1
|
Sarkar S, Pandey A, Kumar Yadav S, Haris Siddiqui M, Pant AB, Yadav S. Differentiated and mature neurons are more responsive to neurotoxicant exposure at both transcriptional and translational levels. Neuroscience 2025; 564:110-125. [PMID: 39571964 DOI: 10.1016/j.neuroscience.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
SH-SY5Y human neuroblastoma cells have been extensively used as an in vitro model system in a diverse range of studies involving neurodevelopment, neurotoxicity, neurodegeneration, and neuronal ageing. Both naïve and differentiated phenotypes of SH-SY5Y cells are utilized to model human neurons under in vitro conditions. The process of differentiation causes extensive remodeling of neuronal cells at multiple omic levels, including the epigenome and proteome. In the present investigation, the miRNAome and proteome profiles of arsenic-treated naïve and differentiated SH-SY5Y cells were generated using the miRNA OpenArray technology and high-resolution mass spectrometry. Our findings demonstrated that differentiation dramatically affected the response of SH-SY5Y cells to toxicant exposure, as indicated by increased tolerance of differentiated cells against arsenic exposure compared to naïve cells in cell viability assay. Arsenic-exposed naïve and differentiated SH-SY5Y cells possess distinct miRNA and protein profiles with few similarities. Compared to naïve cells, differentiated cells have undergone higher deregulation in the expression of brain-enriched miRNAs and proteins and have shown a more drastic decrease in oxygen consumption rate, which is a measure of mitochondrial respiration after exposure to arsenic. Proteins identified in arsenic-treated differentiated SH-SY5Y cells were more enriched in pathways underlying multifactorial neurotoxic events. Additionally, more functional regulatory modules have been identified between the miRNAs and proteins differentially expressed in arsenic-treated differentiated SH-SY5Y cells relative to naïve cells. Collectively, our studies have shown that differentiated SH-SY5Y cells displayed alterations in the expression of a greater number of miRNAs and proteins following neurotoxicant exposure, indicating their higher responsivity.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India.
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | | | - A B Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjay Yadav
- All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh, India.
| |
Collapse
|
2
|
Mottolese N, Loi M, Trazzi S, Tassinari M, Uguagliati B, Candini G, Iqbal K, Medici G, Ciani E. Effects of a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic in an in vitro and in vivo model of CDKL5 deficiency disorder. J Neurodev Disord 2024; 16:65. [PMID: 39592934 PMCID: PMC11590213 DOI: 10.1186/s11689-024-09583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Mutations in the X-linked CDKL5 gene underlie a severe epileptic encephalopathy, CDKL5 deficiency disorder (CDD), characterized by gross motor impairment, autistic features and intellectual disability. Absence of Cdkl5 negatively impacts neuronal proliferation, survival, and maturation in in vitro and in vivo models, resulting in behavioral deficits in the Cdkl5 KO mouse. While there is no targeted therapy for CDD, several studies showed that treatments enabling an increase in brain BDNF levels give rise to structural and behavioral improvements in Cdkl5 KO mice. P021, a tetra-peptide derived from the biologically active region of the human ciliary neurotrophic factor (CNTF), was found to enhance neurogenesis and synaptic plasticity by promoting an increase in BDNF expression in preclinical models of brain disorders, such as Alzheimer's disease and Down syndrome, resulting in a beneficial therapeutic effect. Considering the positive actions of P021 on brain development and cognition associated with increased BDNF expression, the present study aimed to evaluate the possible beneficial effect of treatment with P021 in an in vitro and in vivo model of CDD. METHODS We used SH-CDKL5-KO cells as an in vitro model of CDD to test the efficacy of P021 on neuronal proliferation, survival, and maturation. In addition, both young and adult Cdkl5 KO mice were used to evaluate the in vivo effects of P021, on neuroanatomical and behavioral defects. RESULTS We found that P021 treatment was effective in restoring neuronal proliferation, survival, and maturation deficits, as well as alterations in the GSK3β signaling pathway, features that characterize a human neuronal model of CDKL5 deficiency. Unexpectedly, chronic in vivo P021 treatment failed to increase BDNF levels and did not improve neuroanatomical defects in Cdkl5 KO mice, resulting in limited behavioral benefit. CONCLUSIONS At present, it remains to be understood whether initiating the treatment prenatally, or prolonging the duration of treatment will be necessary in order to achieve similar results in vivo in CDD mice to those obtained in vitro.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
- Phanes Biotech Inc, Malvern, PA, 19355, USA
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
3
|
Göksu AY. A review article on the development of dopaminergic neurons and establishment of dopaminergic neuron-based in vitro models by using immortal cell lines or stem cells to study and treat Parkinson's disease. Int J Dev Neurosci 2024. [PMID: 39379284 DOI: 10.1002/jdn.10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
The primary pathological hallmark of Parkinson's disease (PD) is the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, a critical midbrain region. In vitro models based on DA neurons provide a powerful platform for investigating the cellular and molecular mechanisms of PD and testing novel therapeutic strategies. A deep understanding of DA neuron development, including the signalling pathways and transcription factors involved, is essential for advancing PD research. This article first explores the differentiation and maturation processes of DA neurons in the midbrain, detailing the relevant signalling pathways. It then compares various in vitro models, including primary cells, immortalized cell lines, and stem cell-based models, focusing on the advantages and limitations of each. Special attention is given to the role of immortalized and stem cell models in PD research. This review aims to guide researchers in selecting the most appropriate model for their specific research goals. Ethical considerations and clinical implications of using stem cells in PD research are also discussed.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and Embryology, Department of Gene and Cell Therapy, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
4
|
Stevanovic D, Vucicevic L, Misirkic-Marjanovic M, Martinovic T, Mandic M, Harhaji-Trajkovic L, Trajkovic V. Trehalose Attenuates In Vitro Neurotoxicity of 6-Hydroxydopamine by Reducing Oxidative Stress and Activation of MAPK/AMPK Signaling Pathways. Int J Mol Sci 2024; 25:10659. [PMID: 39408988 PMCID: PMC11476739 DOI: 10.3390/ijms251910659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The effects of trehalose, an autophagy-inducing disaccharide with neuroprotective properties, on the neurotoxicity of parkinsonian mimetics 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpiridinium (MPP+) are poorly understood. In our study, trehalose suppressed 6-OHDA-induced caspase-3/PARP1 cleavage (detected by immunoblotting), apoptotic DNA fragmentation/phosphatidylserine externalization, oxidative stress, mitochondrial depolarization (flow cytometry), and mitochondrial damage (electron microscopy) in SH-SY5Y neuroblastoma cells. The protection was not mediated by autophagy, autophagic receptor p62, or antioxidant enzymes superoxide dismutase and catalase. Trehalose suppressed 6-OHDA-induced activation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and AMP-activated protein kinase (AMPK), as revealed by immunoblotting. Pharmacological/genetic inhibition of JNK, p38 MAPK, or AMPK mimicked the trehalose-mediated cytoprotection. Trehalose did not affect the extracellular signal-regulated kinase (ERK) and mechanistic target of rapamycin complex 1 (mTORC1)/4EBP1 pathways, while it reduced the prosurvival mTORC2/AKT signaling. Finally, trehalose enhanced oxidative stress, mitochondrial damage, and apoptosis without decreasing JNK, p38 MAPK, AMPK, or AKT activation in SH-SY5Y cells exposed to MPP+. In conclusion, trehalose protects SH-SY5Y cells from 6-OHDA-induced oxidative stress, mitochondrial damage, and apoptosis through autophagy/p62-independent inhibition of JNK, p38 MAPK, and AMPK. The opposite effects of trehalose on the neurotoxicity of 6-OHDA and MPP+ suggest caution in its potential development as a neuroprotective agent.
