1
|
Liu C, Liu J, Gong H, Liu T, Li X, Fan X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr Neuropharmacol 2023; 21:2266-2282. [PMID: 36545727 PMCID: PMC10556385 DOI: 10.2174/1570159x21666221220155455] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a cluster of heterogeneous neurodevelopmental conditions with atypical social communication and repetitive sensory-motor behaviors. The formation of new neurons from neural precursors in the hippocampus has been unequivocally demonstrated in the dentate gyrus of rodents and non-human primates. Accumulating evidence sheds light on how the deficits in the hippocampal neurogenesis may underlie some of the abnormal behavioral phenotypes in ASD. In this review, we describe the current evidence concerning pre-clinical and clinical studies supporting the significant role of hippocampal neurogenesis in ASD pathogenesis, discuss the possibility of improving hippocampal neurogenesis as a new strategy for treating ASD, and highlight the prospect of emerging pro-neurogenic therapies for ASD.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci 2018; 12:405. [PMID: 30483058 PMCID: PMC6242891 DOI: 10.3389/fncel.2018.00405] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Emily Mills Ko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
3
|
Sahakyan V, Duelen R, Tam WL, Roberts SJ, Grosemans H, Berckmans P, Ceccarelli G, Pelizzo G, Broccoli V, Deprest J, Luyten FP, Verfaillie CM, Sampaolesi M. Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Sci Rep 2018; 8:2942. [PMID: 29440666 PMCID: PMC5811493 DOI: 10.1038/s41598-018-21103-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches.
Collapse
Affiliation(s)
- Vardine Sahakyan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wai Long Tam
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Scott J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, London, UK
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Berckmans
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Istituto Mediterraneo di Eccellenza Pediatrica (ISMEP), Children's Hospital "G di Cristina", Palermo, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Jan Deprest
- Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospitals KU Leuven, Leuven, Belgium
- Institute for Women's Health (IWH), University College London, London, United Kingdom
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Kazim SF, Cardenas-Aguayo MDC, Arif M, Blanchard J, Fayyaz F, Grundke-Iqbal I, Iqbal K. Sera from children with autism induce autistic features which can be rescued with a CNTF small peptide mimetic in rats. PLoS One 2015; 10:e0118627. [PMID: 25769033 PMCID: PMC4359103 DOI: 10.1371/journal.pone.0118627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/21/2015] [Indexed: 12/29/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF) small peptide mimetic, Peptide 6 (P6), which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF) expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism.
Collapse
Affiliation(s)
- Syed Faraz Kazim
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
- Neural and Behavioral Science Graduate Program, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- SUNY Downstate/NYSIBR Center for Developmental Neuroscience (CDN), Staten Island, New York, United States of America
| | - Maria del Carmen Cardenas-Aguayo
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Mohammad Arif
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Julie Blanchard
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Fatima Fayyaz
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Inge Grundke-Iqbal
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Khalid Iqbal
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
- SUNY Downstate/NYSIBR Center for Developmental Neuroscience (CDN), Staten Island, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lu D, Chen EYT, Lee P, Wang YC, Ching W, Markey C, Gulstrom C, Chen LC, Nguyen T, Chin WC. Accelerated neuronal differentiation toward motor neuron lineage from human embryonic stem cell line (H9). Tissue Eng Part C Methods 2014; 21:242-52. [PMID: 25036750 DOI: 10.1089/ten.tec.2013.0725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Motor neurons loss plays a pivotal role in the pathoetiology of various debilitating diseases such as, but not limited to, amyotrophic lateral sclerosis, primary lateral sclerosis, progressive muscular atrophy, progressive bulbar palsy, pseudobulbar palsy, and spinal muscular atrophy. However, advancement in motor neuron replacement therapy has been significantly constrained by the difficulties in large-scale production at a cost-effective manner. Current methods to derive motor neuron heavily rely on biochemical stimulation, chemical biological screening, and complex physical cues. These existing methods are seriously challenged by extensive time requirements and poor yields. An innovative approach that overcomes prior hurdles and enhances the rate of successful motor neuron transplantation in patients is of critical demand. Iron, a trace element, is indispensable for the normal development and function of the central nervous system. Whether ferric ions promote neuronal differentiation and subsequently promote motor neuron lineage has never been considered. Here, we demonstrate that elevated iron concentration can drastically accelerate the differentiation of human embryonic stem cells (hESCs) toward motor neuron lineage potentially via a transferrin mediated pathway. HB9 expression in 500 nM iron-treated hESCs is approximately twofold higher than the control. Moreover, iron treatment generated more matured and functional motor neuron-like cells that are ∼1.5 times more sensitive to depolarization when compared to the control. Our methodology renders an expedited approach to harvest motor neuron-like cells for disease, traumatic injury regeneration, and drug screening.
