS and decreasing GSH and ATP level. PEDF pre-treatment suppressed these effects (P<0.05). Additionally, PEDF treatment inhibited the opening of mPTPs and suppressed decreasing of Δψm in RGC-5 cells, resulting in blocking of the mitochondrial apoptotic pathway. CONCLUSION Pretreatment of RGC-5 cells with 100 ng/mL PEDF significantly decreases the extent of apoptosis. PEDF inhibits the opening of mPTPs and suppresses decreasing of Δψm. Moreover, PEDF also reduces ROS production and inhibits cellular ATP level's reduction. Cyt C and AIF activation in PEDF-pretreated cultures are also reduced. These results demonstrate the potential for PEDF to protect RGCs against hypoxic damage in vitro by preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shu-Wei Tian
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical Univeristy, Xi'an 710038, Shaanxi Province, China.,Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China
| | - Yuan Ren
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical Univeristy, Xi'an 710038, Shaanxi Province, China
| | - Jin-Zhi Pei
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical Univeristy, Xi'an 710038, Shaanxi Province, China
| | - Bai-Chao Ren
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China
| | - Yuan He
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical Univeristy, Xi'an 710038, Shaanxi Province, China
| |
Collapse
|
26
|
Kuehn S, Hurst J, Rensinghoff F, Tsai T, Grauthoff S, Satgunarajah Y, Dick HB, Schnichels S, Joachim SC. Degenerative effects of cobalt-chloride treatment on neurons and microglia in a porcine retina organ culture model. Exp Eye Res 2017; 155:107-120. [PMID: 28089775 DOI: 10.1016/j.exer.2017.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/20/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Abstract
In order to understand the pathological processes of retinal diseases, experimental models are necessary. Cobalt, as part of the vitamin B12 complex, is important for neuronal integrity. However, it is known that high quantities of cobalt induce cytotoxic mechanisms via hypoxia mimicry. Therefore, we tested the degenerative effect of cobalt chloride (CoCl2) on neurons and microglia in a porcine retina organ culture model. Organotypic cultures of porcine retinas were cultured and treated with different concentrations of CoCl2 (0, 100, 300 and 500 μM) for 48 h. After four and eight days, CoCl2 induced a strong degeneration of the porcine retina, starting at 300 μM. A loss of retinal ganglion cells (RGCs, Brn-3a), amacrine cells (calretinin) and bipolar cells (PKCα) was observed. Additionally, a high expression of hypoxia induced factor-1a (HIF-1a) and heat shock protein 70 (HSP70) was noted at both points in time. Also, the Caspase 3 protein was activated and P21 expression was induced. However, only at day four, the Bax/Bcl-2 ratio was increased. The effect of CoCl2 was not restricted to neurons. CoCl2 concentrations reduced the microglia amount (Iba1) and activity (Iba1 + Fcγ-Receptor) at both points in time. These damaging effects on microglia were surprising, since CoCl2 causes hypoxia and a pro-inflammatory environment. However, high concentrations of CoCl2 also seem to be toxic to these cells. Similar degenerative mechanisms as in comparison to retinal ischemia animal models were observed. In summary, an effective and reproducible hypoxia-mimicking organotypic model for retinal degeneration was established, which is easy to handle and ready for drug studies.
Collapse
Affiliation(s)
- S Kuehn
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - J Hurst
- University Eye Hospital Tübingen, Centre for Ophthalmology, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Germany
| | - F Rensinghoff
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - T Tsai
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - S Grauthoff
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Y Satgunarajah
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - H B Dick
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - S Schnichels
- University Eye Hospital Tübingen, Centre for Ophthalmology, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Germany.
| | - S C Joachim
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany.
