1
|
Potential Protective Effect of Coenzyme Q10 on Doxorubicin-Induced Neurotoxicity and Behavioral Disturbances in Rats. Neurochem Res 2022; 47:1280-1289. [PMID: 34978671 DOI: 10.1007/s11064-021-03522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the potential neuroprotective efficacy of coenzyme Q10 (CoQ10) against doxorubicin (DOX) -induced behavioral disturbances in rats. Female rats were randomly assigned into 4 groups as control, CoQ10, DOX, and DOX plus CoQ10. The CoQ10 groups received CoQ10 (200 mg kg-1) for 21 days, and the DOX groups received DOX (4 mg kg-1) on days 7 and 14 of the study. The open field (OF) and elevated plus maze (EPM) tests were performed to assess locomotor activity and anxiety levels. Additionally, malondialdehyde (MDA), and protein carbonyl (PC) levels and acetylcholinesterase (AChE), and glutathione peroxidase (GPx) activities and total antioxidant capacity (TAC) were quantified in brain tissue. DOX administration caused alterations in locomotor activity, and anxiety-like behaviors. Moreover, DOX produced significant elevation in AChE activity . PC level and GPx activity tended to alter with DOX administration. Co-treatment with CoQ10 significantly attenuated DOX-induced behavioral alterations via improving AChE activity in the brain tissue of rats. CoQ10 treatment may be potential for the alleviation of DOX-induced behavioral disturbances. This improvement might be due to the inhibition of AChE activity.
Collapse
|
2
|
Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:nu13082658. [PMID: 34444817 PMCID: PMC8399248 DOI: 10.3390/nu13082658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multisystem, and profoundly debilitating neuroimmune disease, probably of post-viral multifactorial etiology. Unfortunately, no accurate diagnostic or laboratory tests have been established, nor are any universally effective approved drugs currently available for its treatment. This study aimed to examine whether oral coenzyme Q10 and NADH (reduced form of nicotinamide adenine dinucleotide) co-supplementation could improve perceived fatigue, unrefreshing sleep, and health-related quality of life in ME/CFS patients. A 12-week prospective, randomized, double-blind, placebo-controlled trial was conducted in 207 patients with ME/CFS, who were randomly allocated to one of two groups to receive either 200 mg of CoQ10 and 20 mg of NADH (n = 104) or matching placebo (n = 103) once daily. Endpoints were simultaneously evaluated at baseline, and then reassessed at 4- and 8-week treatment visits and four weeks after treatment cessation, using validated patient-reported outcome measures. A significant reduction in cognitive fatigue perception and overall FIS-40 score (p < 0.001 and p = 0.022, respectively) and an improvement in HRQoL (health-related quality of life (SF-36)) (p < 0.05) from baseline were observed within the experimental group over time. Statistically significant differences were also shown for sleep duration at 4 weeks and habitual sleep efficiency at 8 weeks in follow-up visits from baseline within the experimental group (p = 0.018 and p = 0.038, respectively). Overall, these findings support the use of CoQ10 plus NADH supplementation as a potentially safe therapeutic option for reducing perceived cognitive fatigue and improving the health-related quality of life in ME/CFS patients. Future interventions are needed to corroborate these clinical benefits and also explore the underlying pathomechanisms of CoQ10 and NADH administration in ME/CFS.