Collapse
Affiliation(s)
- Danijela Stevanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Ljubica Vucicevic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Maja Misirkic-Marjanovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Tamara Martinovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Ljubica Harhaji-Trajkovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| |
Collapse
|
5
|
Yong SJ, Veerakumarasivam A, Teoh SL, Lim WL, Chew J. Lactoferrin Protects Against Rotenone-Induced Toxicity in Dopaminergic SH-SY5Y Cells through the Modulation of Apoptotic-Associated Pathways. J Mol Neurosci 2024; 74:88. [PMID: 39297981 DOI: 10.1007/s12031-024-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
Parkinson's disease (PD) is a common motor neurodegenerative disease that still lacks effective therapeutic options. Previous studies have reported that lactoferrin exhibited neuroprotective effects in cellular and animal models of PD, typically induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+) synthetic toxin. However, the neuroprotective capacity of lactoferrin in the rotenone-induced cellular model of PD remains relatively less established. Unlike MPTP/MPP+, rotenone is a naturally occurring environmental toxin known to induce chronic toxicity and increase the risk of PD in humans. In this study, we constructed a cellular model of PD by differentiating SH-SY5Y neuroblastoma cells with retinoic acid into mature dopaminergic neurons with increased β-tubulin III and tyrosine hydroxylase expression, followed by 24 h of rotenone exposure. Using this cellular model of PD, we showed that lactoferrin (1-10 µg/ml) pre-treatment for 48 h decreased loss of cell viability, mitochondrial membrane potential impairment, reactive oxygen species generation and pro-apoptotic activities (pan-caspase activation and nuclear condensation) in cells exposed to rotenone (1 and 5 µM) using biochemical assays, Hoechst 33342 staining and immunocytochemical techniques. We further demonstrated that 48 h of lactoferrin (10 µg/ml) pre-treatment decreased Bax:Bcl2 ratio and p42/44 mitogen-activated protein kinase expression but increased pAkt expression in 5 µM rotenone-exposed cells. Our study demonstrates that lactoferrin neuroprotective capacity is present in the rotenone-induced cellular model of PD, further supporting lactoferrin as a potential PD therapeutic that warrants further studies.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
6
|
Siwecka N, Galita G, Granek Z, Wiese W, Majsterek I, Rozpędek-Kamińska W. IRE1/JNK Is the Leading UPR Pathway in 6-OHDA-Induced Degeneration of Differentiated SH-SY5Y Cells. Int J Mol Sci 2024; 25:7679. [PMID: 39062922 PMCID: PMC11276943 DOI: 10.3390/ijms25147679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder which affects dopaminergic neurons of the midbrain. Accumulation of α-synuclein or exposure to neurotoxins like 6-hydroxydopamine (6-OHDA) induces endoplasmic reticulum (ER) stress along with the unfolded protein response (UPR), which executes apoptosis via activation of PERK/CHOP or IRE1/JNK signaling. The present study aimed to determine which of these pathways is a major contributor to neurodegeneration in an 6-OHDA-induced in vitro model of PD. For this purpose, we have applied pharmacological PERK and JNK inhibitors (AMG44 and JNK V) in differentiated SH-SY5Y cells exposed to 6-OHDA. Inhibition of PERK and JNK significantly decreased genotoxicity and improved mitochondrial respiration, but only JNK inhibition significantly increased cell viability. Gene expression analysis revealed that the effect of JNK inhibition was dependent on a decrease in MAPK10 and XBP1 mRNA levels, whereas inhibition of either PERK or JNK significantly reduced the expression of DDIT3 mRNA. Western blot has shown that JNK inhibition strongly induced the XBP1s protein, and inhibition of each pathway attenuated the phosphorylation of eIF2α and JNK, as well as the expression of CHOP. Collectively, our data suggests that targeting the IRE1/JNK pathway of the UPR is a more effective option for PD treatment as it simultaneously affects more than one pro-apoptotic pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (N.S.); (G.G.); (Z.G.); (W.W.); (I.M.)
| |
Collapse
|
7
|
Ribeiro M, Campos J, Pinho TS, Sampaio-Marques B, Barata-Antunes S, Cibrão JR, Araújo R, Duarte-Silva S, Moreira E, Sousa RA, Costa PM, Salgado AJ. Human platelet lysate supports SH-SY5Y neuroblastoma cell proliferation and differentiation into a dopaminergic-like neuronal phenotype under xenogeneic-free culture conditions. Biotechnol J 2024; 19:e2400068. [PMID: 38987218 DOI: 10.1002/biot.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-β), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal
- ICVS/3B's--PT Government Associate Laboratory, Braga/, Guimarães, Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal
- ICVS/3B's--PT Government Associate Laboratory, Braga/, Guimarães, Braga, Portugal
| | - Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal
- ICVS/3B's--PT Government Associate Laboratory, Braga/, Guimarães, Braga, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal
- ICVS/3B's--PT Government Associate Laboratory, Braga/, Guimarães, Braga, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal
- ICVS/3B's--PT Government Associate Laboratory, Braga/, Guimarães, Braga, Portugal
| | - Jorge Ribeiro Cibrão
- Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal
- ICVS/3B's--PT Government Associate Laboratory, Braga/, Guimarães, Braga, Portugal
| | - Ricardo Araújo
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal
- ICVS/3B's--PT Government Associate Laboratory, Braga/, Guimarães, Braga, Portugal
| | - Elsa Moreira
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - Rui A Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - Pedro M Costa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal
- ICVS/3B's--PT Government Associate Laboratory, Braga/, Guimarães, Braga, Portugal
| |
Collapse
|
8
|
Tóth K, S Nagy K, Güler Z, Juhász ÁG, Pállinger É, Varga G, Sarac AS, Zrínyi M, Jedlovszky-Hajdú A, Juriga D. Characterization of Electrospun Polysuccinimide-Dopamine Conjugates and Effect on Cell Viability and Uptake. Macromol Biosci 2023; 23:e2200397. [PMID: 36592964 DOI: 10.1002/mabi.202200397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Biocompatible nanofibrous systems made by electrospinning have been studied widely for pharmaceutical applications since they have a high specific surface and the capability to make the entrapped drug molecule amorphous, which increases bioavailability. By covalently conjugating drugs onto polymers, the degradation of the drug as well as the fast clearance from the circulation can be avoided. Although covalent polymer-drug conjugates have a lot of advantages, there is a lack of research focusing on their nano-formulation by electrospinning. In this study, polysuccinimide (PSI) based electrospun fibrous meshes conjugated with dopamine (DA) are prepared. Fiber diameter, mechanical properties, dissolution kinetics and membrane permeability are thoroughly investigated, as these are crucial for drug delivery and implantation. Dopamine release kinetics prove the prolonged release that influenced the viability and morphology of periodontal ligament stem cells (PDLSCs) and SH-SY5Y cells. The presence of dopamine receptors on both cell types is also demonstrated and the uptake of the conjugates is measured. According to flow cytometry analysis, the conjugates are internalized by both cell types, which is influenced by the chemical structure and physical properties. In conclusion, electrospinning of PSI-DA conjugates alters release kinetics, meanwhile, conjugated dopamine can play a key role in cellular uptake.