| |
Collapse
|
27
|
|
28
|
Shao J, Yao Y. Repression of retinal microvascular endothelial cells by transthyretin under simulated diabetic retinopathy conditions. Int J Ophthalmol 2016; 9:809-15. [PMID: 27366679 DOI: 10.18240/ijo.2016.06.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
AIM To investigate biological effects of transthyretin (TTR) on the development of neovascularization under simulated diabetic retinopathy (DR) condition associated with high glucose and hypoxia. METHODS Human retinal microvascular endothelial cells (hRECs) were cultured in normal and simulated DR environments with high glucose and hypoxia. The normal serum glucose concentration is approximately 5.5 mmol/L; thus, hyperglycemia was simulated with 25 mmol/L glucose, while hypoxia was induced using 200 µmol/L CoCl2. The influence of TTR on hRECs and human retinal pigment epithelial cells (hRPECs) was determined by incubating the cells with 4 µmol/L TTR in normal and abnormal media. A co-culture system was then employed to evaluate the effects of hRPECs on hRECs. RESULTS Decreased hRECs and hRPECs were observed under abnormal conditions, including high-glucose and hypoxic media. In addition, hRECs were significantly inhibited by 4 µmol/L exogenous TTR during hyperglycemic culture. During co-culture, hRPECs inhibited hRECs in both the normal and abnormal environments. CONCLUSION hREC growth is inhibited by exogenous TTR under simulated DR environments with high-glucose and hypoxic, particularly in the medium containing 25 mmol/L glucose. hRPECs, which manufacture TTR in the eye, also represses hRECs in the same environment. TTR is predicted to inhibit the proliferation of hRECs and neovascularization.
Collapse
Affiliation(s)
- Jun Shao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Yong Yao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| |
Collapse
|
29
|
Wang P, Li L, Zhang Z, Kan Q, Gao F, Chen S. Time-dependent activity of Na+/H+ exchanger isoform 1 and homeostasis of intracellular pH in astrocytes exposed to CoCl2 treatment. Mol Med Rep 2016; 13:4443-50. [PMID: 27035646 DOI: 10.3892/mmr.2016.5067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/11/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoxia causes injury to the central nervous system during stroke and has significant effects on pH homeostasis. Na+/H+ exchanger isoform 1 (NHE1) is important in the mechanisms of hypoxia and intracellular pH (pHi) homeostasis. As a well-established hypoxia-mimetic agent, CoCl2 stabilizes and increases the expression of hypoxia inducible factor‑1α (HIF-1α), which regulates several genes involved in pH balance, including NHE1. However, it is not fully understood whether NHE1 is activated in astrocytes under CoCl2 treatment. In the current study, pHi and NHE activity were analyzed using the pHi‑sensitive dye BCECF‑AM. Using cariporide (an NHE1‑specific inhibitor) and EIPA (an NHE nonspecific inhibitor), the current study demonstrated that it was NHE1, not the other NHE isoforms, that was important in regulating pHi homeostasis in astrocytes during CoCl2 treatment. Additionally, the present study observed that, during the early period of CoCl2 treatment (the first 2 h), NHE1 activity and pHi dropped immediately, and NHE1 mRNA expression was reduced compared with control levels, whereas expression levels of the NHE1 protein had not yet changed. In the later period of CoCl2 treatment, NHE1 activity and pHi significantly increased compared with the control levels, as did the mRNA and protein expression levels of NHE1. Furthermore, the cell viability and injury of astrocytes was not changed during the initial 8 h of CoCl2 treatment; their deterioration was associated with the higher levels of pHi and NHE1 activity. The current study concluded that NHE1 activity and pHi homeostasis are regulated by CoCl2 treatment in a time-dependent manner in astrocytes, and may be responsible for the changes in cell viability and injury observed under hypoxia-mimetic conditions induced by CoCl2 treatment.