Collapse
|
3
|
Awotunsin KO, Oridupa OA, Ogunsola JO, Obisesan AD, Saba AB. Simulation of hemo- and biochemical toxicities associated with chronic inhalation exposure to 2,2-Dichlorovinyl dimethyl phosphate (DDVP) in Wistar rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103547. [PMID: 33188889 DOI: 10.1016/j.etap.2020.103547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
DDVP is a commonly used pesticide in Nigeria and those involved with DDVP manufacturing, packaging or utilizing facilities seldom use PPE to limit pesticide exposure. The study aim was to determine the impact of chronic exposure to DDVP by monitoring hematological and biochemical changes in Wistar rats. Male rats (n = 60; 150-180 g) were exposed to graded DDVP concentrations (0%, 20 %, 40 %, 60 %, 80 % and 100 %) via inhalation route for 60 days. Body weights were initially measured and then at 20-day intervals. Blood samples were collected for hematology and serum biochemistry on day 61. Results showed significant (p < 0.05) polycythemia, neutrophilia, thrombocytosis, hepatic and renal derangement in rats exposed to DDVP. Also, albumin, AST, ALP, creatinine, blood urea nitrogen, bilirubin levels and dyslipidemia significantly increased. Cholinergic signs and stunted growth were observed in higher concentrations. Study emphasized hazards of DDVP mishandling and risks of non-compliance with PPE use by workers in-contact with DDVP, as well as misuse/abuse in animals.
Collapse
Affiliation(s)
| | | | - John O Ogunsola
- Veterinary Teaching Hospital, University of Ibadan, Ibadan, Nigeria
| | | | - Adebowale Bernard Saba
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Turton N, Heaton RA, Ismail F, Roberts S, Nelder S, Phillips S, Hargreaves IP. The Effect of Organophosphate Exposure on Neuronal Cell Coenzyme Q 10 Status. Neurochem Res 2021; 46:131-139. [PMID: 32306167 PMCID: PMC7829235 DOI: 10.1007/s11064-020-03033-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
Organophosphate (OP) compounds are widely used as pesticides and herbicides and exposure to these compounds has been associated with both chronic and acute forms of neurological dysfunction including cognitive impairment, neurophysiological problems and cerebral ataxia with evidence of mitochondrial impairment being associated with this toxicity. In view of the potential mitochondrial impairment, the present study aimed to investigate the effect of exposure to commonly used OPs, dichlorvos, methyl-parathion (parathion) and chloropyrifos (CPF) on the cellular level of the mitochondrial electron transport chain (ETC) electron carrier, coenzyme Q10 (CoQ10) in human neuroblastoma SH-SY5Y cells. The effect of a perturbation in CoQ10 status was also evaluated on mitochondrial function and cell viability. A significant decreased (P < 0.0001) in neuronal cell viability was observed following treatment with all three OPs (100 µM), with dichlorvos appearing to be the most toxic to cells and causing an 80% loss of viability. OP treatment also resulted in a significant diminution in cellular CoQ10 status, with levels of this isoprenoid being decreased by 72% (P < 0.0001), 62% (P < 0.0005) and 43% (P < 0.005) of control levels following treatment with dichlorvos, parathion and CPF (50 µM), respectively. OP exposure was also found to affect the activities of the mitochondrial enzymes, citrate synthase (CS) and mitochondrial electron transport chain (ETC) complex II+III. Dichlorvos and CPF (50 µM) treatment significantly decreased CS activity by 38% (P < 0.0001) and 35% (P < 0.0005), respectively compared to control levels in addition to causing a 54% and 57% (P < 0.0001) reduction in complex II+III activity, respectively. Interestingly, although CoQ10 supplementation (5 μM) was able to restore cellular CoQ10 status and CS activity to control levels following OP treatment, complex II+III activity was only restored to control levels in neuronal cells exposed to dichlorvos (50 µM). However, post supplementation with CoQ10, complex II+III activity significantly increased by 33% (P < 0.0005), 25% (P < 0.005) and 35% (P < 0.0001) in dichlorvos, parathion and CPF (100 µM) treated cells respectively compared to non-CoQ10 supplemented cells. In conclusion, the results of this study have indicated evidence of neuronal cell CoQ10 deficiency with associated mitochondrial dysfunction following OP exposure. Although CoQ10 supplementation was able to ameliorate OP induced deficiencies in CS activity, ETC complex II+III activity appeared partially refractory to this treatment. Accordingly, these results indicate the therapeutic potential of CoQ10 supplementation in the treatment of OP poisoning. However, higher doses may be required to engender therapeutic efficacy.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Fahima Ismail
