1
|
Yang KC, Chen YY, Liu MN, Yang BH, Chou YH. Interactions between dopamine transporter and N-methyl-d-aspartate receptor-related amino acids on cognitive impairments in schizophrenia. Schizophr Res 2022; 248:263-270. [PMID: 36115191 DOI: 10.1016/j.schres.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cognitive impairments, the main determinants of functional outcomes in schizophrenia, had limited treatment responses and need a better understanding of the mechanisms. Dysfunctions of the dopamine system and N-methyl-d-aspartate receptor (NMDAR), the primary pathophysiologies of schizophrenia, may impair cognition. This study explored the effects and interactions of striatal dopamine transporter (DAT) and plasma NMDAR-related amino acids on cognitive impairments in schizophrenia. METHODS We recruited 36 schizophrenia patients and 36 age- and sex-matched healthy controls (HC). All participants underwent cognitive assessments of attention, memory, and executive function. Single-photon emission computed tomography with 99mTc-TRODAT and ultra-performance liquid chromatography were applied to determine DAT availability and plasma concentrations of eight amino acids, respectively. RESULTS Compared with HC, schizophrenia patients had lower cognitive performance, higher methionine concentrations, decreased concentrations of glutamic acid, cysteine, aspartic acid, arginine, the ratio of glutamic acid to gamma-aminobutyric acid (Glu/GABA), and DAT availability in the left caudate nucleus (CN) and putamen. Regarding memory scores, Glu/GABA and the DAT availability in left CN and putamen exhibited positive relationships, while methionine concentrations showed negative associations in all participants. The DAT availability in left CN mediated the methionine-memory relationship. An exploratory backward stepwise regression analysis for the four biological markers associated with memory indicated that DAT availability in left CN and Glu/GABA remained in the final model. CONCLUSIONS This study demonstrated the interactions of striatal DAT and NMDAR-related amino acids on cognitive impairments in schizophrenia. Future studies to comprehensively evaluate their complex interactions and treatment implications are warranted.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Yu Chen
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Actions of Metformin in the Brain: A New Perspective of Metformin Treatments in Related Neurological Disorders. Int J Mol Sci 2022; 23:ijms23158281. [PMID: 35955427 PMCID: PMC9368983 DOI: 10.3390/ijms23158281] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Metformin is a first-line drug for treating type 2 diabetes mellitus (T2DM) and one of the most commonly prescribed drugs in the world. Besides its hypoglycemic effects, metformin also can improve cognitive or mood functions in some T2DM patients; moreover, it has been reported that metformin exerts beneficial effects on many neurological disorders, including major depressive disorder (MDD), Alzheimer’s disease (AD) and Fragile X syndrome (FXS); however, the mechanism underlying metformin in the brain is not fully understood. Neurotransmission between neurons is fundamental for brain functions, and its defects have been implicated in many neurological disorders. Recent studies suggest that metformin appears not only to regulate synaptic transmission or plasticity in pathological conditions but also to regulate the balance of excitation and inhibition (E/I balance) in neural networks. In this review, we focused on and reviewed the roles of metformin in brain functions and related neurological disorders, which would give us a deeper understanding of the actions of metformin in the brain.
Collapse
|
3
|
De Iuliis A, Montinaro E, Fatati G, Plebani M, Colosimo C. Diabetes mellitus and Parkinson's disease: dangerous liaisons between insulin and dopamine. Neural Regen Res 2022; 17:523-533. [PMID: 34380882 PMCID: PMC8504381 DOI: 10.4103/1673-5374.320965] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between diabetes mellitus and Parkinson's disease has been described in several epidemiological studies over the 1960s to date. Molecular studies have shown the possible functional link between insulin and dopamine, as there is strong evidence demonstrating the action of dopamine in pancreatic islets, as well as the insulin effects on feeding and cognition through central nervous system mechanism, largely independent of glucose utilization. Therapies used for the treatment of type 2 diabetes mellitus appear to be promising candidates for symptomatic and/or disease-modifying action in neurodegenerative diseases including Parkinson's disease, while an old dopamine agonist, bromocriptine, has been repositioned for the type 2 diabetes mellitus treatment. This review will aim at reappraising the different studies that have highlighted the dangerous liaisons between diabetes mellitus and Parkinson's disease.