Collapse
Affiliation(s)
- David Lu
- 1 Bioengineering Program, School of Engineering, University of California , Merced, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mazur-Kolecka B, Cohen IL, Gonzalez M, Jenkins EC, Kaczmarski W, Brown WT, Flory M, Frackowiak J. Autoantibodies against neuronal progenitors in sera from children with autism. Brain Dev 2014; 36:322-9. [PMID: 23838310 DOI: 10.1016/j.braindev.2013.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/09/2013] [Accepted: 04/30/2013] [Indexed: 12/13/2022]
Abstract
The pathological role of autoantibodies in development of CNS disorders is a new idea with growing interest among neuroscientists. The involvement of autoimmune response in the pathogenesis of autism spectrum disorders (ASD) has been suggested by the presence of multiple brain-specific autoantibodies in children with ASD and in their mothers. The possibility of the effect of autoimmunity on neurogenesis and postnatal brain plasticity has not been determined. The presence of autoantibodies against human neuronal progenitor cells (NPCs) stimulated for neuronal differentiation in culture was tested in sera from children with autism (n=20) and age-matched controls (n=18) by immunoblotting and immunocytochemistry. Immunoreactivity against multiple NPCs proteins of molecular sizes of approximately 55 kDa, 105 kDa, 150 kDa, and 210 kDa in sera from individuals with autism had a higher incidence and was stronger than in control sera which immunoreacted mainly with a 150 kDa protein. The sera from children with autism immunoreacted the strongest with NPCs expressing neuronal markers Tuj1 and doublecortin, but not astrocyte marker GFAP. The epitopes recognized by antibodies from sera were not human-specific because they detected also NPCs in situ in murine hippocampus. The autoimmune reactions against NPCs suggest an impaired tolerance to neural antigens in autism. These autoantibodies may be symptomatic for autism and furthermore, their presence suggests that autoimmunity may affect postnatal neuronal plasticity particularly after impairment of blood-brain barrier. Future studies will determine the diagnostic value of the presence of autoantibodies in autism and the therapeutic value of prevention of autoimmunity in autism.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, USA.
