1
|
Chen Y, Jiang Y, He Z, Gao J, Li R, Yu G. First report of PST-producing Microseira wollei from China reveals its novel toxin profile. HARMFUL ALGAE 2024; 137:102655. [PMID: 39003021 DOI: 10.1016/j.hal.2024.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 07/15/2024]
Abstract
Microseira wollei, a globally distributed freshwater bloom-forming benthic cyanobacterium, is known for its production of cyanotoxins and taste and odor (T&O). While CYN (Cylindrospermopsin)-producing populations of M. wollei are confined to Australia, PST (Paralytic shellfish toxins)-producing populations have been exclusively documented in North America. In this study, four benthic cyanobacterial strains, isolated from West Lake in China, were identified as M. wollei based on morphological and phylogenetic analyses. Detection of sxtA gene and UPLC-MS/MS analysis conclusively confirmed the PST-producing capability of M. wollei CHAB5998. In the phylogenetic tree of 16S rDNA, M. wollei strains formed a monophyletic group with two subclades. Notably, non-PST-producing Chinese strains clustered with Australian strains in Clade II, while all other strains, including PST-producing ones, clustered in Clade I. Additionally, CHAB5998 contains ten PST variants, of which STX, NEO, GTX2, GTX3, GTX5 and C1 were identified for the first time in M. wollei. Sequence analysis of PST biosynthetic gene cluster (sxt) genes indicated potential base variations, gene rearrangements, insertions, and deletions in the strain CHAB5998. Also, sxt gene has a longer evolutionary history in M. wollei than that in cyanobacteria from Nostocales. Multiple recombination breakpoints detected in sxt genes and the inconsistency in the topology of the phylogenetic trees between sxt and 16S rDNA suggested that multiple horizontal gene transfers (HGT) have occurred. Overall, the present study marks the first documented occurrence of PST-producing M. wollei outside of North America and identifies it as the first toxic freshwater benthic cyanobacterium in China. This revelation implies that benthic cyanobacteria may pose a higher environmental risk in China than previously acknowledged.
Collapse
Affiliation(s)
- Youxin Chen
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhongshi He
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA
| | - Jin Gao
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Renhui Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, China
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Campos TGV, Gama WA, Geraldes V, Yoon J, Crnkovic CM, Pinto E, Jacinavicius FR. New records on toxic cyanobacteria from Brazil: Exploring their occurrence and geography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172689. [PMID: 38692315 DOI: 10.1016/j.scitotenv.2024.172689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences. The investigation begins with the first detection of microcystins in 1994 and highlights pivotal moments, like the 1996 "Caruaru Syndrome" outbreak. This event encouraged research and updated cyanotoxin-monitoring guidelines. The Brazilian drought period of 2015-2016 exacerbated cyanobacterial growth and saxitoxin levels, coinciding with Zika-related microcephaly. This study delves into methods used for cyanotoxin analysis, including ELISA, bioassays, HPLC, and LC-MS. Additionally, we investigated the toxicity of 37 cyanobacterial strains isolated from various Brazilian environments. Extracts were tested against Artemia salina and analyzed by LC-MS. Results revealed toxicity in extracts from 49 % of cyanobacterial strains. LC-MS results were analyzed using GNPS MS/MS molecular networking for comparing experimental spectra with those of cyanotoxin standards against in-house databases and the existing literature. Our research underscores the variability in cyanotoxin production among species and over time, extending beyond microcystins. LC-MS results, interpreted through the GNPS platform, revealed six cyanotoxin groups in Brazilian strains. Yet, compounds present in 75 % of the toxic extracts remained unidentified. Further research is crucial for fully comprehending the impact of potentially harmful organisms on water quality and public health management strategies. The study highlights the urgent need for continuously monitoring cyanobacteria and the cyanotoxin inclusion of management in public health policies.
Collapse
Affiliation(s)
- Thaíssa Giovanna Valverde Campos
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil
| | - Watson A Gama
- Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260, Piracicaba, SP, Brazil
| | - Jaewon Yoon
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260, Piracicaba, SP, Brazil
| | - Fernanda Rios Jacinavicius
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260, Piracicaba, SP, Brazil.