Collapse
Affiliation(s)
| | - Ennio Montinaro
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | | | - Mario Plebani
- Department of Medicine-DiMED, University of Padova, Italy
- Department of Medicine-DiMED, University of Padova, Padova, Italy; Department of Laboratory Medicine-Hospital of Padova, Padova, Italy
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| |
Collapse
|
4
|
Amin SV, Khanna S, Parvar SP, Shaw LT, Dao D, Hariprasad SM, Skondra D. Metformin and retinal diseases in preclinical and clinical studies: Insights and review of literature. Exp Biol Med (Maywood) 2022; 247:317-329. [PMID: 35068220 PMCID: PMC8899338 DOI: 10.1177/15353702211069986] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metformin is one of the most prescribed drugs in the world giving potential health benefits beyond that of type 2 diabetes (T2DM). Emerging evidence suggests that it may have protective effects for retinal/posterior segment diseases including diabetic retinopathy (DR), age-related macular degeneration (AMD), inherited retinal degeneration such as retinitis pigmentosa (RP), primary open angle glaucoma (POAG), retinal vein occlusion (RVO), and uveitis. Metformin exerts potent anti-inflammatory, antiangiogenic, and antioxidative effects on the retina in response to pathologic stressors. In this review, we highlight the broad mechanism of action of metformin through key preclinical studies on animal models and cell lines used to simulate human retinal disease. We then explore the sparse but promising retrospective clinical data on metformin's potential protective role in DR, AMD, POAG, and uveitis. Prospective clinical data is needed to clarify metformin's role in management of posterior segment disorders. However, given metformin's proven broad biochemical effects, favorable safety profile, relatively low cost, and promising data to date, it may represent a new therapeutic preventive and strategy for retinal diseases.
Collapse
Affiliation(s)
- Shivam V Amin
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khanna
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Seyedeh P Parvar
- Islamic Azad University Tehran Faculty of Medicine, Tehran QCGM+X9, Tehran Province, Iran
| | - Lincoln T Shaw
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - David Dao
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Seenu M Hariprasad
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Zhang Y, Fan X, Su Z, Yuan T, Yin H, Gu H, Zuo Y, Chen S, Zhou H, Su G. Pretreatment with metformin prevents microcystin-LR-induced tau hyperphosphorylation via mTOR-dependent PP2A and GSK-3β activation. ENVIRONMENTAL TOXICOLOGY 2021; 36:2414-2425. [PMID: 34432352 DOI: 10.1002/tox.23354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) is a toxin secreted by freshwater cyanobacteria that is considered a potential environmental risk factor for Alzheimer's disease (AD). A previous study indicated that tau protein hyperphosphorylation via protein phosphatase 2A (PP2A) and GSK-3β inhibition was the mechanism by which MC-LR induces neurotoxicity; however, how MC-LR-induced neurotoxicity can be effectively prevented remains unclear. In this study, the reversal effect of metformin on MC-LR-induced neurotoxicity was investigated. The results showed that metformin effectively prevented tau hyperphosphorylation at Ser202 caused by MC-LR through PP2A and GSK-3b activity. The effect of metformin on PP2A activity was dependent on the inhibition of mTOR in MC-LR-treated SH-SY5Y cells. Metformin prevented spatial memory deficits in rats caused by intrahippocampal MC-LR administration. In sum, the results suggested that metformin can ameliorate the MC-LR-induced AD-like phenotype by preventing tau phosphorylation at Ser202, which was mainly mediated by mTOR-dependent PP2A and GSK-3β activation.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Xing Fan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Zhangyao Su
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Tianli Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Haimeng Yin
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Haohao Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Yue Zuo
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Shiyin Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
6
|
Arabmoazzen S, Mirshekar MA. Evaluation of the effects of metformin as adenosine monophosphate-activated protein kinase activator on spatial learning and memory in a rat model of multiple sclerosis disease. Biomed Pharmacother 2021; 141:111932. [PMID: 34323699 DOI: 10.1016/j.biopha.2021.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022] Open
Abstract
In patients with multiple sclerosis (MS) disease, cognitive deficits have been detected because of destruction of hippocampus. Cognitive impairment is one of the common signs in MS. Recent studies showed that metformin (Met) has wide-ranging effects in the treatment of diseases. Here, we have tried to study the preservative effects of Met as adenosine monophosphate-activated protein kinase (AMPK) activator on the hippocampus dentate gyrus (DG) neuronal firing pattern, motor coordination, and learning & memory loss following MS induction. The MS induction was done by local ethidium bromide (EB) injection into the rat hippocampus. Then, rats were treated with Met (200 mg/kg) for two weeks. Spatial memory and learning status were assessed using Morris water maze. A neuronal single-unit recording was measured from hippocampus DG. After decapitation, the bilateral hippocampi separated to measure malondialdehyde (MDA). Treatment with Met ameliorated latency times and path lengths (P < 0.05, P < 0.01, P < 0.001 in 1th, 2th, 3th and 4th days) in the Met + MS group respectively. The percent of total time spent in goal quarter and the average number of spikes/bin were decreased significantly in MS rats compared with the sham group (p < 0.001) but significantly increased in the metformin-treated MS group (Met + MS), (p < 0.01, p < 0.001). Met treatment in rats with MS significantly reduced the concentration of MDA, which is an indicator of lipid peroxidation compared to untreated groups. These observations show that increase of neuronal activity, sensory-motor coordination, and improvement of spatial memory in MS rats treated with Met appears via an increment of AMPK.