Collapse
Affiliation(s)
- Peng Wang
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Li
- Department of Palliative and Hospice Care, The Ninth People's Hospital of Zhengzhou, Zhengzhou, Henan 450053, P.R. China
| | - Zhenxiang Zhang
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Quancheng Kan
- Clinical Pharmacology Base, Department of Infectious Disease, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Gao
- Department of Neuroimmunology, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Suyan Chen
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
30
|
Orozco-Ibarra M, Muñoz-Sánchez J, Zavala-Medina ME, Pineda B, Magaña-Maldonado R, Vázquez-Contreras E, Maldonado PD, Pedraza-Chaverri J, Chánez-Cárdenas ME. Aged garlic extract and S-allylcysteine prevent apoptotic cell death in a chemical hypoxia model. Biol Res 2016; 49:7. [PMID: 26830333 PMCID: PMC4736283 DOI: 10.1186/s40659-016-0067-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background Aged garlic extract (AGE) and its main constituent S-allylcysteine (SAC) are natural antioxidants with protective effects against cerebral ischemia or cancer, events that involve hypoxia stress. Cobalt chloride (CoCl2) has been used to mimic hypoxic conditions through the stabilization of the α subunit of hypoxia inducible factor (HIF-1α) and up-regulation of HIF-1α-dependent genes as well as activation of hypoxic conditions such as reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and apoptosis. The present study was designed to assess the effect of AGE and SAC on the CoCl2-chemical hypoxia model in PC12 cells. Results We found that CoCl2 induced the stabilization of HIF-1α and its nuclear localization. CoCl2 produced ROS and apoptotic cell death that depended on hypoxia extent. The treatment with AGE and SAC decreased ROS and protected against CoCl2-induced apoptotic cell death which depended on the CoCl2 concentration and incubation time. SAC or AGE decreased the number of cells in the early and late stages of apoptosis. Interestingly, this protective effect was associated with attenuation in HIF-1α stabilization, activity not previously reported for AGE and SAC. Conclusions Obtained results show that AGE and SAC decreased apoptotic CoCl2-induced cell death. This protection occurs by affecting the activity of HIF-1α and supports the use of these natural compounds as a therapeutic alternative for hypoxic conditions. Electronic supplementary material The online version of this article (doi:10.1186/s40659-016-0067-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Delegación Tlalpan, 14269, Mexico, D.F., Mexico.
| | - Jorge Muñoz-Sánchez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, Colonia La Fama, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - Martín E Zavala-Medina
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, Colonia La Fama, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología y Neuro-oncología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - Roxana Magaña-Maldonado
- Laboratorio de Neuroinmunología y Neuro-oncología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - Edgar Vázquez-Contreras
- Departamento de Ciencias Naturales, CNI, Universidad Autónoma Metropolitana Cuajimalpa, Av. Vasco de Quiroga 4871: Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico D.F., Mexico.
| | - Perla D Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, Colonia La Fama, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico D.F., Mexico.
| | - María Elena Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, Colonia La Fama, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| |
Collapse
|
31
|
Caltana L, Saez TM, Aronne MP, Brusco A. Cannabinoid receptor type 1 agonist ACEA improves motor recovery and protects neurons in ischemic stroke in mice. J Neurochem 2015; 135:616-29. [PMID: 26296704 DOI: 10.1111/jnc.13288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 08/04/2015] [Accepted: 08/15/2015] [Indexed: 12/21/2022]
Abstract
Brain ischemia produces neuronal cell death and the recruitment of pro-inflammatory cells. In turn, the search for neuroprotection against this type of insult has rendered results involving a beneficial role of endocannabinoid receptor agonists in the Central Nervous System. In this work, to further elucidate the mechanisms associated to this neuroprotective effect, focal brain ischemia was generated by middle cerebral artery occlusion (MCAo) in C57Bl/6 mice. Three, 24 and 48 h after MCAo, animals received CB1R agonist ACEA (1 mg/kg), CB1R antagonist AM251 (1 mg/kg) or vehicle. To assess motor activity, neural deficit scores and motor tests were performed 1 day before and 3, 7, 14, 21, and 28 days after MCAo. At 7 and 28 days post lesion, cytoskeleton structure, astroglial and microglial reaction, and alterations in synapsis were studied in the cerebral cortex. ACEA treatment reduced astrocytic reaction, neuronal death, and dendritic loss. In contrast, AM251 treatment increased these parameters. Motor tests showed a progressive deterioration in motor activity in ischemic animals, which only ACEA treatment was able to counteract. Our results suggest that CB1R may be involved in neuronal survival and in the regulation of neuroprotection during focal cerebral ischemia in mice.