| |
Collapse
|
3
|
Painefilú JC, González C, Krock B, Bieczynski F, Luquet CM. Microcystin-LR sensitizes the Oncorhynchus mykiss intestinal epithelium and interacts with paralytic shellfish toxins to alter oxidative balance. Toxicol Appl Pharmacol 2024; 485:116891. [PMID: 38485061 DOI: 10.1016/j.taap.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In the context of harmful algal blooms, fish can be exposed to the combined effects of more than one toxin. We studied the effects of consecutive exposure to Microcystin-LR (MCLR) in vivo and paralytic shellfish toxins (PST) ex vivo/in vitro (MCLR+PST) in the rainbow trout Oncorhynchus mykiss's middle intestine. We fed juvenile fish with MCLR incorporated in the feed every 12 h and euthanized them 48 h after the first feeding. Immediately, we removed the middle intestine to make ex vivo and in vitro preparations and exposed them to PST for one hour. We analyzed glutathione (GSH) and glutathione disulfide (GSSG) contents, glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), and protein phosphatase 1 (PP1) activities in ex vivo intestinal strips; apical and basolateral ATP-biding cassette subfamily C (Abcc)-mediated transport in ex vivo everted and non- everted sacs; and reactive oxygen species (ROS) production in isolated enterocytes in vitro. MCLR+PST treatment decreased the GSH content, GSH/GSSG ratio, GST activity, and increased ROS production. GR activity remained unchanged, while CAT activity only increased in response to PST. MCLR inhibited PP1 activity and activated Abcc-mediated transport only at the basolateral side of the intestine. Our results show a combined effect of MCLR+PST on the oxidative balance in the O. mykiss middle intestine, which is not affected by the two toxins groups when applied individually. Basolateral Abcc transporters activation by MCLR treatment could lead to an increase in the absorption of toxicants (including MCLR) into the organism. Therefore, MCLR makes the O. mykiss middle intestine more sensitive to possibly co-occurring cyanotoxins like PST.
Collapse
Affiliation(s)
- Julio C Painefilú
- Laboratorio de Ictiología y Acuicultura Experimental, IPATEC (CONICET-UNCo), Quintral 1250, San Carlos de Bariloche, Argentina
| | - Carolina González
- Centro de investigaciones Agua y Saneamientos Argentinos, Tucumán 752, CABA, Argentina; Laboratorio de Limnología, Facultad de Ciencias Exactas y Naturales, UBA, Int. Güiraldes 2160, CABA, Argentina
| | - Bernd Krock
- Ökologische Chemie, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, CITAAC (CONICET-UNCo), Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-UNCo), Ruta provincial 61, km 3, Junín de los Andes, Argentina.
| |
Collapse
|
4
|
Marcondes MA, Pessôa R, José da Silva Duarte A, Clissa PB, Sanabani SS. Temporal patterns of bacterial communities in the Billings Reservoir system. Sci Rep 2024; 14:2062. [PMID: 38267511 PMCID: PMC10808195 DOI: 10.1038/s41598-024-52432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
In this study, high-throughput sequencing of 16S rRNA amplicons and predictive PICRUSt functional profiles were used to perform a comprehensive analysis of the temporal bacterial distribution and metabolic functions of 19 bimonthly samples collected from July 2019 to January 2020 in the surface water of Billings Reservoir, São Paulo. The results revealed that most of the bacterial 16S rRNA gene sequences belonged to Cyanobacteria and Proteobacteria, which accounted for more than 58% of the total bacterial abundance. Species richness and evenness indices were highest in surface water from summer samples (January 2020), followed by winter (July 2019) and spring samples (September and November 2019). Results also showed that the highest concentrations of sulfate (SO4-2), phosphate (P), ammonia (NH3), and nitrate (NO3-) were detected in November 2019 and January 2020 compared with samples collected in July and September 2019 (P < 0.05). Principal component analysis suggests that physicochemical factors such as pH, DO, temperature, and NH3 are the most important environmental factors influencing spatial and temporal variations in the community structure of bacterioplankton. At the genus level, 18.3% and 9.9% of OTUs in the July and September 2019 samples, respectively, were assigned to Planktothrix, while 14.4% and 20% of OTUs in the November 2019 and January 2020 samples, respectively, were assigned to Microcystis. In addition, PICRUSt metabolic analysis revealed increasing enrichment of genes in surface water associated with multiple metabolic processes rather than a single regulatory mechanism. This is the first study to examine the temporal dynamics of bacterioplankton and its function in Billings Reservoir during the winter, spring, and summer seasons. The study provides comprehensive reference information on the effects of an artificial habitat on the bacterioplankton community that can be used to interpret the results of studies to evaluate and set appropriate treatment targets.