Collapse
Affiliation(s)
- Saiedeh Arabmoazzen
- Deputy of Research and Technology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
7
|
Schlichtmann BW, Kalyanaraman B, Schlichtmann RL, Panthani MG, Anantharam V, Kanthasamy AG, Mallapragada SK, Narasimhan B. Functionalized polyanhydride nanoparticles for improved treatment of mitochondrial dysfunction. J Biomed Mater Res B Appl Biomater 2021; 110:450-459. [PMID: 34312984 DOI: 10.1002/jbm.b.34922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease affecting a large proportion of older adults. Exposure to pesticides like rotenone is a leading cause for PD. To reduce disease progression and prolong life expectancy, it is important to target disease mechanisms that contribute to dopaminergic neuronal atrophy, including mitochondrial dysfunction. Achieving targeted mitochondrial delivery is difficult for many therapeutics by themselves, necessitating higher therapeutic doses that could lead to toxicity. To minimize this adverse effect, targeted nano-carriers such as polyanhydride nanoparticles (NPs) can protect therapeutics from degradation and provide sustained release, enabling fewer administrations and lower therapeutic dose. This work expands upon the use of the polyanhydride NP platform for targeted drug delivery by functionalizing the polymer with a derivative of triphenylphosphonium called (3-carboxypropyl) triphenylphosphonium (CPTP) using a novel method that enables longer CPTP persistence on the NPs. The extent to which neurons internalized both nonfunctionalized and functionalized NPs was tested. Next, the efficacy of these nanoformulations in treating rotenone-induced mitochondrial dysfunction in the same cell line was evaluated using a novel neuroprotective drug, mito-metformin. CPTP functionalization significantly improved NP internalization by neuronal cells. This was correlated with significant protection by CPTP-functionalized, mito-metformin encapsulated NPs against rotenone-induced mitochondrial dysfunction. However, nonfunctionalized, mito-metformin encapsulated NPs and soluble mito-metformin administered at the same dose did not significantly protect cells from rotenone-induced toxicity. These results indicate that the targeted NP platform can provide enhanced dose-sparing and potentially reduce the occurrence of systemic side-effects for PD therapeutics.
Collapse
Affiliation(s)
| | | | - Rainie L Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Matthew G Panthani
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA.,Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Watanabe K, Asano D, Ushikubo H, Morita A, Mori A, Sakamoto K, Ishii K, Nakahara T. Metformin Protects against NMDA-Induced Retinal Injury through the MEK/ERK Signaling Pathway in Rats. Int J Mol Sci 2021; 22:ijms22094439. [PMID: 33922757 PMCID: PMC8123037 DOI: 10.3390/ijms22094439] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin, an anti-hyperglycemic drug of the biguanide class, exerts positive effects in several non-diabetes-related diseases. In this study, we aimed to examine the protective effects of metformin against N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinal damage in rats and determine the mechanisms of its protective effects. Male Sprague–Dawley rats (7 to 9 weeks old) were used in this study. Following intravitreal injection of NMDA (200 nmol/eye), the number of neuronal cells in the ganglion cell layer and parvalbumin-positive amacrine cells decreased, whereas the number of CD45-positive leukocytes and Iba1-positive microglia increased. Metformin attenuated these NMDA-induced responses. The neuroprotective effect of metformin was abolished by compound C, an inhibitor of AMP-activated protein kinase (AMPK). The AMPK activator, AICAR, exerted a neuroprotective effect in NMDA-induced retinal injury. The MEK1/2 inhibitor, U0126, reduced the neuroprotective effect of metformin. These results suggest that metformin protects against NMDA-induced retinal neurotoxicity through activation of the AMPK and MEK/extracellular signal-regulated kinase (ERK) signaling pathways. This neuroprotective effect could be partially attributable to the inhibitory effects on inflammatory responses.
