1
|
He ML, Lv ZY, Shi X, Yang T, Zhang Y, Li TY, Chen J. Interleukin-10 release from astrocytes suppresses neuronal apoptosis via the TLR2/NFκB pathway in a neonatal rat model of hypoxic-ischemic brain damage. J Neurochem 2017; 142:920-933. [PMID: 28700093 DOI: 10.1111/jnc.14126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022]
Abstract
The biological function of interleukin-10 (IL-10) and the relationship between IL-10 secretion and the Toll-like receptor 2 (TLR2) expression levels in the central nervous system following hypoxic-ischemic brain damage (HIBD) are poorly understood. Here, we intend to elucidate the biological function and mechanism of IL-10 secretion following HIBD. In this study, we used a neonatal rat model of HIBD and found that rats injected with adeno-associated virus-IL-10-shRNA (short hairpin RNA) exhibited partially impaired learning and memory function compared to rats administered adeno-associated virus-control-shRNA. In vitro oxygen-glucose deprivation (OGD) induced IL-10 release from astrocytes but not from neurons. Pretreatment with exogenous recombinant IL-10 alleviated OGD-mediated apoptosis of neurons but not astrocytes. In addition, we also observed that hypoxic injury induced a marked increase in IL-10 expression in astrocytes as a result of activation of the TLR2/phosphorylated nuclear factor kappa B (p-NFκB) p65 signaling cascade; furthermore, this effect disappeared upon small interfering RNA targeting rat TLR2 gene (siTLR2) treatment. Pyrrolidinedithiocarbamate, an inhibitor of NFκB activation, reduced the IL-10 expression levels in both OGD-injured astrocytes in vitro and the hippocampi of HIBD rats in vivo but did not significantly affect TLR2 expression. Furthermore, a luciferase assay revealed that p-NFκB p65 could bind the -1700/-1000 bp proximal region of the IL-10 gene promoter to regulate IL-10 secretion from astrocytes and that this interaction could be controlled by OGD treatment. These data suggest that HIBD induces IL-10 secretion from astrocytes to exert a paracrine-induced anti-apoptotic effect on injured neurons via the TLR2/NFκB signaling pathway, which may improve learning and memory dysfunction after ischemic injury.
Collapse
Affiliation(s)
- Mu Lan He
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ze Yu Lv
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Shi
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Yu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Abstract
Dementias are among the most common neurological disorders, and Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD remains a looming health crisis despite great efforts to learn the mechanisms surrounding the neuron dysfunction and neurodegeneration that accompanies AD primarily in the medial temporal lobe. In addition to AD, a group of diseases known as frontotemporal dementias (FTDs) are degenerative diseases involving atrophy and degeneration in the frontal and temporal lobe regions. Importantly, AD and a number of FTDs are collectively known as tauopathies due to the abundant accumulation of pathological tau inclusions in the brain. The precise role tau plays in disease pathogenesis remains an area of strong research focus. A critical component to effectively study any human disease is the availability of models that recapitulate key features of the disease. Accordingly, a number of animal models are currently being pursued to fill the current gaps in our knowledge of the causes of dementias and to develop effective therapeutics. Recent developments in gene therapy-based approaches, particularly in recombinant adeno-associated viruses (rAAVs), have provided new tools to study AD and other related neurodegenerative disorders. Additionally, gene therapy approaches have emerged as an intriguing possibility for treating these diseases in humans. This chapter explores the current state of rAAV models of AD and other dementias, discuss recent efforts to improve these models, and describe current and future possibilities in the use of rAAVs and other viruses in treatments of disease.
Collapse
Affiliation(s)
- Benjamin Combs
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503, USA
| | - Andrew Kneynsberg
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, Grand Rapids, MI, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503, USA.
- Neuroscience Program, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
3
|
Robust Long-term Transduction of Common Marmoset Neuromuscular Tissue With rAAV1 and rAAV9. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e95. [PMID: 23715217 PMCID: PMC4817936 DOI: 10.1038/mtna.2013.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Profiles of recombinant adeno-associated virus (rAAV)-mediated transduction show interspecies differences for each AAV serotype. Robust long-term transgene expression is generally observed in rodents, whereas insufficient transduction is seen in animals with more advanced immune systems. Non-human primates, including the common marmoset, could provide appropriate models for neuromuscular diseases because of their higher brain functions and physiological resemblance to humans. Strategies to induce pathologies in the neuromuscular tissues of non-human primates by rAAV-mediated transduction are promising; however, transgene expression patterns with rAAV transduction have not been elucidated in marmosets. In this study, transduction of adult marmoset skeletal muscle with rAAV9 led to robust and persistent enhanced green fluorescent protein (EGFP) expression that was independent of the muscle fiber type, although lymphocyte infiltration was recognized. Systemic rAAV injection into pregnant marmosets led to transplacental fetal transduction. Surprisingly, the intraperitoneal injection of rAAV1 and rAAV9 into the neonatal marmoset resulted in systemic transduction and persistent transgene expression without lymphocyte infiltration. Skeletal and cardiac muscle were effectively transduced with rAAV1 and rAAV9, respectively. Interestingly, rAAV9 transduction led to intense EGFP signaling in the axons of the corpus callosum. These transduction protocols with rAAV will be useful for investigating gene functions in the neuromuscular tissues and developing gene therapy strategies.