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sioned Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sian Nelder
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sue Phillips
- The Royal Liverpool University Hospital, Royal Liverpool and Broadgreen NHS Trust, Prescot Street, Liverpool, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
5
|
Monsef A, Shahidi S, Komaki A. Influence of Chronic Coenzyme Q10 Supplementation on Cognitive Function, Learning, and Memory in Healthy and Diabetic Middle-Aged Rats. Neuropsychobiology 2019; 77:92-100. [PMID: 30580330 DOI: 10.1159/000495520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
Abstract
Diabetes mellitus can induce impairment in learning and memory. Cognitive and memory deficits are common in older adults and especially in those with diabetes. This is mainly because of hyperglycemia, oxidative stress, and vascular abnormalities. Coenzyme Q10 (CoQ10) can decrease oxidative stress, hyperglycemia, and inflammatory markers, and improve vascular function. Therefore, the aim of the present study was to investigate the possible effects of CoQ10 on cognitive function, learning, and memory in middle-aged healthy and diabetic rats. Adult middle-aged male Wistar rats (390-460 g, 12-13 months old) were divided into 6 experimental groups. Diabetes was induced by a single i.p. injection of streptozotocin (60 mg/kg). CoQ10 (20 or 120 mg/kg, orally by gavage) was administered for 45 days. The cognitive function and learning memory of rats were evaluated using novel object recognition (NOR) and passive avoidance tests. The discrimination index of the NOR test in the diabetic groups receiving CoQ10 (20 or 120 mg/kg) and the healthy group receiving CoQ10 (120 mg/kg) was significantly higher than that in the control group. In addition, the step through latency was significantly longer and the time spent in the dark compartment was significantly shorter in the diabetic groups receiving CoQ10 than in the control group. CoQ10 supplementation can improve learning and memory deficits induced by diabetes in older subjects. In addition, CoQ10 at higher doses can improve cognitive performance in older healthy subjects.
Collapse
Affiliation(s)
- Amirreza Monsef
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran,
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Altenhofen S, Nabinger DD, Bitencourt PER, Bonan CD. Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:1117-1123. [PMID: 30682746 DOI: 10.1016/j.envpol.2018.11.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Dichlorvos (2,2-dichlorovinyl-dimethylphosphate), an organophosphorus pesticide used for indoor insect and livestock parasite control, is among the most common commercially available pesticides. However, there are significant concerns over its toxicity, especially due to its relative stability in water, soil, and air. Zebrafish, an important developmental model, has been used for studying the effects of toxic compounds. The aim of this study was to evaluate the exposure to dichlorvos at early life stages (1 h postfertilization - 7 days postfertilization) in the zebrafish and its toxicological effects during the development, through morphological (7 days postfertilization), locomotor and social behavior analysis (7, 14, 30, 70, and 120 days postfertilization). Dichlorvos (1, 5, and 10 mg/L) exposure reduced the body length and heartbeat rate at 7 days postfertilization (dpf), as well as the surface area of the eyes (5 and 10 mg/L). The avoidance behavior test showed a significant decrease in escape responses at 7 (1, 5, and 10 mg/L) and 14 (5 and 10 mg/L) dpf zebrafish. The evaluation of larval exploratory behavior showed a reduction in distance traveled, mean speed (1, 5, and 10 mg/L) and time mobile (10 mg/L) between control and dichlorvos groups. In addition, the analysis performed on adult animals showed that the changes in distance traveled and mean speed remained reduced in 30 (1, 5, and 10 mg/L) and 70 dpf (5 and 10 mg/L), recovering values similar to the control at 120 dpf. The social behavior of zebrafish was not altered by exposure to dichlorvos in the early stages of development. Thus, the exposure to organophosphorus compounds at early stages of development induces an increased susceptibility to behavioral and neuronal changes that could be associated with several neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefani Altenhofen
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Débora Dreher Nabinger
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Paula Eliete Rodrigues Bitencourt