Collapse
Affiliation(s)
- Koki Watanabe
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
| | - Daiki Asano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
| | - Hiroko Ushikubo
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Center for Pharmaceutical Education, Faculty of Pharmacy, Yokohama University of Pharmacy, Kanagawa 245-0066, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Center for Pharmaceutical Education, Faculty of Pharmacy, Yokohama University of Pharmacy, Kanagawa 245-0066, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Correspondence: ; Tel./Fax: +81-3-3444-6205
| |
Collapse
|
9
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
10
|
Wang DX, Chen AD, Wang QJ, Xin YY, Yin J, Jing YH. Protective effect of metformin against rotenone-induced parkinsonism in mice. Toxicol Mech Methods 2020; 30:350-357. [DOI: 10.1080/15376516.2020.1741053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Dong-Xin Wang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - An-Di Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Qing-Jun Wang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Science, East China Normal University, Shanghai, PR China
| | - Yue-Yang Xin
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
- Key Laboratory of Preclinical Study for New Drugs of Gansu province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
11
|
Ozbey G, Nemutlu-Samur D, Parlak H, Yildirim S, Aslan M, Tanriover G, Agar A. Metformin protects rotenone-induced dopaminergic neurodegeneration by reducing lipid peroxidation. Pharmacol Rep 2020; 72:1397-1406. [PMID: 32207092 DOI: 10.1007/s43440-020-00095-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/21/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Metformin, a widely prescribed antidiabetic drug, has been suggested to have a neuroprotective effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. In this study, we investigated the neuroprotective potential of metformin against rotenone-induced dopaminergic neuron damage and its underlying mechanisms. METHODS C57BL/6 mice were given saline or rotenone (2.5 mg/kg/day, ip) injection for 10 days. Metformin treatment (300 mg/kg/day, ip) was started concurrently with rotenone administration and continued for 10 days. The neuroprotective effect of metformin on rotenone-induced dopaminergic toxicity was assessed by tyrosine hydroxylase (TH), cleaved caspase-3 and α-synuclein immunohistochemistry in substantia nigra (SN). SN tissues were extracted for biochemical analysis. Malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) protein levels were measured by spectrophotometric assay. RESULTS We found that metformin treatment attenuated the rotenone-induced loss of TH+ neurons in the SN. Additionally, metformin significantly decreased the rotenone-induced increase of cleaved caspase-3 and α-synuclein accumulation in the SN; however, there was no difference in motor behaviours between the experimental groups. Meanwhile, the levels of MDA and 4-HNE in SN were significantly reduced in the rotenone-metformin group compared to the rotenone group. CONCLUSIONS Results showed that metformin treatment attenuated dopaminergic neuron loss in SN induced by rotenone by decreasing lipid peroxidation.
Collapse
Affiliation(s)
- Gul Ozbey
- Department of Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey.
| | - Dilara Nemutlu-Samur
- Department of Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Sendegul Yildirim
- Department of Histology and Embryology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Mutay Aslan
- Department of Biochemistry, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Aysel Agar
- Department of Physiology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| |
Collapse
|
12
|
Meshkani SE, Mahdian D, Abbaszadeh-Goudarzi K, Abroudi M, Dadashizadeh G, Lalau JD, De Broe ME, Hosseinzadeh H. Metformin as a protective agent against natural or chemical toxicities: a comprehensive review on drug repositioning. J Endocrinol Invest 2020; 43:1-19. [PMID: 31098946 DOI: 10.1007/s40618-019-01060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metformin is the first prescribed drug for hyperglycemia in type 2 diabetes mellitus. Mainly by activating AMPK pathway, this drug exerts various functions that among them protective effects are of the interest. PURPOSE Herein, we aimed to gather data about the protective impacts of metformin against various natural or chemical toxicities. RESULTS An extensive search among PubMed, Scopus, and Google Scholar was conducted by keywords related to protection, toxicity, natural and chemical toxins and, metformin. Our literature review showed metformin alongside its anti-hyperglycemic effect has a wide range of anti-toxic effects against anti-tumour and routine drugs, natural and chemical toxins, herbicides and, heavy metals. CONCLUSION It is evident that metformin is a potent drug against the toxicity of a broad spectrum of natural, chemical toxic agents which is proved by a vast number of studies. Metformin mainly through AMPK axis can protect different organs against toxicities. Moreover, metformin preserves DNA integrity and can be an option for adjuvant therapy to ameliorate side effect of other therapeutics.