Collapse
Affiliation(s)
- Laura Caltana
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (UBA-CONICET). Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Trinidad Maria Saez
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (UBA-CONICET). Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Aronne
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (UBA-CONICET). Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (UBA-CONICET). Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
32
|
Guan D, Su Y, Li Y, Wu C, Meng Y, Peng X, Cui Y. Tetramethylpyrazine inhibits CoCl2
-induced neurotoxicity through enhancement of Nrf2/GCLc/GSH and suppression of HIF1α/NOX2/ROS pathways. J Neurochem 2015; 134:551-65. [DOI: 10.1111/jnc.13161] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Dongsheng Guan
- Department of the Second Clinical Medical College; Henan University of Traditional Chinese Medicine; Zhengzhou China
| | - Yufei Su
- Department of Emergency; Children's Hospital of Xi'an; Xi'an China
| | - Yingxia Li
- Department of the Second Clinical Medical College; Henan University of Traditional Chinese Medicine; Zhengzhou China
| | - Chuanjie Wu
- Department of Neurology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Yi Meng
- Department of the Second Clinical Medical College; Henan University of Traditional Chinese Medicine; Zhengzhou China
| | - Xin Peng
- Department of the Second Clinical Medical College; Henan University of Traditional Chinese Medicine; Zhengzhou China
| | - Yinglin Cui
- Department of the Second Clinical Medical College; Henan University of Traditional Chinese Medicine; Zhengzhou China
| |
Collapse
|
33
|
Tong F, Lian Y, Zhou H, Shi X, He F. Multichannel Series Piezoelectric Quartz Crystal Cell Sensor for Real Time and Quantitative Monitoring of the Living Cell and Assessment of Cytotoxicity. Anal Chem 2014; 86:10415-21. [DOI: 10.1021/ac502926k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Feifei Tong
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yan Lian
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huang Zhou
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiaohong Shi
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
34
|
Caltana L, Rutolo D, Nieto ML, Brusco A. Further evidence for the neuroprotective role of oleanolic acid in a model of focal brain hypoxia in rats. Neurochem Int 2014; 79:79-87. [PMID: 25280833 DOI: 10.1016/j.neuint.2014.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury is a dynamic process involving oxidative stress, inflammation, cell death and the activation of endogenous adaptive and regenerative mechanisms depending on the activation of transcription factors such as hypoxia-inducible factor 1-alpha. Accordingly, we have previously described a new focal hypoxia model by direct intracerebral cobalt chloride injection. In turn, oleanolic acid, a plant-derived triterpenoid, has been extensively used in Asian countries for its anti-inflammatory and anti-tumor properties. A variety of novel pharmacological effects have been attributed to this triterpenoid, including beneficial effects on neurodegenerative disorders--including experimental autoimmune encephalomyelitis--due to its immunomodulatory activities at systemic level, as well as within the central nervous system. In this context, we hypothesize that this triterpenoid may be capable of exerting neuroprotective effects in ischemic brain, suppressing glial activities that contribute to neurotoxicity while promoting those that support neuronal survival. In order to test this hypothesis, we used the intraperitoneal administration of oleanoic acid in adult rats for seven days previous to focal cortical hypoxia induced by cobalt chloride brain injection. We analyzed the neuroprotective effect of oleanoic acid from a morphological point of view, focusing on neuronal survival and glial reaction.
Collapse
Affiliation(s)
- Laura Caltana
- Instituto de Biología Celular y Neurociencia, IBCN (UBA-CONICET), Buenos Aires, Argentina.