Collapse
Affiliation(s)
- Marta Angela Marcondes
- Post-Graduation Program in Translational Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | - Rodrigo Pessôa
- Post-Graduation Program in Translational Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiency, Department of Dermatology LIM 56, Faculty of Medicine, University of São Paulo, São Paulo, 05403-000, Brazil
| | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation 03 (LIM03), Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo, 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiency, LIM56/03, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3º Andar, São Paulo, 05403 000, Brazil.
| |
Collapse
|
5
|
Dos Santos Machado L, Dörr F, Dörr FA, Frascareli D, Melo DS, Gontijo ESJ, Friese K, Pinto E, Rosa AH, Pompêo MM, Moschini-Carlos V. Permanent occurrence of Raphidiopsis raciborskii and cyanotoxins in a subtropical reservoir polluted by domestic effluents (Itupararanga reservoir, São Paulo, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18653-18664. [PMID: 34697712 DOI: 10.1007/s11356-021-16994-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017. There was permanent occurrence of Raphidiopsis raciborskii (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Phycologia 57(2):130-146, 2018), ranging between dominant and abundant, with an average biomass of 38.8 ± 29.9 mg L-1. Also abundant were Dolichospermum solitarium, D. planctonicum, Planktothrix isothrix, and Aphanizomenon gracile. Saxitoxin (STX) was detected in all the collected samples (0.11 ± 0.05 µg L-1). Microcystin (MC) was also detected, but at lower concentrations (0.01 ± 0.0 µg L-1). Low availability of NO3- and phosphorus limitation had significant effects on the R. raciborskii biomass and the levels of STX and MC. It was observed that R. raciborskii was sensitive to thermal stratification, at the same time that STX levels were higher. This suggested that STX was produced under conditions that restricted the growth of R. raciborskii. These are important findings, because they add information about the permanent occurrence of STX and R. raciborskii in an aquatic ecosystem limited by phosphorus, vulnerable to climatic variations, and polluted by domestic effluents.
Collapse
Affiliation(s)
| | - Fabiane Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Felipe Augusto Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Daniele Frascareli
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Darllene S Melo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Erik S J Gontijo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Kurt Friese
- Lake Research Department, UFZ-Helmholtz Centre for Environmental Research, Brueckstr 3a, 39114, Magdeburg, Germany
| | - Ernani Pinto
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - André Henrique Rosa
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Marcelo M Pompêo
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Naknaen A, Ratsameepakai W, Suttinun O, Sukpondma Y, Khan E, Pomwised R. Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand. Toxins (Basel) 2021; 13:toxins13090631. [PMID: 34564635 PMCID: PMC8472854 DOI: 10.3390/toxins13090631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The Songkhla Lake Basin (SLB) located in Southern Thailand, has been increasingly polluted by urban and industrial wastewater, while the lake water has been intensively used. Here, we aimed to investigate cyanobacteria and cyanotoxins in the SLB. Ten cyanobacteria isolates were identified as Microcystis genus based on16S rDNA analysis. All isolates harbored microcystin genes, while five of them carried saxitoxin genes. On day 15 of culturing, the specific growth rate and Chl-a content were 0.2-0.3 per day and 4 µg/mL. The total extracellular polymeric substances (EPS) content was 0.37-0.49 µg/mL. The concentration of soluble EPS (sEPS) was 2 times higher than that of bound EPS (bEPS). The protein proportion in both sEPS and bEPS was higher than the carbohydrate proportion. The average of intracellular microcystins (IMCs) was 0.47 pg/cell on day 15 of culturing, while extracellular microcystins (EMCs) were undetectable. The IMCs were dramatically produced at the exponential phase, followed by EMCs release at the late exponential phase. On day 30, the total microcystins (MCs) production reached 2.67 pg/cell. Based on liquid chromatograph-quadrupole time-of-flight mass spectrometry, three new MCs variants were proposed. This study is the first report of both decarbamoylsaxitoxin (dcSTX) and new MCs congeners synthesized by Microcystis.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand; (A.N.); (O.S.)
| | - Waraporn Ratsameepakai
- Office of Scientific Instrument and Testing, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Oramas Suttinun
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand; (A.N.); (O.S.)