Collapse
Affiliation(s)
- S E Meshkani
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - D Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - K Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Biochemistry, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - M Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - G Dadashizadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - J-D Lalau
- Department of Endocrinology, Université de Picardie Jules Verne, Amiens, France
| | - M E De Broe
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
| | - H Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Emerging neuroprotective effect of metformin in Parkinson's disease: A molecular crosstalk. Pharmacol Res 2019; 152:104593. [PMID: 31843673 DOI: 10.1016/j.phrs.2019.104593] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and Lewy pathology. PD is a major concern of today's aging population and has emerged as a global health burden. Despite the rapid advances in PD research over the past decades, the gold standard therapy provides only symptomatic relief and fails to halt disease progression. Therefore, exploring novel disease-modifying therapeutic strategies is highly demanded. Metformin, which is currently used as a first-line therapy for type 2 diabetes mellitus (T2DM), has recently demonstrated to exert a neuroprotective role in several neurodegenerative disorders including PD, both in vitro and in vivo. In this review, we explore the neuroprotective potential of metformin based on emerging evidence from pre-clinical and clinical studies. Regarding the underlying molecular mechanisms, metformin has been shown to inhibit α-synuclein (SNCA) phosphorylation and aggregation, prevent mitochondrial dysfunction, attenuate oxidative stress, modulate autophagy mainly via AMP-activated protein kinase (AMPK) activation, as well as prevent neurodegeneration and neuroinflammation. Overall, the neuroprotective effects of metformin in PD pathogenesis present a novel promising therapeutic strategy that might overcome the limitations of current PD treatment.
Collapse
|
14
|
Keshavarzi S, Kermanshahi S, Karami L, Motaghinejad M, Motevalian M, Sadr S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology 2019; 72:74-84. [PMID: 30742852 DOI: 10.1016/j.neuro.2019.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Methamphetamine is a neuro-stimulant with neurodegenerative effects, and ambiguous mechanism of action. Metformin is an antidiabetic agent with neuroprotective properties but not fully understood mechanisms. The present study investigated the molecular basis of metformin neuroprotection against methamphetamine-induced neurodegeneration. BRIEF METHOD Sixty adult male rats were randomly divided into six groups: group 1 (received normal saline), group 2 (received 10 mg/kg of methamphetamine) and groups 3, 4, 5 and 6 [received methamphetamine (10 mg/kg) plus metformin (50, 75, 100 and 150 mg/kg) respectively]. Elevated Plus Maze (EPM), Open Field Test (OFT), Forced Swim Test (FST), Tail Suspension Test (TST) and Morris Water Maze (MWM) were used to assess the level of anxiety, depression and cognition in experimental animals. Also animals' hippocampus were isolated and oxidative stress and inflammatory parameters and expression of total and phosphorylated forms of cAMP response element binding (CREB), brain-derived neurotrophic factor (BDNF), protein kinase B (Akt) and glycogen synthase kinase 3 (GSK3) proteins were evaluated by ELISA method. RESULTS According to the data obtained, methamphetamine caused significant depression, anxiety, motor activity disturbances and cognition impairment in experimental animals. Metformin, in all used doses, decreased methamphetamine induced behavioral disturbances. Also chronic administration of methamphetamine could increase malondialdehyde (MDA), tumor necrosis factor-Alpha (TNF-α) and interleukine-1 beta (IL-1β) in rats, while caused reduction of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities. Metformin, especially in high doses, could prevent these malicious effects of methamphetamine. Also Metformin could activate CREB (both forms), BDNF and Akt (both forms) proteins' expression and inhibited GSK3 (both forms) protein expression in methamphetamine treated rats. SIGNIFICANCE According to obtained data, metformin could protect the brain against methamphetamine-induced neurodegeneration probably by mediation of CREB/BDNF or Akt/GSK3 signaling pathways. These data suggested that CREB/BDNF or Akt/GSK3 signaling pathways may have a critical role in methamphetamine induced neurotoxicity and/or neuroprotective effects of metformin.