Collapse
|
4
|
Mustroph M, King M, Klein R, Ramirez J. Adult-onset focal expression of mutated human tau in the hippocampus impairs spatial working memory of rats. Behav Brain Res 2012; 233:141-8. [PMID: 22561128 PMCID: PMC3378764 DOI: 10.1016/j.bbr.2012.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 11/20/2022]
Abstract
Tauopathy in the hippocampus is one of the earliest cardinal features of Alzheimer's disease (AD), a condition characterized by progressive memory impairments. In fact, density of tau neurofibrillary tangles (NFTs) in the hippocampus strongly correlates with severity of cognitive impairments in AD. In the present study, we employed a somatic cell gene transfer technique to create a rodent model of tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the hippocampus of adult rats. The P301L mutation is causal for frontotemporal dementia with parkinsonism-17 (FTDP-17), but it has been used for studying memory effects characteristic of AD in transgenic mice. To ascertain if P301L-induced mnemonic deficits are persistent, animals were tested for 6 months. It was hypothesized that adult-onset, spatially restricted tau expression in the hippocampus would produce progressive spatial working memory deficits on a learned alternation task. Rats injected with the tau vector exhibited persistent impairments on the hippocampal-dependent task beginning at about 6 weeks post-transduction compared to rats injected with a green fluorescent protein vector. Histological analysis of brains for expression of human tau revealed hyperphosphorylated human tau and NFTs in the hippocampus in experimental animals only. Thus, adult-onset, vector-induced tauopathy spatially restricted to the hippocampus progressively impaired spatial working memory in rats. We conclude that the model faithfully reproduces histological and behavioral findings characteristic of dementing tauopathies. The rapid onset of sustained memory impairment establishes a preclinical model particularly suited to the development of potential tauopathy therapeutics.
Collapse
Affiliation(s)
- M.L. Mustroph
- Department of Psychology and Neuroscience Program, Davidson College, Davidson, NC, USA
| | - M.A. King
- Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
- Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - R.L. Klein
- Pharmacology, Toxicology, and Neuroscience, LSUHSC, Shreveport, LA, USA
| | - J.J. Ramirez
- Department of Psychology and Neuroscience Program, Davidson College, Davidson, NC, USA
| |
Collapse
|
6
|
Dayton RD, Wang DB, Klein RL. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther 2012; 12:757-66. [PMID: 22519910 DOI: 10.1517/14712598.2012.681463] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Straightforward studies compared adeno-associated virus (AAV) serotypes to determine the most appropriate one for robust expression in the CNS. AAV9 was efficient when directly injected into the brain, but more surprisingly, AAV9 produced global expression in the brain and spinal cord after a peripheral, systemic route of administration to neonatal mice. AREAS COVERED Topics include AAV9 gene delivery from intraparenchymal, intravenous, intrathecal and intrauterine routes of administration, and related preclinical studies and disease models. Systemic AAV9 gene transfer yields remarkably consistent neuronal expression, though only in early development. AAV9 is versatile to study neuropathological proteins: microtubule-associated protein tau and transactive response DNA-binding protein 43 kDa (TDP-43). EXPERT OPINION AAV9 will be more widely used based on current data, although other natural serotypes and recombineered vectors may also support or improve upon wide-scale expression. A peripheral-to-central gene delivery that can affect the entire CNS without having to inject the CNS is promising for basic functional experiments, and potentially for gene therapy. Systemic or intra-cerebrospinal fluid routes of AAV9 administration should be considered for spinal muscular atrophy, lysosomal storage diseases and amyotrophic lateral sclerosis, if more neuronal expression can be achieved in adults, or if glial expression can be exploited.
Collapse
Affiliation(s)
- Robert D Dayton
- Department of Pharmacology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | | | | |
Collapse
|