Collapse
Affiliation(s)
- Krisztina Tóth
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Zeliha Güler
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey.,Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands
| | - Ákos György Juhász
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - A Sezai Sarac
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Angéla Jedlovszky-Hajdú
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Dávid Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| |
Collapse
|
9
|
Li J, Reimers A, Dang KM, Brunk MGK, Drewes J, Hirsch UM, Willems C, Schmelzer CEH, Groth T, Nia AS, Feng X, Adelung R, Sacher WD, Schütt F, Poon JKS. 3D printed neural tissues with in situ optical dopamine sensors. Biosens Bioelectron 2023; 222:114942. [PMID: 36493722 DOI: 10.1016/j.bios.2022.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022]
Abstract
Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 μM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.
Collapse
Affiliation(s)
- Jianfeng Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada.
| | - Armin Reimers
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ka My Dang
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Michael G K Brunk
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Jonas Drewes
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ulrike M Hirsch
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Ali Shaygan Nia
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Rainer Adelung
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Fabian Schütt
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Canada.
| |
Collapse
|
10
|
Tocotrienol-Rich Fraction and Levodopa Regulate Proteins Involved in Parkinson’s Disease-Associated Pathways in Differentiated Neuroblastoma Cells: Insights from Quantitative Proteomic Analysis. Nutrients 2022; 14:nu14214632. [DOI: 10.3390/nu14214632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Tocotrienol-rich fraction (TRF), a palm oil-derived vitamin E fraction, is reported to possess potent neuroprotective effects. However, the modulation of proteomes in differentiated human neuroblastoma SH-SY5Y cells (diff-neural cells) by TRF has not yet been reported. This study aims to investigate the proteomic changes implicated by TRF in human neural cells using a label-free liquid-chromatography-double mass spectrometry (LC-MS/MS) approach. Levodopa, a drug used in the treatment of Parkinson’s disease (PD), was used as a drug control. The human SH-SY5Y neuroblastoma cells were differentiated for six days and treated with TRF or levodopa for 24 h prior to quantitative proteomic analysis. A total of 81 and 57 proteins were differentially expressed in diff-neural cells following treatment with TRF or levodopa, respectively. Among these proteins, 32 similar proteins were detected in both TRF and levodopa-treated neural cells, with 30 of these proteins showing similar expression pattern. The pathway enrichment analysis revealed that most of the proteins regulated by TRF and levodopa are key players in the ubiquitin-proteasome, calcium signalling, protein processing in the endoplasmic reticulum, mitochondrial pathway and axonal transport system. In conclusion, TRF is an essential functional food that affects differential protein expression in human neuronal cells at the cellular and molecular levels.
Collapse
|
11
|
Zohar K, Giladi E, Eliyahu T, Linial M. Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells. Noncoding RNA 2022; 8:ncrna8060072. [PMID: 36412908 PMCID: PMC9680243 DOI: 10.3390/ncrna8060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.
Collapse
|
12
|
Namchaiw P, Bunreangsri P, Eiamcharoen P, Eiamboonsert S, P. Poo-arporn R. An in vitro workflow of neuron-laden agarose-laminin hydrogel for studying small molecule-induced amyloidogenic condition. PLoS One 2022; 17:e0273458. [PMID: 36026506 PMCID: PMC9416999 DOI: 10.1371/journal.pone.0273458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
In vitro studies have been popularly used to determine the cellular and molecular mechanisms for many decades. However, the traditional two-dimension (2D) cell culture which grows cells on a flat surface does not fully recapitulate the pathological phenotypes. Alternatively, the three-dimension (3D) cell culture provides cell-cell and cell-ECM interaction that better mimics tissue-like structure. Thus, it has gained increasing attention recently. Yet, the expenses, time-consuming, and complications of cellular and biomolecular analysis are still major limitations of 3D culture. Herein, we describe a cost-effective and simplified workflow of the 3D neuronal cell-laden agarose-laminin preparation and the isolation of cells, RNAs, and proteins from the scaffold. To study the effects of the amyloidogenic condition in neurons, we utilized a neuron-like cell line, SH-SY5Y, and induced the amyloidogenic condition by using an amyloid forty-two inducer (Aftin-4). The effectiveness of RNAs, proteins and cells isolation from 3D scaffold enables us to investigate the cellular and molecular mechanisms underlying amyloidogenic cascade in neuronal cells. The results show that SH-SY5Y cultured in agarose-laminin scaffold differentiated to a mature TUJ1-expressing neuron cell on day 7. Furthermore, the gene expression profile from the Aftin-4-induced amyloidogenic condition revealed the expression of relevant gene-encoding proteins in the amyloidogenic pathway, including APP, BACE1, PS1, and PS2. This platform could induce the amyloid-beta 42 secretion and entrap secreted proteins in the scaffold. The induction of amyloidogenic conditions in a 3D culture facilitates the interaction between secreted amyloid-beta and neurons, which makes it resembles the pathological environment in Alzheimer's brain. Together, this workflow is applicable for studying the cellular and molecular analysis of amyloid-induced neuronal toxicity, such as those occurred in Alzheimer's disease progression. Importantly, our method is cost-effective, reproducible, and easy to manipulate.
Collapse
Affiliation(s)
- Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
| | - Patapon Bunreangsri
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
| | - Piyaporn Eiamcharoen
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Thung Kru, Bangkok, Thailand
- Veterinary Medical Teaching Hospital, University of California Davis, Davis, California, United States of America
| | - Salita Eiamboonsert
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
- Media Technology, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
| | - Rungtiva P. Poo-arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
| |
Collapse
|
13
|
Parsons RB, Kocinaj A, Ruiz Pulido G, Prendergast SA, Parsons AE, Facey PD, Hirth F. Alpha-synucleinopathy reduces NMNAT3 protein levels and neurite formation that can be rescued by targeting the NAD+ pathway. Hum Mol Genet 2022; 31:2918-2933. [PMID: 35397003 PMCID: PMC9433734 DOI: 10.1093/hmg/ddac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease is characterized by the deposition of α-synuclein, which leads to synaptic dysfunction, the loss of neuronal connections and ultimately progressive neurodegeneration. Despite extensive research into Parkinson's disease pathogenesis, the mechanisms underlying α-synuclein-mediated synaptopathy have remained elusive. Several lines of evidence suggest that altered nicotinamide adenine dinucleotide (NAD+) metabolism might be causally related to synucleinopathies, including Parkinson's disease. NAD+ metabolism is central to the maintenance of synaptic structure and function. Its synthesis is mediated by nicotinamide mononucleotide adenylyltransferases (NMNATs), but their role in Parkinson's disease is not known. Here we report significantly decreased levels of NMNAT3 protein in the caudate nucleus of patients who have died with Parkinson's disease, which inversely correlated with the amount of monomeric α-synuclein. The detected alterations were specific and significant as the expression levels of NMNAT1, NMNAT2 and sterile alpha and TIR motif containing 1 (SARM1) were not significantly different in Parkinson's disease patients compared to controls. To test the functional significance of these findings, we ectopically expressed wild-type α-synuclein in retinoic acid-differentiated dopaminergic SH-SY5Y cells that resulted in decreased levels of NMNAT3 protein plus a neurite pathology, which could be rescued by FK866, an inhibitor of nicotinamide phosphoribosyltransferase that acts as a key enzyme in the regulation of NAD+ synthesis. Our results establish, for the first time, NMNAT3 alterations in Parkinson's disease and demonstrate in human cells that this phenotype together with neurite pathology is causally related to α-synucleinopathy. These findings identify alterations in the NAD+ biosynthetic pathway as a pathogenic mechanism underlying α-synuclein-mediated synaptopathy.