Collapse
Affiliation(s)
- Saghar Keshavarzi
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sareh Kermanshahi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Leila Karami
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Majid Motaghinejad
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sadr
- Research and Development Department, Parsian-Exir-Aria pharmaceutical Company, Tehran, Iran
| |
Collapse
|
15
|
A L, Zou T, He J, Chen X, Sun D, Fan X, Xu H. Rescue of Retinal Degeneration in rd1 Mice by Intravitreally Injected Metformin. Front Mol Neurosci 2019; 12:102. [PMID: 31080404 PMCID: PMC6497809 DOI: 10.3389/fnmol.2019.00102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Retinitis pigmentosa (RP) is a progressive hereditary retinal degenerative disease in which photoreceptor cells undergo degeneration and apoptosis, eventually resulting in irreversible loss of visual function. Currently, no effective treatment exists for this disease. Neuroprotection and inflammation suppression have been reported to delay the development of RP. Metformin is a well-tested drug used to treat type 2 diabetes, and it has been reported to exert beneficial effects in neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. In the present study, we used immunofluorescence staining, electroretinogram (ERG) recordings and RNA-Seq to explore the effects of metformin on photoreceptor degeneration and its mechanism in rd1 mice. We found that metformin significantly reduced apoptosis in photoreceptors and delayed the degeneration of photoreceptors and rod bipolar cells in rd1 mice, thus markedly improving the visual function of rd1 mice at P14, P18, and P22 when tested with a light/dark transition test and ERG. Microglial activation in the outer nuclear layer (ONL) of the retina of rd1 mice was significantly suppressed by metformin. RNA-Seq showed that metformin markedly downregulated inflammatory genes and upregulated the expression of crystallin proteins, which have been demonstrated to be important neuroprotective molecules in the retina, revealing the therapeutic potential of metformin for RP treatment. αA-crystallin proteins were further confirmed to be involved in the neuroprotective effects of metformin in a Ca2+ ionophore-damaged 661W photoreceptor-like cell line. These data suggest that metformin exerts a protective effect in rd1 mice via both immunoregulatory and new neuroprotective mechanisms.
Collapse
Affiliation(s)
- Luodan A
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China.,Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ting Zou
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Juncai He
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xia Chen
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Dayu Sun
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haiwei Xu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
16
|
Zhao M, Li XW, Chen DZ, Hao F, Tao SX, Yu HY, Cheng R, Liu H. Neuro-Protective Role of Metformin in Patients with Acute Stroke and Type 2 Diabetes Mellitus via AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Pathway and Oxidative Stress. Med Sci Monit 2019; 25:2186-2194. [PMID: 30905926 PMCID: PMC6442495 DOI: 10.12659/msm.911250] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background We investigated the effects of metformin on neurological function and oxidative stress in patients with type 2 diabetes mellitus with acute stroke. Material/Methods We randomly assigned 80 acute stroke patients to 2 groups: the metformin combined group and the insulin group. Each group had 40 patients and all were treated with standard stroke treatment. The indexes of nervous functional score and oxidative stress were measured before and 2 weeks after treatment. The primary fetal rat hippocampal neurons were gradually matured after 7 days of culture, and divided into the control group (Con), the oxygen-glucose deprivation model group (Mod), and the metformin group (Met). In the Met group, 10 mmol/L metformin was added, and the Con group and the Mod group received equal volumes of cell culture fluid. Cell viability, cell apoptosis rate, and the expression of Bax, Bcl-2, AMPK, pAMPK and mTOR were detected; MDA content and SOD activity were also detected. Results Before treatment, there was no difference in the metrical indexes between the 2 groups. After treatment, the treatment group was better than the control group in neurological function scores and multiple oxidative stress-related indicators. The experimental results of primary fetal rat hippocampal neuronal cells suggest that this mechanism of improvement is closely related to the AMPK/mTOR signaling pathway. Conclusions Metformin can improve the neurological function and oxidative stress status of acute stroke patients with type 2 diabetes, and its mechanism may be related to the AMPK/mTOR signaling pathway and oxidative stress.
Collapse
Affiliation(s)
- Min Zhao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Xiao Wan Li
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - De Z Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Fang Hao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Shu X Tao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Hai Yan Yu
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Rui Cheng
- Government Clinics of Liaocheng, Liaocheng, Shandong, China (mainland)
| | - Hong Liu
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| |
Collapse
|
17
|
Dombi E, Mortiboys H, Poulton J. Modulating Mitophagy in Mitochondrial Disease. Curr Med Chem 2019; 25:5597-5612. [DOI: 10.2174/0929867324666170616101741] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
Abstract
Mitochondrial diseases may result from mutations in the maternally-inherited mitochondrial
DNA (mtDNA) or from mutations in nuclear genes encoding mitochondrial proteins.
