2
|
Kostrzewa RM, Wydra K, Filip M, Crawford CA, McDougall SA, Brown RW, Borroto-Escuela DO, Fuxe K, Gainetdinov RR. Dopamine D 2 Receptor Supersensitivity as a Spectrum of Neurotoxicity and Status in Psychiatric Disorders. J Pharmacol Exp Ther 2018; 366:519-526. [PMID: 29921706 DOI: 10.1124/jpet.118.247981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Abnormality of dopamine D2 receptor (D2R) function, often observed as D2R supersensitivity (D2RSS), is a commonality of schizophrenia and related psychiatric disorders in humans. Moreover, virtually all psychotherapeutic agents for schizophrenia target D2R in brain. Permanent D2RSS as a feature of a new animal model of schizophrenia was first reported in 1991, and then behaviorally and biochemically characterized over the next 15-20 years. In this model of schizophrenia characterized by production of D2RSS in ontogeny, there are demonstrated alterations of signaling processes, as well as functional links between the biologic template of the animal model and ability of pharmacotherapeutics to modulate or reverse biologic and behavioral modalities toward normality. Another such animal model, featuring knockout of trace amine-associated receptor 1 (TAAR1), demonstrates D2RSS with an increase in the proportion of D2R in the high-affinity state. Currently, TAAR1 agonists are being explored as a therapeutic option for schizophrenia. There is likewise an overlay of D2RSS with substance use disorder. The aspect of adenosine A2A-D2 heteroreceptor complexes in substance use disorder is highlighted, and the association of adenosine A2A receptor antagonists in discriminative and rewarding effects of psychostimulants is outlined. In summary, these new animal models of schizophrenia have face, construct, and predictive validity, and distinct advantages over earlier models. While the review summarizes elements of D2RSS in schizophrenia per se, and its interplay with substance use disorder, a major focus is on presumed new molecular targets attending D2RSS in schizophrenia and related clinical entities.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Karolina Wydra
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Malgorzata Filip
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Cynthia A Crawford
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Sanders A McDougall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Dasiel O Borroto-Escuela
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Kjell Fuxe
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Raul R Gainetdinov
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| |
Collapse
|
4
|
Kostrzewa JP, Kostrzewa RA, Kostrzewa RM, Brus R, Nowak P. Perinatal 6-Hydroxydopamine to Produce a Lifelong Model of Severe Parkinson's Disease. Curr Top Behav Neurosci 2016; 29:313-332. [PMID: 26475156 DOI: 10.1007/7854_2015_396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The classic rodent model of Parkinson's disease (PD) is produced by unilateral lesioning of pars compacta substantia nigra (SNpc) in adult rats, producing unilateral motor deficits which can be assessed by dopamine (DA) D2 receptor (D2-R) agonist induction of measurable unilateral rotations. Bilateral SNpc lesions in adult rats produce life-threatening aphagia, adipsia, and severe motor disability resembling paralysis-a PD model that is so compromised that it is seldom used. Described in this paper is a PD rodent model in which there is bilateral 99 % loss of striatal dopaminergic innervation, produced by bilateral intracerebroventricular or intracisternal 6-hydroxydopamine (6-OHDA) administration to perinatal rats. This procedure produces no lethality and does not shorten the life span, while rat pups continue to suckle through the pre-weaning period; and eat without impairment post-weaning. There is no obvious motor deficit during or after weaning, except with special testing, so that parkinsonian rats are indistinguishable from control and thus allow for behavioral assessments to be conducted in a blinded manner. L-DOPA (L-3,4-dihydroxyphenylalanine) treatment increases DA content in striatal tissue, also evokes a rise in extraneuronal (i.e., in vivo microdialysate) DA, and is able to evoke dyskinesias. D2-R agonists produce effects similar to those of L-DOPA. In addition, effects of both D1- and D2-R agonist effects on overt or latent receptor supersensitization are amenable to study. Elevated basal levels of reactive oxygen species (ROS), namely hydroxyl radical, occurring in dopaminergic denervated striatum are suppressed by L-DOPA treatment. Striatal serotoninergic hyperinnervation ensuing after perinatal dopaminergic denervation does not appear to interfere with assessments of the dopaminergic system by L-DOPA or D1- or D2-R agonist challenge. Partial lesioning of serotonin fibers with a selective neurotoxin either at birth or in adulthood is able to eliminate serotoninergic hyperinnervation and restore the normal level of serotoninergic innervation. Of all the animal models of PD, that produced by perinatal 6-OHDA lesioning provides the most pronounced destruction of nigrostriatal neurons, thus representing a model of severe PD, as the neurochemical outcome resembles the status of severe PD in humans but without obvious motor deficits.
Collapse
Affiliation(s)
| | | | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA.
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Przemysław Nowak
- Department of Toxicology and Occupational Health Protection, Public Health Faculty, Medical University of Silesia, Medykow 18, 40-752, Katowice Ligota, Poland
| |
Collapse
|
5
|
Kostrzewa JP, Kostrzewa RA, Kostrzewa RM, Brus R, Nowak P. Perinatal 6-Hydroxydopamine Modeling of ADHD. Curr Top Behav Neurosci 2016; 29:279-293. [PMID: 26475157 DOI: 10.1007/7854_2015_397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The neonatally 6-hydroxydopamine (n6-OHDA)-lesioned rat has been the standard for 40 years, as an animal model of attention-deficit hyperactivity disorder (ADHD). Rats so lesioned during postnatal ontogeny are characterized by ~99 % destruction of dopaminergic nerves in pars compacta substantia nigra, with comparable destruction of the nigrostriatal tract and lifelong ~99 % dopaminergic denervation of striatum, with lesser destructive effect on the ventral tegmental nucleus and associated lesser dopaminergic denervation of nucleus accumbens and prefrontal cortex. As a consequence of striatal dopaminergic denervation, reactive serotoninergic hyperinnervation of striatum ensues. The striatal extraneuronal milieu of DA and serotonin is markedly altered. Also, a variety of sensitization changes occur for dopaminergic D1 and D2 receptors, and for serotoninergic receptors. Behaviorally, these rats in adulthood display spontaneous hyperlocomotor activity, attentional deficits, and cognitive impairment-all of which are acutely attenuated by the psychostimulants amphetamine (AMPH) and methylphenidate (MPH) (i.e., opposite to the acute effects of AMPH and MPH in intact control rats). The acute behavioral effects of AMPH and MPH in intact and lesioned rats are analogous to their respective acute effects in non-ADHD and in ADHD humans. The neurochemical template of brain, and behavioral series of changes in n6-OHDA-lesioned rats, is described in the review. Despite the fact that nigrostriatal damage is not an underlying pathophysiological process of human ADHD (i.e., lacking construct validity), the described animal model has face validity (behavioral profile) and predictive validity (mirror of ADHD/MPH effects, as well as putative and new ADHD treatment effects). Also described in this review is a modification of the n6-OHDA rat, produced by adulthood partial lesioning of the serotoninergic fiber overgrowth. This ADHD model has even more accentuated hyperlocomotor and attentional deficits, counteracted by AMPH-thus providing a more robust means of animal modeling of ADHD. The n6-OHDA rat as a model of ADHD continues to be important in the search for new ADHD treatments.
Collapse
Affiliation(s)
| | | | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 70577, Johnson City, TN, 37614, USA.
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Przemysław Nowak
- Public Health Faculty, Department of Toxicology and Occupational Health Protection, Medical University of Silesia, Medykow 18, 40-752, Katowice Ligota, Poland
| |
Collapse
|