Collapse
Affiliation(s)
- Richard B Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Altin Kocinaj
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Gustavo Ruiz Pulido
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Sarah A Prendergast
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Anna E Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D Facey
- Swansea University, Singleton Park Campus, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Department of Basic & Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
14
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
15
|
Magalingam KB, Somanath SD, Ramdas P, Haleagrahara N, Radhakrishnan AK. 6-Hydroxydopamine Induces Neurodegeneration in Terminally Differentiated SH-SY5Y Neuroblastoma Cells via Enrichment of the Nucleosomal Degradation Pathway: a Global Proteomics Approach. J Mol Neurosci 2022; 72:1026-1046. [PMID: 35258800 PMCID: PMC9064865 DOI: 10.1007/s12031-021-01962-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023]
Abstract
The SH-SY5Y human neuroblastoma cells have been used for decades as a cell-based model of dopaminergic neurons to explore the underlying science of cellular and molecular mechanisms of neurodegeneration in Parkinson’s disease (PD). However, data revealing the protein expression changes in 6-OHDA induced cytotoxicity in differentiated SH-SY5Y cells remain void. Therefore, we investigated the differentially regulated proteins expressed in terminally differentiated SH-SY5Y cells (differ-SH-SY5Y neural cells) exposed to 6-hydroxydopamine (6-OHDA) using the LC–MS/MS technology and construed the data using the online bioinformatics databases such as PANTHER, STRING, and KEGG. Our studies demonstrated that the neuronal development in differ-SH-SY5Y neural cells was indicated by the overexpression of proteins responsible for neurite formations such as calnexin (CANX) and calreticulin (CALR) besides significant downregulation of ribosomal proteins. The enrichment of the KEGG ribosome pathway was detected with significant downregulation (p < 0.05) of all the 21 ribosomal proteins in differ-SH-SY5Y neural cells compared with undifferentiated cells. Whereas in the PD model, the pathological changes induced by 6-OHDA were indicated by the presence of unfolded and misfolded proteins, which triggered the response of 10 kDa heat shock proteins (HSP), namely HSPE1 and HSPA9. Moreover, the 6-OHDA-induced neurodegeneration in differ-SH-SY5Y neural cells also upregulated the voltage-dependent anion-selective channel protein 1 (VDAC1) protein and enriched the KEGG systemic lupus erythematosus (SLE) pathway that was regulated by 17 histone proteins (p < 0.05) in differ-SH-SY5Y neural cells. These results suggest that the nucleosomal degradation pathway may have regulated the 6-OHDA induced neurodegeneration in PD cell-based model, which is reflected by increased apoptosis and histone release in differ-SH-SY5Y neural cells.
Collapse
Affiliation(s)
- Kasthuri Bai Magalingam
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Premdass Ramdas
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Nagaraja Haleagrahara
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia.
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
16
|
Magalingam KB, Somanath SD, Md S, Haleagrahara N, Fu JY, Selvaduray KR, Radhakrishnan AK. Tocotrienols protect differentiated SH-SY5Y human neuroblastoma cells against 6-hydroxydopamine-induced cytotoxicity by ameliorating dopamine biosynthesis and dopamine receptor D2 gene expression. Nutr Res 2022; 98:27-40. [DOI: 10.1016/j.nutres.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/15/2022]
|
17
|
Ye M, Huang J, Mou Q, Luo J, Hu Y, Lou X, Yao K, Zhao B, Duan Q, Li X, Zhang H, Zhao Y. CD82 protects against glaucomatous axonal transport deficits via mTORC1 activation in mice. Cell Death Dis 2021; 12:1149. [PMID: 34897284 PMCID: PMC8665930 DOI: 10.1038/s41419-021-04445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive optic nerve degeneration and retinal ganglion cell loss. Axonal transport deficits have been demonstrated to be the earliest crucial pathophysiological changes underlying axonal degeneration in glaucoma. Here, we explored the role of the tetraspanin superfamily member CD82 in an acute ocular hypertension model. We found a transient downregulation of CD82 after acute IOP elevation, with parallel emergence of axonal transport deficits. The overexpression of CD82 with an AAV2/9 vector in the mouse retina improved optic nerve axonal transport and ameliorated subsequent axon degeneration. Moreover, the CD82 overexpression stimulated optic nerve regeneration and restored vision in a mouse optic nerve crush model. CD82 exerted a protective effect through the upregulation of TRAF2, which is an E3 ubiquitin ligase, and activated mTORC1 through K63-linked ubiquitylation and intracellular repositioning of Raptor. Therefore, our study offers deeper insight into the tetraspanin superfamily and demonstrates a potential neuroprotective strategy in glaucoma treatment.
Collapse
Affiliation(s)
- Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingqiu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA, USA
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Cagle BS, Sturgeon ML, O'Brien JB, Wilkinson JC, Cornell RA, Roman DL, Doorn JA. Stable expression of the human dopamine transporter in N27 cells as an in vitro model for dopamine cell trafficking and metabolism. Toxicol In Vitro 2021; 76:105210. [PMID: 34252731 PMCID: PMC8419135 DOI: 10.1016/j.tiv.2021.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022]
Abstract
Dopamine (DA) metabolism and cell trafficking are critical for the proper functioning of DA neurons. Disruption of these DA processes can yield toxic products and is implicated in neurological conditions including Parkinson's disease (PD). To investigate pathogenic mechanisms involving DA neurons, in vitro models that recapitulate DA metabolism and trafficking in vivo are crucial. N27 cells are a widely used model for PD; however, these cells exhibit little expression of the DA transporter (DAT) confounding studies of DA uptake and metabolism. This lack of adequate DAT expression calls into question the use of this cell line as a model to study DA cell trafficking and metabolism. To overcome this problem, we stably expressed the human DAT (hDAT) in N27 cells to develop cells that we named N27-BCD. This approach allows for characterization of toxicants that may alter DA metabolism, trafficking, and/or interactions with DAT. N27-BCD cells are more sensitive to the neurotoxins 1-methyl-4-phenylpyridinium (MPTP/MPP+) and 6-hydroxydopamine (6-OHDA). N27-BCD cells allowed for clear observation of DA metabolism, whereas N27 cells did not. Here, we propose that stable expression of hDAT in N27 cells yields a useful model of DA neurons to study the impact of altered DA cell trafficking and metabolism.