Their bi-genomic nature makes mitochondrial diseases a very heterogeneous group of
disorders that can present at any age and can affect any type of tissue.
The autophagic-lysosomal degradation pathway plays an important role in clearing dysfunctional
and redundant mitochondria through a specific quality control mechanism termed mitophagy.
Mitochondria could be targeted for autophagic degradation for a variety of reasons including
basal turnover for recycling, starvation induced degradation, and degradation due to
damage. While the core autophagic machinery is highly conserved and common to most
pathways, the signaling pathways leading to the selective degradation of damaged mitochondria
are still not completely understood. Type 1 mitophagy due to nutrient starvation is dependent
on PI3K (phosphoinositide 3-kinase) for autophagosome formation but independent
of mitophagy proteins, PINK1 (PTEN-induced putative kinase 1) and Parkin. Whereas type 2
mitophagy that occurs due to damage is dependent on PINK1 and Parkin but does not require
PI3K.
Autophagy and mitophagy play an important role in human disease and hence could serve as
therapeutic targets for the treatment of mitochondrial as well as neurodegenerative disorders.
Therefore, we reviewed drugs that are known modulators of autophagy (AICAR and metformin)
and may affect this by activating the AMP-activated protein kinase signaling pathways.
Furthermore, we reviewed the data available on supplements, such as Coenzyme Q and
the quinone idebenone, that we assert rescue increased mitophagy in mitochondrial disease by
benefiting mitochondrial function.
Collapse
Affiliation(s)
- Eszter Dombi
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, Neuroscience Department, University of Sheffield, United Kingdom
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Rotermund C, Machetanz G, Fitzgerald JC. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2018; 9:400. [PMID: 30072954 PMCID: PMC6060268 DOI: 10.3389/fendo.2018.00400] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
The search for treatments for neurodegenerative diseases is a major concern in light of today's aging population and an increasing burden on individuals, families, and society. Although great advances have been made in the last decades to understand the underlying genetic and biological cause of these diseases, only some symptomatic treatments are available. Metformin has long since been used to treat Type 2 Diabetes and has been shown to be beneficial in several other conditions. Metformin is well-tested in vitro and in vivo and an approved compound that targets diverse pathways including mitochondrial energy production and insulin signaling. There is growing evidence for the benefits of metformin to counteract age-related diseases such as cancer, cardiovascular disease, and neurodegenerative diseases. We will discuss evidence showing that certain neurodegenerative diseases and diabetes are explicitly linked and that metformin along with other diabetes drugs can reduce neurological symptoms in some patients and reduce disease phenotypes in animal and cell models. An interesting therapeutic factor might be how metformin is able to balance survival and death signaling in cells through pathways that are commonly associated with neurodegenerative diseases. In healthy neurons, these overarching signals keep energy metabolism, oxidative stress, and proteostasis in check, avoiding the dysfunction and neuronal death that defines neurodegenerative disease. We will discuss the biological mechanisms involved and the relevance of neuronal vulnerability and potential difficulties for future trials and development of therapies.
Collapse
Affiliation(s)
| | - Gerrit Machetanz
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C. Fitzgerald
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Rotermund C, Machetanz G, Fitzgerald JC. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2018; 9:400. [PMID: 30072954 DOI: 10.3389/fendo.2018.00400/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 05/25/2023] Open
Abstract
The search for treatments for neurodegenerative diseases is a major concern in light of today's aging population and an increasing burden on individuals, families, and society. Although great advances have been made in the last decades to understand the underlying genetic and biological cause of these diseases, only some symptomatic treatments are available. Metformin has long since been used to treat Type 2 Diabetes and has been shown to be beneficial in several other conditions. Metformin is well-tested in vitro and in vivo and an approved compound that targets diverse pathways including mitochondrial energy production and insulin signaling. There is growing evidence for the benefits of metformin to counteract age-related diseases such as cancer, cardiovascular disease, and neurodegenerative diseases. We will discuss evidence showing that certain neurodegenerative diseases and diabetes are explicitly linked and that metformin along with other diabetes drugs can reduce neurological symptoms in some patients and reduce disease phenotypes in animal and cell models. An interesting therapeutic factor might be how metformin is able to balance survival and death signaling in cells through pathways that are commonly associated with neurodegenerative diseases. In healthy neurons, these overarching signals keep energy metabolism, oxidative stress, and proteostasis in check, avoiding the dysfunction and neuronal death that defines neurodegenerative disease. We will discuss the biological mechanisms involved and the relevance of neuronal vulnerability and potential difficulties for future trials and development of therapies.