| | - Damián Rutolo
- Instituto de Biología Celular y Neurociencia, IBCN (UBA-CONICET), Buenos Aires, Argentina
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular, CSIC-UVA, Valladolid, Spain
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia, IBCN (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
35
|
Jin G, Liu B, You Z, Bambakidis T, Dekker SE, Maxwell J, Halaweish I, Linzel D, Alam HB. Development of a novel neuroprotective strategy: combined treatment with hypothermia and valproic acid improves survival in hypoxic hippocampal cells. Surgery 2014; 156:221-8. [PMID: 24950983 DOI: 10.1016/j.surg.2014.03.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/20/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Therapeutic hypothermia and histone deacetylase inhibitors, such as valproic acid (VPA), independently have been shown to have neuroprotective properties in models of cerebral ischemic and traumatic brain injury. However, the depth of hypothermia and the dose of VPA needed to achieve the desired result are logistically challenging. It remains unknown whether these two promising strategies can be combined to yield synergistic results. We designed an experiment to answer this question by subjecting hippocampal-derived HT22 cells to severe hypoxia in vitro. METHODS Mouse hippocampal HT22 cells were exposed to 200 μM cobalt chloride (CoCl(2)), which created hypoxic conditions in vitro. Cells were incubated for 6 or 30 hours under the following conditions: (1) Dulbecco's Modified Eagle Medium; (2) 200 μM CoCl(2); (3) 200 μM CoCl(2) plus 1 mmol/L VPA; (4) 200 μM CoCl(2) plus 32°C hypothermia; and (5) 200 μM CoCl(2) plus both 1 mmol/L VPA and 32°C hypothermia. Cellular viability was evaluated by (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) and lactate dehydrogenase release assays at 30 hours after treatment. Levels of acetylated histone H3, hypoxia-inducible factor-1α, phospho-GSK-3β, β-catenin, and high-mobility group box-1 were measured by Western blotting. RESULTS High levels of acetylated histone H3 were detected in the VPA-treated cells. The release of lactate dehydrogenase was greatly suppressed after the combined hypothermia + VPA treatment (0.269 ± 0.003) versus VPA (0.836 ± 0.026) or hypothermia (0.451 ± 0.005) treatments alone (n = 3, P = .0001). (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay showed that the number of viable cells was increased by 17.6 % when VPA and hypothermia were used in combination (n = 5, P = .0001). Hypoxia-inducible factor-1α and phospho-GSK-3β expression were synergistically affected by the combination treatment, whereas high-mobility group box-1 was increased by VPA treatment, and inhibited by the hypothermia. CONCLUSION This is the first study to demonstrate that the neuroprotective effects of VPA and hypothermia are synergistic. This novel approach can be used to develop more effective therapies for the prevention of neuronal death.
Collapse
Affiliation(s)
- Guang Jin
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Baoling Liu
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Zerong You
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA
| | - Ted Bambakidis
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Simone E Dekker
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jake Maxwell
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Ihab Halaweish
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Durk Linzel
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Hasan B Alam
- Department of Surgery, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
36
|
Tallis S, Caltana LR, Souto PA, Delfante AE, Lago NR, Brusco A, Perazzo JC. Changes in CNS cells in hyperammonemic portal hypertensive rats. J Neurochem 2013; 128:431-44. [PMID: 24382264 DOI: 10.1111/jnc.12458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/06/2023]
Abstract
Rats with pre-hepatic portal hypertension because of partial portal vein ligation develop minimal hepatic encephalopathy (MHE) with hyperammonemia, impaired blood-brain barrier, mild brain edema, and severe mitochondrial changes in the hippocampus. The aim of this study was to evaluate changes of different neural cells in the cerebral cortex and the hippocampus. Animals were divided into two groups, MHE and sham. Astrocytes were studied by immunostaining with glial fibrillary acidic protein and S100β protein; neurons were immunostained with neuronal nuclear marker, microtubule associated protein-2, and NF-200 and capillaries with Nestin. The hypoxia-inducible factor 1α (HIF-1α) and its downstream proteins, P-glycoprotein (P-gp) and erythropoietin receptor (Epo-R), were also evaluated. Astrocytes were increased in area and number only in the hippocampus, while S100β increased in both brain areas in MHE animals. Microtubule associated protein-2 and NF-200 immunoreactivities (-ir) were significantly reduced in both areas. Hippocampal Nestin-ir was increased in MHE animals. These cellular changes were similar to those described in ischemic conditions, thus HIF-1α, P-gp, and Epo-R were also evaluated. A high expression of HIF-1α in cortical neurons was observed in the MHE group. It is likely that this hypoxia-like state is triggered via ammonia occupying the binding domain of HIF-1α and thereby preventing its degradation and inducing its stabilization, leading to the over-expression of P-gp and the Epo-R.