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Nakazawa H, Ikeda K, Shinozaki S, Yasuhara S, Yu YM, Martyn JAJ, Tompkins RG, Yorozu T, Inoue S, Kaneki M. Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle. FEBS Open Bio 2019; 9:348-363. [PMID: 30761259 PMCID: PMC6356165 DOI: 10.1002/2211-5463.12580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial dysfunction is associated with metabolic alterations in various disease states, including major trauma (e.g., burn injury). Metabolic derangements, including muscle insulin resistance and hyperlactatemia, are a clinically significant complication of major trauma. Coenzyme Q10 (CoQ10) is an essential cofactor for mitochondrial electron transport, and its reduced form acts as a lipophilic antioxidant. Here, we report that burn injury induces impaired muscle insulin signaling, hyperlactatemia, mitochondrial dysfunction (as indicated by suppressed mitochondrial oxygen consumption rates), morphological alterations of the mitochondria (e. g., enlargement, and loss of cristae structure), mitochondrial oxidative stress, and disruption of mitochondrial integrity (as reflected by increased mitochondrial DNA levels in the cytosol and circulation). All of these alterations were significantly alleviated by CoQ10 treatment compared with vehicle alone. These findings indicate that CoQ10 treatment is efficacious in protecting against mitochondrial dysfunction and insulin resistance in skeletal muscle of burned mice. Our data highlight CoQ10 as a potential new strategy to prevent mitochondrial damage and metabolic dysfunction in burn patients.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Life Sciences and Bioethics Tokyo Medical and Dental University Japan
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Yong-Ming Yu
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Ronald G Tompkins
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Tomoko Yorozu
- Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan.,Tokyo Metropolitan Institute of Gerontology Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| |
Collapse
|
8
|
Affiliation(s)
| | - Iain P Hargreaves
- Senior Lecturer, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University
| |
Collapse
|
9
|
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer's disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1078-1089. [PMID: 27567931 DOI: 10.1016/j.bbadis.2016.08.018] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Recently researchers proposed the term 'Type-3-Diabetes' for Alzheimer's disease (ad) because of the shared molecular and cellular features among Type-1-Diabetes, Type-2-Diabetes and insulin resistance associated with memory deficits and cognitive decline in elderly individuals. Recent clinical and basic studies on patients with diabetes and AD revealed previously unreported cellular and pathological among diabetes, insulin resistance and AD. These studies are also strengthened by various basic biological studies that decipher the effects of insulin in the pathology of AD through cellular and molecular mechanisms. For instance, insulin is involved in the activation of glycogen synthase kinase 3β, which in turn causes phosphorylation of tau, which involved in the formation of neurofibrillary tangles. Interestingly, insulin also plays a crucial role in the formation amyloid plaques. In this review, we discussed significant shared mechanisms between AD and diabetes and we also provided therapeutic avenues for diabetes and AD. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Vani Thirumala
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; BSA Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Departments of Cell Biology & Biochemistry, Neuroscience & Pharmacology and Neurology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| |
Collapse
|
10
|
Pearson JN, Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci 2016; 1378:17-24. [PMID: 27371936 DOI: 10.1111/nyas.13115] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
Organophosphate (OP) nerve agents exert their toxicity through inhibition of acetylcholinesterase. The excessive stimulation of cholinergic receptors rapidly causes neuronal damage, seizures, death, and long-term neurological impairment in those that survive. Owing to the lethality of organophosphorus agents and the growing risk they pose, medical interventions that prevent OP toxicity and the delayed injury response are much needed. Studies have shown that oxidative stress occurs in models of subacute, acute, and chronic exposure to OP agents. Key findings of these studies include alterations in mitochondrial function and increased free radical-mediated injury, such as lipid peroxidation. This review focuses on the role of reactive oxygen species in OP neurotoxicity and its dependence on seizure activity. Understanding the sources, mechanisms, and pathological consequences of OP-induced oxidative stress can lead to the development of rational therapies for treating toxic exposures.