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Yaowapa Sukpondma
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154-4015, USA;
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence: ; Tel.: +66-74-288-325
| |
Collapse
|
7
|
Podduturi R, Schlüter L, Liu T, Osti JAS, Moraes MDAB, Jørgensen NOG. Monitoring of saxitoxin production in lakes in Denmark by molecular, chromatographic and microscopic approaches. HARMFUL ALGAE 2021; 101:101966. [PMID: 33526182 DOI: 10.1016/j.hal.2020.101966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Diversity of phytoplankton in three eutrophic and two mesotrophic lakes in Denmark was determined by microscopic and HPLC pigment analyses to identify and quantify potential saxitoxin (STX) producing cyanobacteria. Potential dominant STX-producers were identified to the filamentous genera Dolichospermum, Cuspidothrix, Phormidium and Planktolyngbya. Presence of STX production was documented by extraction of five intracellular STXs that included (in declining concentration in the cyanobacteria) dc-neo-STX, neo-STX, dc-STX, STX and GTX. Total concentrations of the five STXs varied from 9 to 142 fg per potential STX producer, corresponding to 87 to 985 ng L-1 in the lakes. For molecular detection of the STX-producers, a quantitative PCR method was developed by design of a new robust primer set with broad coverage to target the sxtA gene that is common to all STX-producing cyanobacteria. After validation, copy numbers of the sxtA gene were determined to vary from about 104 (mesotrophic lakes) to 108 per mL (the most eutrophic lake). A moderate but significant correlation was observed between abundance of the sxtA copies and concentrations of the five intracellular STXs. The qPCR assay was found to be a rapid and robust procedure for quantification of STX producers. Saxitoxin and its analogs appeared not to cause health concerns in the lakes, but commercial fishing for pike perch in the most eutrophic lake should be monitored to test for food web accumulation of STXs.
Collapse
Affiliation(s)
- Raju Podduturi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Tingting Liu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | - Munique de Almeida Bispo Moraes
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Niels O G Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Pitois F, Fastner J, Pagotto C, Dechesne M. Multi-Toxin Occurrences in Ten French Water Resource Reservoirs. Toxins (Basel) 2018; 10:toxins10070283. [PMID: 29987192 PMCID: PMC6071237 DOI: 10.3390/toxins10070283] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are known to produce a wide array of metabolites, including various classes of toxins. Among these, hepatotoxins (Microcystins), neurotoxins (Anatoxin-A and PSP toxins) or cytotoxins (Cylindrospermopsins) have been subjected to numerous, individual studies during the past twenty years. Reports of toxins co-occurrences, however, remain scarce in the literature. The present work is an inventory of cyanobacteria with a particular focus on Nostocales and their associated toxin classes from 2007 to 2010 in ten lakes used for drinking water production in France. The results show that potential multiple toxin producing species are commonly encountered in cyanobacteria populations. Individual toxin classes were detected in 75% of all samples. Toxin co-occurrences appeared in 40% of samples as two- or three-toxin combinations (with 35% for the microcystins–anatoxin combination), whereas four-toxin class combinations only appeared in 1% of samples. Toxin co-occurrences could be partially correlated to species composition and water temperature. Peak concentrations however could never be observed simultaneously and followed distinct, asymmetrical distribution patterns. As observations are the key for preventive management and risk assessment, these results indicate that water monitoring should search for all four toxin classes simultaneously instead of focusing on the most frequent toxins, i.e., microcystins.
Collapse
Affiliation(s)
- Frederic Pitois
- Limnologie sarl, 16 rue Paul Langevin, 35200 Rennes, France.
| | - Jutta Fastner
- German Federal Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany.
| | | | - Magali Dechesne
- Veolia Recherche & Innovation, Chemin de la Digue, 78603 Maisons-Laffitte, France.
| |
Collapse
|
9
|
Rietzler AC, Botta CR, Ribeiro MM, Rocha O, Fonseca AL. Accelerated eutrophication and toxicity in tropical reservoir water and sediments: an ecotoxicological approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13292-13311. [PMID: 27761862 DOI: 10.1007/s11356-016-7719-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to jointly show the results of three independent ecotoxicological studies performed to investigate pollutants in three Brazilian tropical reservoirs undergoing accelerated eutrophication. In order to accomplish this goal, the full toxicity identification and evaluation procedure (TIE approach) was performed, at Pampulha (Minas Gerais State) and Salto Grande and Barra Bonita reservoirs (São Paulo State). Acute and chronic toxicity tests were performed using the cladocerans Daphnia similis and Ceriodaphnia dubia (exotic) and Daphnia laevis and Ceriodaphnia silvestrii (native) as test organisms. Results from TIE procedure stage I indicated the existence of nonpolar organic and filterable compounds in the water from Pampulha, probably cyanotoxins, and oxidants as part of the toxic agents. TIE results for sediments identified ammonia (Pampulha and Salto Grande), organic compounds (Pampulha), metals (Pampulha, Barra Bonita, and Salto Grande), and acidity (Salto Grande) as responsible for toxicity. Whole-sediment remediation experiments for Pampulha reservoir confirmed, through reproduction decrease, ammonia and organic compounds as contaminants. Such pollutants represent threats to aquatic biota and must be prevented. Higher temperatures as predicted from global climate change will severely affect tropical shallow reservoirs, accelerating eutrophication, the release of contaminants from sediments, and increasing toxicity.