Collapse
Affiliation(s)
- Silvina Tallis
- Laboratory of Hepatic Encephalopathy and Portal Hypertension, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Experimental Pathology, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
37
|
Evaluation of hypoxia inducible factor expression in inflammatory and neurodegenerative brain models. Int J Biochem Cell Biol 2013; 45:1377-88. [DOI: 10.1016/j.biocel.2013.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 01/31/2023]
|
38
|
García-Gutiérrez MS, Ortega-Álvaro A, Busquets-García A, Pérez-Ortiz JM, Caltana L, Ricatti MJ, Brusco A, Maldonado R, Manzanares J. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology 2013; 73:388-96. [PMID: 23796670 DOI: 10.1016/j.neuropharm.2013.05.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 01/19/2023]
Abstract
In this study, the role of CB₂r on aversive memory consolidation was further evaluated. Mice lacking CB₂r (CB2KO) and their corresponding littermates (WT) were exposed to the step-down inhibitory avoidance test (SDIA). MAP2, NF200 and synaptophysin (SYN)-immunoreactive fibers were studied in the hippocampus (HIP) of both genotypes. The number of synapses, postsynaptic density thickness and the relation between the synaptic length across the synaptic cleft and the distance between the synaptic ends were evaluated in the HIP (dentate gyrus (DG) and CA1 fields) by electron microscopy. Brain-derived neurotrophic factor (BDNF), glucocorticoid receptor (NR3C1) gene expressions and mTOR/p70S6K signaling cascade were evaluated in the HIP and prefrontal cortex (PFC). Finally, the effects of acute administration of CB₂r-agonist JWH133 or CB2r-antagonist AM630 on memory consolidation were evaluated in WT mice by using the SDIA. The lack of CB₂r impaired aversive memory consolidation, reduced MAP2, NF200 and SYN-immunoreactive fibers and also reduced the number of synapses in DG of CB2KO mice. BDNF and NR3C1 gene expression were reduced in the HIP of CB2KO mice. An increase of p-p70S6K (T389 and S424) and p-AKT protein expression was observed in the HIP and PFC of CB2KO mice. Interestingly, administration of AM630 impaired aversive memory consolidation, whereas JWH133 enhanced it. Further functional and molecular assessments would have been helpful to further support our conclusions. These results revealed that CB₂r are involved in memory consolidation, suggesting that this receptor could be a promising target for developing novel treatments for different cognitive impairment-related disorders.
Collapse
Affiliation(s)
- María S García-Gutiérrez
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Effects of cobalt chloride on nitric oxide and cytokines/chemokines production in microglia. Int Immunopharmacol 2012; 13:120-5. [DOI: 10.1016/j.intimp.2012.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 01/16/2023]
|
40
|
Andrews RE, Shah KM, Wilkinson JM, Gartland A. Effects of cobalt and chromium ions at clinically equivalent concentrations after metal-on-metal hip replacement on human osteoblasts and osteoclasts: implications for skeletal health. Bone 2011; 49:717-23. [PMID: 21689801 DOI: 10.1016/j.bone.2011.06.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/05/2011] [Indexed: 11/28/2022]
Abstract
Metal-on-metal hip replacement (MOMHR) using large diameter bearings has become a popular alternative to conventional total hip arthroplasty, but is associated with elevated local tissue and circulating levels of chromium (Cr) and cobalt (Co) ions that may affect bone health. We examined the effects of acute and chronic exposure to these metals on human osteoblast and osteoclast formation and function over a clinically relevant concentration range previously reported in serum and within hip synovial fluid in patients after MOMHR. SaOS-2 cells were cultured with Co(2+), Cr(3+) and Cr(6+) for 3 days after which an MTS assay was used to assess cell viability, for 13 days after which alkaline phosphatase and cell viability were assessed and for 21 days after which nodule formation was assessed. Monocytes were isolated from human peripheral blood and settled onto dentine disks then cultured with M-CSF and RANKL plus either Co(2+), Cr(3+) or Cr(6+) ions for 21 days from day 0 or between days 14 and 21. Cells were fixed and stained for TRAP and osteoclast number and amount of resorption per dentine disk determined. Co(2+) and Cr(3+) did not affect osteoblast survival or function over the clinically equivalent concentration range, whilst Cr(6+) reduced osteoblast survival and function at concentrations within the clinically equivalent serum range after MOMHR (IC(50) =2.2 μM). In contrast, osteoclasts were more sensitive to metal ions exposure. At serum levels a mild stimulatory effect on resorption in forming osteoclasts was found for Co(2+) and Cr(3+), whilst at higher serum and synovial equivalent concentrations, and with Cr(6+), a reduction in cell number and resorption was observed. Co(2+) and Cr(6+) within the clinical range reduced cell number and resorption in mature osteoclasts. Our data suggest that metal ions at equivalent concentrations to those found in MOMHR affect bone cell health and may contribute to the observed bone-related complications of these prostheses.