Collapse
Affiliation(s)
- B S Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| | - M L Sturgeon
- The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, Iowa 52242, USA.
| | - J B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| | - J C Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| | - R A Cornell
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 51 Newton Road Iowa City, Iowa 52242, USA.
| | - D L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| | - J A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| |
Collapse
|
19
|
Yin Z, Geng X, Zhang Z, Wang Y, Gao X. Rhein Relieves Oxidative Stress in an Aβ 1-42 Oligomer-Burdened Neuron Model by Activating the SIRT1/PGC-1α-Regulated Mitochondrial Biogenesis. Front Pharmacol 2021; 12:746711. [PMID: 34566664 PMCID: PMC8461019 DOI: 10.3389/fphar.2021.746711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 01/19/2023] Open
Abstract
Neuronal mitochondrial oxidative stress induced by β-amyloid (Aβ) is an early event of Alzheimer’s disease (AD). Emerging evidence has shown that antioxidant therapy represents a promising therapeutic strategy for the treatment of AD. In this study, we investigated the antioxidant activity of rhein against Aβ1-42 oligomer-induced mitochondrial oxidative stress in primary neurons and proposed a potential antioxidant pathway involved. The results suggested that rhein significantly reduced reactive oxygen species (ROS) level, reversed the depletion of mitochondrial membrane potential, and protected neurons from oxidative stress-associated apoptosis. Moreover, further study indicated that rhein activated mitochondrial biogenesis accompanied by increased cytochrome C oxidase (CytOx) and superoxide dismutase (SOD) activities. CytOx on the respiratory chain inhibited the production of ROS from electron leakage and SOD helped to eliminate excess ROS. Finally, western blot analysis confirmed that rhein remarkedly increased the protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) together with its upstream deacetylase sirtuin 1 (SIRT1), and activated downstream transcription factor nuclear respiratory factor 1, promoting mitochondrial biogenesis. In conclusion, our results demonstrate that rhein activates mitochondrial biogenesis regulated by the SIRT1/PGC-1α pathway as an antioxidant defense system against Aβ1-42 oligomer-induced oxidative stress. These findings broaden our knowledge of improving mitochondrial biogenesis as an approach for relieving neuronal oxidative stress in AD.
Collapse
Affiliation(s)
- Zhihui Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Geng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengyi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
da Costa RT, dos Santos MB, Silva ICS, de Almeida RP, Teruel MS, Carrettiero DC, Ribeiro CAJ. Methylmalonic Acid Compromises Respiration and Reduces the Expression of Differentiation Markers of SH-SY5Y Human Neuroblastoma Cells. ACS Chem Neurosci 2021; 12:2608-2618. [PMID: 34191487 DOI: 10.1021/acschemneuro.1c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methylmalonic acidemia is a rare metabolic disorder caused by the deficient activity of l-methylmalonyl-CoA mutase or its cofactor 5-deoxyadenosylcobalamin and is characterized by accumulation of methylmalonic acid (MMA) and alternative metabolites. The brain is one of the most affected tissues and neurologic symptoms, characterized by seizures, mental retardation, psychomotor abnormalities, and coma, commonly appear in newborns. The molecular mechanisms of neuropathogenesis in methylmalonic acidemia are still poorly understood, specifically regarding the impairments in neuronal development, maturation, and differentiation. In this study, we investigated the effects of MMA in both undifferentiated and differentiated phenotypes of SH-SY5Y human neuroblastoma cells. We observed an increase in glucose consumption and reduction in respiratory parameters of both undifferentiated and differentiated cells after exposition to MMA, suggesting that differentiated cells are slightly more prone to perturbations in respiratory parameters by MMA than undifferentiated cells. Next, we performed qPCR of mature neuronal-specific gene markers and measured mitochondrial functioning to evaluate the role of MMA during differentiation. Our results showed that MMA impairs the respiratory parameters only at the late stage of differentiation and downregulates the transcriptional gene profile of mature neuronal markers neuron-specific enolase (ENO2) and synaptophysin (SYP). Altogether, our findings point out important changes observed during neuronal maturation and energetic stress vulnerability that can play a role in the neurological clinical symptoms at the newborn period and reveal important molecular mechanisms that could help the screening of targets to new approaches in the therapies of this disease.
Collapse
Affiliation(s)
- Renata T. da Costa
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Marcella B. dos Santos
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Izabel C. S. Silva
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Raquel P. de Almeida
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Marcela S. Teruel
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Daniel C. Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - César A. J. Ribeiro
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
21
|
Öz A, Çelik Ö. The effects of neuronal cell differentiation on TRPM7, TRPM8 and TRPV1 channels in the model of Parkinson's disease. Neurol Res 2021; 44:24-37. [PMID: 34256685 DOI: 10.1080/01616412.2021.1952512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transient Receptor Potential Melastatin-like 7 (TRPM7), Transient Receptor Potential Melastatin-like 8 (TRPM8) and Transient Receptor Potential Vanilloid-like 1 (TRPV1) channels are expressed in neurological tissues such as brain cortex, dorsal root ganglion and hippocampal neurons and involved in several neurological diseases. The SH-SY5Y neuronal cell line is frequently used as a cellular model of neurodegenerative diseases including Parkinson's disease. The differentiated SH-SY5Y cells have much neuronal structure, function and exaggerated neuronal marker expression. However, we have less data about how differentiation induces TRP channel expression and how TRP channels have a role in cellular functions in Parkinson's disease model in SH-SY5Y cells. Hence, we aimed to investigate the effects of differentiation phenomena on TRPM7, TRPM8 and TRPV1 cation channel expression and related Ca2+ signaling. We also made some other analysis to elucidate TRP channels' function in MPP induced apoptosis, mitochondrial membrane potential levels, intracellular reactive oxygen species production, caspase 3 and caspase 9 enzyme activities in differentiated or undifferentiated SH-SY5Y neuronal cells. Herein we concluded that TRPM7, TRPM8 and TRPV1 cation channels have pivotal effects on differentiation and MPP induced Parkinson's disease model in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ahmi Öz
- Department of Biophysics, School of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Ömer Çelik
- Department of Biophysics, School of Medicine, Süleyman Demirel University, Isparta, Turkey.,Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
22
|
Ma C, Zhang W, Wang W, Shen J, Cai K, Liu M, Cao M. SKP-SCs transplantation alleviates 6-OHDA-induced dopaminergic neuronal injury by modulating autophagy. Cell Death Dis 2021; 12:674. [PMID: 34226513 PMCID: PMC8257782 DOI: 10.1038/s41419-021-03967-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is a common neurodegenerative disease. Cell transplantation is a promising therapeutic option for improving the survival and function of dopaminergic neurons, but the mechanisms underlying the interaction between the transplanted cells and the recipient neurons remain to be studied. In this study, we investigated the effects of skin precursor cell-derived Schwann cells (SKP-SCs) directly cocultured with 6-OHDA-injured dopaminergic neurons in vitro and of SKP-SCs transplanted into the brains of 6-OHDA-induced PD mice in vivo. In vitro and in vivo studies revealed that SKP-SCs could reduce the damage to dopaminergic neurons by enhancing self-autophagy and modulating neuronal autophagy. Thus, the present study provides the first evidence that cell transplantation mitigates 6-OHDA-induced damage to dopaminergic neurons by enhancing self-autophagy, suggesting that earlier transplantation of Schwann cells might help alleviate the loss of dopaminergic neurons.