Collapse
Affiliation(s)
- A C Rietzler
- General Biology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - C R Botta
- Centre of Water Resources and Environmental Studies, State University of São Paulo, São Carlos, Brazil
| | - M M Ribeiro
- General Biology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - O Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, São Carlos, Brazil
| | - A L Fonseca
- Natural Resources Institute, Federal University of Itajubá, Itajubá, Brazil
| |
Collapse
|
10
|
Meyer KA, Davis TW, Watson SB, Denef VJ, Berry MA, Dick GJ. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms. PLoS One 2017; 12:e0183859. [PMID: 29020009 PMCID: PMC5647855 DOI: 10.1371/journal.pone.0183859] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022] Open
Abstract
Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01) and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02), and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes) and resistance to foreign genetic elements (such as CRISPR-Cas systems). Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.
Collapse
Affiliation(s)
- Kevin Anthony Meyer
- Cooperative Institute for Great Lakes Research (CIGLR), University of
Michigan, Ann Arbor, MI, United States of America
- Department of Earth and Environmental Sciences, University of Michigan,
Ann Arbor, MI, United States of America
| | - Timothy W. Davis
- NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI, United
States of America
| | - Susan B. Watson
- Environment and Climate Change Canada, Burlington, ON,
Canada
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology, University of Michigan,
Ann Arbor, MI, United States of America
| | - Michelle A. Berry
- Department of Ecology and Evolutionary Biology, University of Michigan,
Ann Arbor, MI, United States of America
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan,
Ann Arbor, MI, United States of America
| |
Collapse
|
11
|
Chernova E, Sidelev S, Russkikh I, Voyakina E, Babanazarova O, Romanov R, Kotovshchikov A, Mazur-Marzec H. Dolichospermum and Aphanizomenon as neurotoxins producers in some Russian freshwaters. Toxicon 2017; 130:47-55. [DOI: 10.1016/j.toxicon.2017.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
|
12
|
Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. HARMFUL ALGAE 2016; 54:4-20. [PMID: 28073480 DOI: 10.1016/j.hal.2015.12.007] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/22/2015] [Indexed: 05/03/2023]
Abstract
This review summarizes the present state of knowledge regarding the toxic, bloom-forming cyanobacterium, Microcystis, with a specific focus on its geographic distribution, toxins, genomics, phylogeny, and ecology. A global analysis found documentation suggesting geographic expansion of Microcystis, with recorded blooms in at least 108 countries, 79 of which have also reported the hepatatoxin microcystin. The production of microcystins (originally "Fast-Death Factor") by Microcystis and factors that control synthesis of this toxin are reviewed, as well as the putative ecophysiological roles of this metabolite. Molecular biological analyses have provided significant insight into the ecology and physiology of Microcystis, as well as revealed the highly dynamic, and potentially unstable, nature of its genome. A genetic sequence analysis of 27 Microcystis species, including 15 complete/draft genomes are presented. Using the strictest biological definition of what constitutes a bacterial species, these analyses indicate that all Microcystis species warrant placement into the same species complex since the average nucleotide identity values were above 95%, 16S rRNA nucleotide identity scores exceeded 99%, and DNA-DNA hybridization was consistently greater than 70%. The review further provides evidence from around the globe for the key role that both nitrogen and phosphorus play in controlling Microcystis bloom dynamics, and the effect of elevated temperature on bloom intensification. Finally, highlighted is the ability of Microcystis assemblages to minimize their mortality losses by resisting grazing by zooplankton and bivalves, as well as viral lysis, and discuss factors facilitating assemblage resilience.