Collapse
Affiliation(s)
- Rebecca E Andrews
- The Mellanby Centre for Bone Research, Department of Human Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | | | | | | |
Collapse
|
41
|
Mao X, Wong AA, Crawford RW. Cobalt toxicity — an emerging clinical problem in patients with metal‐on‐metal hip prostheses? Med J Aust 2011; 194:649-51. [DOI: 10.5694/j.1326-5377.2011.tb03151.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 05/19/2011] [Indexed: 11/17/2022]
Affiliation(s)
- Xinzhan Mao
- Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | - Ross W Crawford
- Prince Charles Hospital, Brisbane, QLD
- School of Engineering Systems and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD
| |
Collapse
|
42
|
Srinivasan S, Dunn JF. Stabilization of hypoxia-inducible factor-1α in buffer containing cobalt chloride for Western blot analysis. Anal Biochem 2011; 416:120-2. [PMID: 21601556 DOI: 10.1016/j.ab.2011.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 11/18/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a widely studied protein with significant biomedical impact. Care is needed to stabilize HIF-1α protein during sample preparation for Western blot analysis due to its rapid degradation in the presence of oxygen. Enzyme inhibitor cocktails can be complex and expensive. We present a protease inhibitor-free buffer, containing cobalt chloride, which is effective at stabilizing HIF-1α, while being inexpensive, straightforward, and convenient, and has potential for widespread application.
Collapse
Affiliation(s)
- Sathyanarayanan Srinivasan
- Experimental Imaging Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
43
|
Experimental evidence of the potential use of erythropoietin by intranasal administration as a neuroprotective agent in cerebral hypoxia. ACTA ACUST UNITED AC 2011; 26:65-9. [DOI: 10.1515/dmdi.2011.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Merelli A, Caltana L, Girimonti P, Ramos AJ, Lazarowski A, Brusco A. Recovery of Motor Spontaneous Activity After Intranasal Delivery of Human Recombinant Erythropoietin in a Focal Brain Hypoxia Model Induced by CoCl2 in Rats. Neurotox Res 2010; 20:182-92. [DOI: 10.1007/s12640-010-9233-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 02/04/2023]
|
45
|
Chen Y, Hao H, He S, Cai L, Li Y, Hu S, Ye D, Hoidal J, Wu P, Chen X. Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Mol Cancer Ther 2010; 9:2164-74. [PMID: 20682645 DOI: 10.1158/1535-7163.mct-10-0173] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor angiogenesis plays an essential role in carcinogenesis, cancer progression, and metastasis. Some studies indicate that lipoxins, endogenous anti-inflammatory lipid mediators, might be involved in tumor angiogenesis; however, the governing mechanisms are still unknown. In the present study, we examined the effects of exogenous lipoxin A(4) (LXA(4)) in mouse hepatocarcinoma cell line (H22) and H22-bearing mice model. It was found that in H22 cells, LXA(4) inhibited the production of vascular endothelial growth factor and reduced hypoxia-inducible factor-1 alpha level. In addition, its analogue, BML-111, blocked the expression of vascular endothelial growth factor in serum and tumor sections from H22-bearing mice. H&E staining and immunostaining with antibodies against CD34 revealed that BML-111 suppressed tumor-related angiogenesis in vivo, but LXA(4) could not influence the proliferation of primary cultured human umbilical vein endothelial cells. The tumor growth was also inhibited by BML-111. We also found that BML-111 enhanced the in situ apoptosis while inhibiting macrophage infiltration in tumor tissue. The results provide new evidence that LXA(4) suppresses the growth of transplanted H22 tumor in mice through inhibiting tumor-related angiogenesis.
Collapse
Affiliation(s)
- Ying Chen
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|