Collapse
Affiliation(s)
- Chengxiao Ma
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wen Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wengcong Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Kefu Cai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
23
|
Magalingam KB, Radhakrishnan AK, Somanath SD, Md S, Haleagrahara N. Influence of serum concentration in retinoic acid and phorbol ester induced differentiation of SH-SY5Y human neuroblastoma cell line. Mol Biol Rep 2020; 47:8775-8788. [PMID: 33098048 DOI: 10.1007/s11033-020-05925-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.
Collapse
Affiliation(s)
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Nagaraja Haleagrahara
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
24
|
Park HA, Ellis AC. Dietary Antioxidants and Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070570. [PMID: 32630250 PMCID: PMC7402163 DOI: 10.3390/antiox9070570] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the depletion of dopaminergic neurons in the basal ganglia, the movement center of the brain. Approximately 60,000 people are diagnosed with PD in the United States each year. Although the direct cause of PD can vary, accumulation of oxidative stress-induced neuronal damage due to increased production of reactive oxygen species (ROS) or impaired intracellular antioxidant defenses invariably occurs at the cellular levels. Pharmaceuticals such as dopaminergic prodrugs and agonists can alleviate some of the symptoms of PD. Currently, however, there is no treatment to halt the progression of PD pathology. Due to the nature of PD, a long and progressive neurodegenerative process, strategies to prevent or delay PD pathology may be well suited to lifestyle changes like dietary modification with antioxidant-rich foods to improve intracellular redox homeostasis. In this review, we discuss cellular and genetic factors that increase oxidative stress in PD. We also discuss neuroprotective roles of dietary antioxidants including vitamin C, vitamin E, carotenoids, selenium, and polyphenols along with their potential mechanisms to alleviate PD pathology.
Collapse
|
25
|
Rea S, Della-Morte D, Pacifici F, Capuani B, Pastore D, Coppola A, Arriga R, Andreadi A, Donadel G, Di Daniele N, Bellia A, Lauro D. Insulin and Exendin-4 Reduced Mutated Huntingtin Accumulation in Neuronal Cells. Front Pharmacol 2020; 11:779. [PMID: 32547392 PMCID: PMC7270204 DOI: 10.3389/fphar.2020.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Patients with diabetes mellitus (DM) are more prone to develop cognitive decline and neurodegenerative diseases. A pathological association between an autosomal dominant neurological disorder caused by brain accumulation in mutated huntingtin (mHTT), known as Huntington disease (HD), and DM, has been reported. By using a diabetic mouse model, we previously suggested a central role of the metabolic pathways of HTT, further suggesting the relevance of this protein in the pathology of DM. Furthermore, it has also been reported that intranasal insulin (Ins) administration improved cognitive function in patients with neurodegenerative disorders such as Alzheimer disease, and that exendin-4 (Ex-4) enhanced lifespan and ameliorated glucose homeostasis in a mouse model of HD. Although antioxidant properties have been proposed, the underlying molecular mechanisms are still missing. Therefore, the aim of the present study was to investigate the intracellular pathways leading to neuroprotective effect of Ins and Ex-4 hypoglycemic drugs by using an in vitro model of HD, developed by differentiated dopaminergic neurons treated with the pro-oxidant neurotoxic compound 6-hydroxydopamine (6-ohda). Our results showed that 6-ohda increased mHTT expression and reduced HTT phosphorylation at Ser421, a post-translational modification, which protects against mHTT accumulation. Pre-treatment with Ins or Ex-4 reverted the harmful effect induced by 6-ohda by activating AKT1 and SGK1 kinases, and by reducing the phosphatase PP2B. AKT1 and SGK1 are crucial nodes on the Ins activation pathway and powerful antioxidants, while PP2B dephosphorylates HTT contributing to mHTT neurotoxic effect. In conclusion, present results highlight that Ins and Ex-4 may counteract the neurotoxic effect induced by mHTT, opening novel pharmacological therapeutic strategies against neurodegenerative disorders, with the main focus on HD, still considered an orphan illness.
Collapse
Affiliation(s)
- Silvia Rea
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Rome, Italy.,Department of Neurology, Miller School of Medicine, The Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, United States
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Medical Sciences, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Medical Sciences, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Medical Sciences, Fondazione Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
26
|
Lieberknecht V, Engel D, Rodrigues ALS, Gabilan NH. Neuroprotective effects of mirtazapine and imipramine and their effect in pro- and anti-apoptotic gene expression in human neuroblastoma cells. Pharmacol Rep 2020; 72:563-570. [DOI: 10.1007/s43440-019-00009-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/19/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022]
|
27
|
Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020; 19:1923-1940. [DOI: 10.1021/acs.jproteome.9b00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katrin Brenig
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Leonie Grube
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Schwarzländer
- Institute for Plant Biology and Biotechnology, Plant Energy Biology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Ferdous N, Kudumala S, Sossi S, Carvelli L. Prolonged Amphetamine Treatments Cause Long-Term Decrease of Dopamine Uptake in Cultured Cells. Neurochem Res 2019; 45:1399-1409. [PMID: 31883055 PMCID: PMC7260268 DOI: 10.1007/s11064-019-02938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022]
Abstract
Amphetamine (AMPH) is a systemic stimulant used to treat a variety of diseases including Attention Deficit Hyperactive Disorder, narcolepsy and obesity. Previous data showed that by binding to catecholamine transporters, AMPH prevents the reuptake of the neurotransmitters dopamine (DA) and norepinephrine (NE). Because AMPH, either used therapeutically at final concentrations of 1–10 µM or abused as recreational drug (50–200 µM), is taken over long periods of time, we investigated the prolonged effects of this drug on the uptake of DA. We found that, in LLC-PK1 cells stably expressing the human DA transporter (hDAT), pretreatments with 1 or 50 µM AMPH caused significant reduction in DA uptake right after the 15-h pretreatment. Remarkably, after 50 but not 1 µM AMPH pretreatment, we observed a significant reduction in DA uptake also after one, two or three cell divisions. To test whether these long-term effects induced by AMPH where conserved in a model comparable to primordial neuronal cells and native neurons, we used the human neuroblastoma cell line SH-SY5Y cells, which were reported to endogenously express both hDAT and the NE transporter. Pretreatments with 50 µM AMPH caused a significant reduction of DA uptake both right after 15 h and 3 cell divisions followed by neuro-differentiation with retinoic acid (RA) for 5 days. Under these same conditions, AMPH did not change the intracellular concentrations of ATP, ROS and cell viability suggesting, therefore, that the reduction in DA uptake was not cause by AMPH-induced toxicity. Interestingly, while 1 µM AMPH did not cause long-term effects in the LLC-PK1 cells, in the SH-SY5Y cells, it decreased the DA uptake after one, two, but not three, cell divisions and 5-day RA differentiation. These data show that besides the well-known acute effects, AMPH can also produce long-term effects in vitro that are maintained during cell division and transmitted to the daughter cells.