| | | | | | | | - Wojciech Kaczmarski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, USA
| | - W Ted Brown
- Department of Human Genetics, NYS IBRDD, USA
| | - Michael Flory
- Laboratory of Research Design and Analysis, NYS IBRDD, USA
| | - Janusz Frackowiak
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, USA
| |
Collapse
|
7
|
Mazur-Kolecka B, Golabek A, Kida E, Rabe A, Hwang YW, Adayev T, Wegiel J, Flory M, Kaczmarski W, Marchi E, Frackowiak J. Effect of DYRK1A activity inhibition on development of neuronal progenitors isolated from Ts65Dn mice. J Neurosci Res 2012; 90:999-1010. [PMID: 22252917 DOI: 10.1002/jnr.23007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 01/09/2023]
Abstract
Overexpression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A), encoded by a gene located in the Down syndrome (DS) critical region, is considered a major contributor to developmental abnormalities in DS. DYRK1A regulates numerous genes involved in neuronal commitment, differentiation, maturation, and apoptosis. Because alterations of neurogenesis could lead to impaired brain development and mental retardation in individuals with DS, pharmacological normalization of DYRK1A activity has been postulated as DS therapy. We tested the effect of harmine, a specific DYRK1A inhibitor, on the development of neuronal progenitor cells (NPCs) isolated from the periventricular zone of newborn mice with segmental trisomy 16 (Ts65Dn mice), a mouse model for DS that overexpresses Dyrk1A by 1.5-fold. Trisomy did not affect the ability of NPCs to expand in culture. Twenty-four hours after stimulation of migration and neuronal differentiation, NPCs showed increased expression of Dyrk1A, particularly in the trisomic cultures. After 7 days, NPCs developed into a heterogeneous population of differentiating neurons and astrocytes that expressed Dyrk1A in the nuclei. In comparison with disomic cells, NPCs with trisomy showed premature neuronal differentiation and enhanced γ-aminobutyric acid (GABA)-ergic differentiation, but astrocyte development was unchanged. Harmine prevented premature neuronal maturation of trisomic NPCs but not acceleration of GABA-ergic development. In control NPCs, harmine treatment caused altered neuronal development of NPCs, similar to that in trisomic NPCs with Dyrk1A overexpression. This study suggests that pharmacological normalization of DYRK1A activity may have a potential role in DS therapy.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Archer T. Effects of exogenous agents on brain development: stress, abuse and therapeutic compounds. CNS Neurosci Ther 2010; 17:470-89. [PMID: 20553311 DOI: 10.1111/j.1755-5949.2010.00171.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The range of exogenous agents likely to affect, generally detrimentally, the normal development of the brain and central nervous system defies estimation although the amount of accumulated evidence is enormous. The present review is limited to certain types of chemotherapeutic and "use-and-abuse" compounds and environmental agents, exemplified by anesthetic, antiepileptic, sleep-inducing and anxiolytic compounds, nicotine and alcohol, and stress as well as agents of infection; each of these agents have been investigated quite extensively and have been shown to contribute to the etiopathogenesis of serious neuropsychiatric disorders. To greater or lesser extent, all of the exogenous agents discussed in the present treatise have been investigated for their influence upon neurodevelopmental processes during the period of the brain growth spurt and during other phases uptill adulthood, thereby maintaining the notion of critical phases for the outcome of treatment whether prenatal, postnatal, or adolescent. Several of these agents have contributed to the developmental disruptions underlying structural and functional brain abnormalities that are observed in the symptom and biomarker profiles of the schizophrenia spectrum disorders and the fetal alcohol spectrum disorders. In each case, the effects of the exogenous agents upon the status of the affected brain, within defined parameters and conditions, is generally permanent and irreversible.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Williams EL, Casanova MF. Potential teratogenic effects of ultrasound on corticogenesis: implications for autism. Med Hypotheses 2010; 75:53-8. [PMID: 20149552 DOI: 10.1016/j.mehy.2010.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/20/2010] [Indexed: 02/03/2023]
Abstract
The phenotypic expression of autism, according to the Triple Hit Hypothesis, is determined by three factors: a developmental time window of vulnerability, genetic susceptibility, and environmental stressors. In utero exposure to thalidomide, valproic acid, and maternal infections are examples of some of the teratogenic agents which increase the risk of developing autism and define a time window of vulnerability. An additional stressor to genetically susceptible individuals during this time window of vulnerability may be prenatal ultrasound. Ultrasound enhances the genesis and differentiation of progenitor cells by activating the nitric oxide (NO) pathway and related neurotrophins. The effects of this pathway activation, however, are determined by the stage of development of the target cells, local concentrations of NO, and the position of nuclei (basal versus apical), causing consequent proliferation at some stages while driving differentiation and migration at others. Ill-timed activation or overactivation of this pathway by ultrasound may extend proliferation, increasing total cell number, and/or may trigger precipitous migration, causing maldistribution of neurons amongst cortical lamina, ganglia, white matter, and germinal zones. The rising rates of autism coincident with the increased use of ultrasound in obstetrics and its teratogenic/toxic effects on the CNS demand further research regarding a putative correlation.
Collapse
Affiliation(s)
- E L Williams
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|