Collapse
Affiliation(s)
| | - Gerrit Machetanz
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, Huang J, Xu B, Long D, Li J, Li Q, Xu L, Xuan A. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 2018; 69:351-363. [PMID: 29253574 DOI: 10.1016/j.bbi.2017.12.009] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer'sdisease(AD) is characterized by deposition of amyloid-β (Aβ)plaques, neurofibrillary tangles, andneuronal loss, accompaniedbyneuroinflammation. Neuroinflammatoryprocesses are thought to contribute toAD pathophysiology. Metformin has been reported to have anti-inflammatory efficacy. However, whether metformin is responsible for the anti-neuroinflammationand neuroprotection on APPswe/PS1ΔE9 (APP/PS1) mice remains unclear. Here we showed that metformin attenuated spatial memory deficit, neuron loss in the hippocampus and enhanced neurogenesis in APP/PS1 mice. In addition, metformin administration decreased amyloid-β (Aβ)plaque load and chronic inflammation (activated microglia and astrocytes as well as pro-inflammatory mediators) in the hippocampus and cortex. Further study demonstrated that treatment with metformin enhanced cerebral AMPK activation. Meanwhile, metformin notably suppressed the activation of P65 NF-κB, mTOR and S6K, reduced Bace1 protein expression. Our data suggest that metformin can exert functional recovery of memory deficits and neuroprotective effect on APP/PS1 mice via triggering neurogenesis and anti-inflammation mediated by regulating AMPK/mTOR/S6K/Bace1 and AMPK/P65 NF-κB signaling pathways in the hippocampus, which may contribute to improvement in neurological deficits.
Collapse
Affiliation(s)
- Zhenri Ou
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuejian Kong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiangdong Sun
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaosong He
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Le Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuo Gong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jingyi Huang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Biao Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Dahong Long
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianhua Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qingqing Li
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Liping Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
21
|
Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, Jeong GS, Choi DY. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson's disease. Neuropharmacology 2017; 125:396-407. [PMID: 28807678 DOI: 10.1016/j.neuropharm.2017.08.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
In spite of the massive research for the identification of neurorestorative or neuroprotective intervention for curing Parkinson's disease (PD), there is still lack of clinically proven neuroprotective agents. Metformin, a common anti-hyperglycemic drug has been known to possess neuroprotective properties. However, specific mechanisms by which metformin protects neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity remain to be elucidated. In this study, we assessed the neuroprotective effects of metformin in the subchronic MPTP model of PD, and explored its feasible mechanisms for neuroprotection. Animals received saline or MPTP injection (30 mg/kg/day) for the first 7 days, and then saline or metformin (200 mg/kg/day) for the next 7 days. Immunohistochemical stainings showed that metformin rescued the tyrosine hydroxylase-positive neurons and attenuated astroglial activation in the nigrostriatal pathway. In parallel, metformin restored dopamine depletion and behavioral impairments exerted by MPTP. Western blot analysis revealed that metformin ameliorated MPTP-induced α-synuclein phosphorylation which was accompanied by increased methylation of protein phosphatase 2A (PP2A), a phosphatase related to α-synuclein dephosphorylation. Moreover, the metformin regimen significantly increased the level of brain derived neurotrophic factor in the substantia nigra, and activated signaling pathways related to cell survival. Proof of concept study revealed that inhibition of PP2A or tropomyosin receptor kinase B reversed neuroprotective property of metformin in SH-SY5Y cells. Our results indicate that metformin provides neuroprotection against MPTP neurotoxicity, which might be mediated by inhibition of α-synuclein phosphorylation and induction of neurotrophic factors.
Collapse
Affiliation(s)
- Nikita Katila
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sunil Bhurtel
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sina Shadfar
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sunil Srivastav
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sabita Neupane
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Uttam Ojha
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
22
|
Chirumbolo S, Bjørklund G. Commentary: The Flavonoid Baicalein Rescues Synaptic Plasticity and Memory Deficits in a Mouse Model of Alzheimer's Disease. Front Neurol 2016; 7:141. [PMID: 27618870 PMCID: PMC5002405 DOI: 10.3389/fneur.2016.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/17/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Science, University of Verona , Verona , Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine , Mo i Rana , Norway
| |
Collapse
|