Collapse
Affiliation(s)
- Matthew J Harke
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
| | - Morgan M Steffen
- James Madison University, Department of Biology, 951 Carrier Dr., Harrisonburg, VA 22807, United States.
| | - Christopher J Gobler
- Stony Brook University, School of Marine and Atmospheric Sciences, 239 Montauk Hwy, Southampton, NY 11968, United States
| | - Timothy G Otten
- Oregon State University, Department of Microbiology, Nash Hall 226, Corvallis, OR 97331, United States
| | - Steven W Wilhelm
- University of Tennessee, Department of Microbiology, 1414 West Cumberland Ave., Knoxville, TN 37996, United States
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson, New Zealand and Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | - Hans W Paerl
- University of North Carolina at Chapel Hill, Institute of Marine Sciences, 3431 Arendell Street, Morehead City, NC 28557, United States
| |
Collapse
|
13
|
Microbial Community Profile and Water Quality in a Protected Area of the Caatinga Biome. PLoS One 2016; 11:e0148296. [PMID: 26881432 PMCID: PMC4755664 DOI: 10.1371/journal.pone.0148296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
The Caatinga is a semi-arid biome in northeast Brazil. The Paraguaçú River is located in the Caatinga biome, and part of its course is protected by the National Park of Chapada Diamantina (PNCD). In this study we evaluated the effect of PNCD protection on the water quality and microbial community diversity of this river by analyzing water samples obtained from points located inside and outside the PNCD in both wet and dry seasons. Results of water quality analysis showed higher levels of silicate, ammonia, particulate organic carbon, and nitrite in samples from the unprotected area compared with those from protected areas. Pyrosequencing of the 16S rRNA genes revealed that Burkholderiales was abundant in samples from all three sites during both seasons and was represented primarily by the genus Polynucleobacter and members of the Comamonadaceae family (e.g., genus Limnohabitans). During the dry season, the unprotected area showed a higher abundance of Flavobacterium sp. and Arthrobacter sp., which are frequently associated with the presence and/or degradation of arsenic and pesticide compounds. In addition, genes that appear to be related to agricultural impacts on the environment, as well as those involved in arsenic and cadmium resistance, copper homeostasis, and propanediol utilization, were detected in the unprotected areas by metagenomic sequencing. Although PNCD protection improves water quality, agricultural activities around the park may affect water quality within the park and may account for the presence of bacteria capable of pesticide degradation and assimilation, evidencing possible anthropogenic impacts on the Caatinga.
Collapse
|
14
|
Draft Genome Sequence of the Brazilian Toxic Bloom-Forming Cyanobacterium Microcystis aeruginosa Strain SPC777. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00547-13. [PMID: 23908289 PMCID: PMC3731843 DOI: 10.1128/genomea.00547-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microcystis aeruginosa strain SPC777 is an important toxin-producing cyanobacterium, isolated from a water bloom of the Billings reservoir (São Paulo State, Brazil). Here, we report the draft genome sequence and initial findings from a preliminary analysis of strain SPC777, including several gene clusters involved in nonribosomal and ribosomal synthesis of secondary metabolites.
Collapse
|
15
|
Pírez M, Gonzalez-Sapienza G, Sienra D, Ferrari G, Last M, Last JA, Brena BM. Limited analytical capacity for cyanotoxins in developing countries may hide serious environmental health problems: simple and affordable methods may be the answer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 114:63-71. [PMID: 23220602 DOI: 10.1016/j.jenvman.2012.10.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 08/21/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
In recent years, the international demand for commodities has prompted enormous growth in agriculture in most South American countries. Due to intensive use of fertilizers, cyanobacterial blooms have become a recurrent phenomenon throughout the continent, but their potential health risk remains largely unknown due to the lack of analytical capacity. In this paper we report the main results and conclusions of more than five years of systematic monitoring of cyanobacterial blooms in 20 beaches of Montevideo, Uruguay, on the Rio de la Plata, the fifth largest basin in the world. A locally developed microcystin ELISA was used to establish a sustainable monitoring program that revealed seasonal peaks of extremely high toxicity, more than one-thousand-fold greater than the WHO limit for recreational water. Comparison with cyanobacterial cell counts and chlorophyll-a determination, two commonly used parameters for indirect estimation of toxicity, showed that such indicators can be highly misleading. On the other hand, the accumulated experience led to the definition of a simple criterion for visual classification of blooms, that can be used by trained lifeguards and technicians to take rapid on-site decisions on beach management. The simple and low cost approach is broadly applicable to risk assessment and risk management in developing countries.
Collapse
Affiliation(s)
- Macarena Pírez
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Quimíca, Universidad de la Republica, Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
16
|
Silva-Stenico ME, Silva CSP, Lorenzi AS, Shishido TK, Etchegaray A, Lira SP, Moraes LAB, Fiore MF. Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. Microbiol Res 2011; 166:161-75. [DOI: 10.1016/j.micres.2010.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 04/08/2010] [Accepted: 04/18/2010] [Indexed: 10/19/2022]
|