Collapse
Affiliation(s)
| | - Manisha Patel
- Neuroscience Program. .,Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
11
|
Kandimalla R, Reddy PH. Multiple faces of dynamin-related protein 1 and its role in Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1862:814-828. [PMID: 26708942 DOI: 10.1016/j.bbadis.2015.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023]
Abstract
Mitochondria play a large role in neuronal function by constantly providing energy, particularly at synapses. Recent studies suggest that amyloid beta (Aβ) and phosphorylated tau interact with the mitochondrial fission protein, dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria and leading to abnormal mitochondrial dynamics and synaptic degeneration in Alzheimer's disease (AD) neurons. Recent research also revealed Aβ-induced and phosphorylated tau-induced changes in mitochondria, particularly affecting mitochondrial shape, size, distribution and axonal transport in AD neurons. These changes affect mitochondrial health and, in turn, could affect synaptic function and neuronal damage and ultimately leading to memory loss and cognitive impairment in patients with AD. This article highlights recent findings in the role of Drp1 in AD pathogenesis. This article also highlights Drp1 and its relationships to glycogen synthase kinase 3, cyclin-dependent kinase 5, p53, and microRNAs in AD pathogenesis.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neurology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|
12
|
Mitochondrial complex I inhibition as a possible mechanism of chlorpyrifos induced neurotoxicity. Ann Neurosci 2014; 21:85-9. [PMID: 25206071 PMCID: PMC4158778 DOI: 10.5214/ans.0972.7531.210303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/23/2014] [Accepted: 07/07/2014] [Indexed: 12/29/2022] Open
Abstract
Background Organophosphates (OPs) represent the most widely used class of pesticides. Although perceived as low toxicity compounds compared to the previous organochlorines, they still possess neurotoxic effects both on acute and delayed levels. Delayed neurotoxic effects of OPs include OPIDN and OPICN. The mechanisms of these delayed effects have not been totally unraveled yet. One possible contributor for neurotoxicity is mitochondrial complex I (CI) inhibition. Purpose in the present study we evaluated the contributing role of (CI) inhibition in chlorpyrifos (CPF) induced delayed neuropathy in hens. Methods Experimented birds received 150 mg/kg of CPF, and evaluated behaviorally and biochemically. Results CPF treated hens received 150 mg/kg and developed signs of delayed neurotoxicity, which were verified by NTE inhibition. These effects were paralleled by CI inhibition and decrease in ATP level. Conclusions The data confirms the possible role of CI inhibition in CPF induced delayed neuropathy.
Collapse
|
13
|
Nan P, Yan S, Li L, Chen J, Du Q, Chang Z. Toxicity effect of dichlorvos on loach (Misgurnus anguillicaudatus) assessed by micronucleus test, hepatase activity analysis and comet assay. Toxicol Ind Health 2013; 31:566-75. [DOI: 10.1177/0748233713475512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pesticides and other chemicals at environmental concentrations often have detrimental effects. Many aquatic species are particularly threatened because of their susceptibility and also because water environment are often polluted. This study preliminarily evaluated the toxicity effect of dichlorvos (DDVP) on loach ( Misgurnus anguillicaudatus) using the methods of micronucleus (MN) test, hepatase activity and comet assay. The tested results showed that indeed very little DDVP had strong toxicity effect on loach and its 50% lethal concentration (LC50) at 24 h, 48 h and 96 h was 8.38 μg l−1, 7.168 μg l−1 and 6.411 μg l−1, respectively; The glutamic-pyruvic transaminase (GPT) and glutamic–oxalacetic transaminase (GOT) activity of loach liver decreased; meanwhile, the GPT and GOT activity of loach serum, the MN rate (‰) and three comet parameters of tested fish increased with the increase in the treatment concentration and treatment time of DDVP, and there was significant difference between control group and each treatment group ( p < 0.05). These results suggested that DDVP residues might become toxic chemical contaminant in environment and would threaten aquatic and other organisms.
Collapse
Affiliation(s)
- Ping Nan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Shuaiguo Yan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Li Li
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Jianjun Chen
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Qiyan Du
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| |
Collapse
|