Collapse
Affiliation(s)
- Nafisa Ferdous
- Department of Biomedical Science, University of North Dakota, Grand Forks, ND, USA
| | - Sirisha Kudumala
- Harriet L. Wilkes Honors College, Florida Atlantic University, FL, Jupiter, USA
| | - Serena Sossi
- Integrated Biology Program, Florida Atlantic University, FL, Boca Raton, USA
| | - Lucia Carvelli
- Brain Institute, Florida Atlantic University, Jupiter, FL, USA. .,Harriet L. Wilkes Honors College, Florida Atlantic University, FL, Jupiter, USA. .,Integrated Biology Program, Florida Atlantic University, FL, Boca Raton, USA.
| |
Collapse
|
29
|
MiR-107 overexpression attenuates neurotoxicity induced by 6-hydroxydopamine both in vitro and in vivo. Chem Biol Interact 2019; 315:108908. [PMID: 31778666 DOI: 10.1016/j.cbi.2019.108908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a neurodegenerative disease characterized by neuronal atrophy in various brain regions. The expression of miR-107 is down-regulated in AD patients and target genes of miR-107 have been shown to directly involved in AD. In this study, we aimed to investigate the potential neuroprotective effects of miR-107. We first assessed brain activity in health controls and patients with AD. Then we examined miR-107 expression in SH-SY5Y and PC12 cells treated with 6-hydroxydopamine (6-OHDA), and investigated its function in cytotoxicity induced by 6-OHDA. We predicted a potential miR-107 target and assessed its role in miR-107 mediated effects and explored the intracellular signaling pathways downstream of miR-107. Finally, we assessed the function of miR-107 in the mouse model insulted by 6-OHDA. We found that 6-OHDA suppressed miR-107 expression and miR-107 played neuroprotective effects against 6-OHDA mediated cytotoxicity. We showed that miR-107 targeted programmed cell death 10 (PDCD10). MiR-107 suppressed PDCD10 expression and exogenous expression of PDCD10 inhibited miR-107 mediated neuroprotection. Additionally, we found that Notch signal pathway was downstream of miR-107/PDCD10. Finally, we found that 6-OHDA treatment suppressed miR-107 in mice and restoration of miR-107 alleviated motor disorder in the mouse model. Our study shows that miR-107 plays important neuroprotective roles against neurotoxicity both in vitro and in vivo by inhibiting PDCD10. Our findings confirm that miR-107 may be involved in AD pathogenesis and may be a therapeutic target for the treatment of AD-related impairments.
Collapse
|
30
|
Heravi M, Dargahi L, Parsafar S, Tayaranian Marvian A, Aliakbari F, Morshedi D. The primary neuronal cells are more resistant than PC12 cells to α-synuclein toxic aggregates. Neurosci Lett 2019; 701:38-47. [PMID: 30776494 DOI: 10.1016/j.neulet.2019.01.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alpha-synuclein (αSN) is an abundant presynaptic brain protein that its aggregated species believed to play pivotal roles in the development of neurodegenerative diseases, especially Parkinson's disease (PD). In this study, we compared the response of primary neuronal cells with a well-known cell line model, PC12, against the toxic aggregates of αSN. METHODS Primary hippocampal neurons (PHNs) were isolated from 17 to 18 days old rat embryos. Fibrillization was induced in recombinant αSN and monitored by standard methods. The toxicity of different aggregates of αSN on the treated cells was then studied. Furthermore, changes in the intracellular reactive oxygen species (ROS) and Ca2+ levels were also compared in two kinds of treated cells. We also studied the gene expression profile of certain Ca2+ channels and carriers using the GEO2 database. RESULTS The viability rate was significantly lower in PC12 versus PHNs, in response to αSN. This is while the intracellular ROS and Ca2+ levels were significantly increased in both cell types. Analysis of microarray data indicated that some factors involved in Ca2+ hemostasis may face significant changes in the PD condition. CONCLUSION By putting these data together, it is clear that PHN is more resistant than PC12 toward αSN cytotoxicity even in the presence of rising cytoplasmic ROS and Ca2+ levels. Exploring the supporting mechanisms which PHN uses to be more resistant to αSN cytotoxicity can help to open a roadmap toward therapeutic plans in PD and other synucleinopathy disorders.
Collapse
Affiliation(s)
- Mansooreh Heravi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soha Parsafar
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Tayaranian Marvian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
31
|
Alhazzani A, Rajagopalan P, Albarqi Z, Devaraj A, Mohamed MH, Al-Hakami A, Chandramoorthy HC. Mesenchymal Stem Cells (MSCs) Coculture Protects [Ca 2+] i Orchestrated Oxidant Mediated Damage in Differentiated Neurons In Vitro. Cells 2018; 7:cells7120250. [PMID: 30563298 PMCID: PMC6315478 DOI: 10.3390/cells7120250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
Cell-therapy modalities using mesenchymal stem (MSCs) in experimental strokes are being investigated due to the role of MSCs in neuroprotection and regeneration. It is necessary to know the sequence of events that occur during stress and how MSCs complement the rescue of neuronal cell death mediated by [Ca2+]i and reactive oxygen species (ROS). In the current study, SH-SY5Y-differentiated neuronal cells were subjected to in vitro cerebral ischemia-like stress and were experimentally rescued from cell death using an MSCs/neuronal cell coculture model. Neuronal cell death was characterized by the induction of proinflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β and -12, up to 35-fold with corresponding downregulation of anti-inflammatory cytokine transforming growth factor (TGF)-β, IL-6 and -10 by approximately 1 to 7 fold. Increased intracellular calcium [Ca2+]i and ROS clearly reaffirmed oxidative stress-mediated apoptosis, while upregulation of nuclear factor NF-κB and cyclo-oxygenase (COX)-2 expressions, along with ~41% accumulation of early and late phase apoptotic cells, confirmed ischemic stress-mediated cell death. Stressed neuronal cells were rescued from death when cocultured with MSCs via increased expression of anti-inflammatory cytokines (TGF-β, 17%; IL-6, 4%; and IL-10, 13%), significantly downregulated NF-κB and proinflammatory COX-2 expression. Further accumulation of early and late apoptotic cells was diminished to 23%, while corresponding cell death decreased from 40% to 17%. Low superoxide dismutase 1 (SOD1) expression at the mRNA level was rescued by MSCs coculture, while no significant changes were observed with catalase (CAT) and glutathione peroxidase (GPx). Interestingly, increased serotonin release into the culture supernatant was proportionate to the elevated [Ca2+]i and corresponding ROS, which were later rescued by the MSCs coculture to near normalcy. Taken together, all of these results primarily support MSCs-mediated modulation of stressed neuronal cell survival in vitro.
Collapse
Affiliation(s)
- Adel Alhazzani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Zaher Albarqi
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Anantharam Devaraj
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| | - Mohamed Hessian Mohamed
- Department of Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta City 31512, Egypt.
| | - Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| |
Collapse
|
32
|
Fujimura M, Usuki F. Methylmercury induces oxidative stress and subsequent neural hyperactivity leading to cell death through the p38 MAPK-CREB pathway in differentiated SH-SY5Y cells. Neurotoxicology 2018; 67:226-233. [PMID: 29913201 DOI: 10.1016/j.neuro.2018.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/13/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Methylmercury (MeHg) induces site-specific cerebrocortical neuronal cell death. In our previous study using an in vivo mouse model, we reported that MeHg-induced cerebrocortical neuronal cell death may be due to neural hyperactivity triggered by activation of kinase pathways. However, the detailed molecular mechanism remained to be completely understood. In this study, we analyzed detailed signaling pathways for MeHg-induced neuronal cell death using all-trans-retinoic acid (RA) differentiated SH-SY5Y cells, which show neuron-like morphological changes and express neuron/synapse markers for cerebrocortical neurons. Time course studies revealed that MeHg-induced upregulation of c-fos, a marker of neural activation, preceded neuronal cell death. These results were similar to those observed in a MeHg-intoxicated mouse model. We observed early expression of the oxidative stress marker thymidine glycol followed by activation of p44/42 mitogen-activated protein kinase (MAPK) and p38 MAPK, and an increase in cAMP response element binding protein (CREB). Investigation of the effects of specific kinase inhibitors revealed that SB203580, a specific inhibitor for p38 MAPK, significantly blocked the upregulation of c-fos and the subsequent neuronal cell death. In contrast, PD98059 and U0126, specific inhibitors for p44/p42 MAPK, showed no effects on MeHg-induced neurotoxicity. Furthermore, the antioxidants Trolox and edaravone significantly suppressed MeHg-induced thymidine glycol expression, p38 MAPK-CREB pathway activation, and neurotoxicity. Altogether, these results suggest that MeHg-induced oxidative stress and subsequent activation of the p38 MAPK-CREB pathway contribute to cerebrocortical neuronal hyperactivity and subsequent neuronal cell death.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan.
| | - Fusako Usuki
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
33
|
Colini Baldeschi A, Pittaluga E, Andreola F, Rossi S, Cozzolino M, Nicotera G, Sferrazza G, Pierimarchi P, Serafino A. Atrial Natriuretic Peptide Acts as a Neuroprotective Agent in in Vitro Models of Parkinson's Disease via Up-regulation of the Wnt/β-Catenin Pathway. Front Aging Neurosci 2018; 10:20. [PMID: 29449807 PMCID: PMC5799264 DOI: 10.3389/fnagi.2018.00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
In the last decades increasing evidence indicated a crucial role of the Wnt/β-catenin signaling in development of midbrain dopaminergic (mDA) neurons. Recently dysregulation of this pathway has been proposed as a novel pathomechanism leading to Parkinson's disease (PD) and some of the molecules participating to the signaling have been evaluated as potential therapeutic targets for PD. Atrial natriuretic peptide (ANP) is a cardiac-derived hormone having a critical role in cardiovascular homeostasis. ANP and its receptors (NPRs) are widely expressed in mammalian central nervous system (CNS) where they could be implicated in the regulation of neural development, synaptic transmission and information processing, as well as in neuroprotection. Until now, the effects of ANP in the CNS have been mainly ascribed to the binding and activation of NPRs. We have previously demonstrated that ANP affects the Wnt/β-catenin signaling in colorectal cancer cells through a Frizzled receptor-mediated mechanism. The purpose of this study was to investigate if ANP is able to exert neuroprotective effect on two in vitro models of PD, and if this effect could be related to activation of the Wnt/β-catenin signaling. As cellular models of DA neurons, we used the proliferating or RA-differentiated human neuroblastoma cell line SH-SY5Y. In both DA neuron-like cultures, ANP is able to positively affect the Wnt/β-catenin signaling, by inducing β-catenin stabilization and nuclear translocation. Importantly, activation of the Wnt pathway by ANP exerts neuroprotective effect when these two cellular systems were subjected to neurotoxic insult (6-OHDA) for mimicking the neurodegeneration of PD. Our data support the relevance of exogenous ANP as an innovative therapeutic molecule for midbrain, and more in general for brain diseases for which aberrant Wnt signaling seems to be involved.
Collapse
Affiliation(s)
| | - Eugenia Pittaluga
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Federica Andreola
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Giuseppe Nicotera
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
34
|
Clobenpropit, a histamine H 3 receptor antagonist/inverse agonist, inhibits [ 3 H]-dopamine uptake by human neuroblastoma SH-SY5Y cells and rat brain synaptosomes. Pharmacol Rep 2018; 70:146-155. [DOI: 10.1016/j.pharep.2017.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 08/12/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
|
35
|
Chierrito TPC, Pedersoli-Mantoani S, Roca C, Requena C, Sebastian-Perez V, Castillo WO, Moreira NCS, Pérez C, Sakamoto-Hojo ET, Takahashi CS, Jiménez-Barbero J, Cañada FJ, Campillo NE, Martinez A, Carvalho I. From dual binding site acetylcholinesterase inhibitors to allosteric modulators: A new avenue for disease-modifying drugs in Alzheimer's disease. Eur J Med Chem 2017; 139:773-791. [PMID: 28863358 DOI: 10.1016/j.ejmech.2017.08.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
The lack of an effective treatment for Alzheimer' disease (AD), an increasing prevalence and severe neurodegenerative pathology boost medicinal chemists to look for new drugs. Currently, only acethylcholinesterase (AChE) inhibitors and glutamate antagonist have been approved to the palliative treatment of AD. Although they have a short-term symptomatic benefits, their clinical use have revealed important non-cholinergic functions for AChE such its chaperone role in beta-amyloid toxicity. We propose here the design, synthesis and evaluation of non-toxic dual binding site AChEIs by hybridization of indanone and quinoline heterocyclic scaffolds. Unexpectely, we have found a potent allosteric modulator of AChE able to target cholinergic and non-cholinergic functions by fixing a specific AChE conformation, confirmed by STD-NMR and molecular modeling studies. Furthermore the promising biological data obtained on human neuroblastoma SH-SY5Y cell assays for the new allosteric hybrid 14, led us to propose it as a valuable pharmacological tool for the study of non-cholinergic functions of AChE, and as a new important lead for novel disease modifying agents against AD.
Collapse
Affiliation(s)
- Talita P C Chierrito
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Susimaire Pedersoli-Mantoani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos Roca
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Requena
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Victor Sebastian-Perez
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Willian O Castillo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Natalia C S Moreira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14040-900, Ribeirão Preto, SP, Brazil
| | - Catarina S Takahashi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14040-900, Ribeirão Preto, SP, Brazil
| | - Jesús Jiménez-Barbero
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; CIC BioGUNE, Parque Tecnologico de Bizkaia, Edif. 801A, 48160, Derio-Bizkaia, Bilbao, Spain
| | - F Javier Cañada
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Nuria E Campillo
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
36
|
Lopes FM, Bristot IJ, da Motta LL, Parsons RB, Klamt F. Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. Neuromolecular Med 2017; 19:241-255. [PMID: 28721669 DOI: 10.1007/s12017-017-8454-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD-tremor at rest, bradykinesia and rigidity-once 50-70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.
Collapse
Affiliation(s)
- Fernanda Martins Lopes
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil. .,Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Leonardo Lisbôa da Motta
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
37
|
Dong R, Zhang B, Tai L, Liu H, Shi F, Liu N. The Neuroprotective Role of MiR‐124‐3p in a 6‐Hydroxydopamine‐Induced Cell Model of Parkinson's Disease via the Regulation of ANAX5. J Cell Biochem 2017; 119:269-277. [DOI: 10.1002/jcb.26170] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rui‐Fang Dong
- Department of NeurologyCangzhou Central HospitalCangzhou CityHebei Province 061001China
| | - Bing Zhang
- Department of NeurologyThe First Hospital of ShijiazhuangShijiazhuangHebei Province 050011China
| | - Li‐Wen Tai
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebei Province 050011China
| | - Hong‐Mei Liu
- Department of NeurologyCangzhou Central HospitalCangzhou CityHebei Province 061001China
| | - Fang‐Kun Shi
- Department of NeurologyCangzhou Central HospitalCangzhou CityHebei Province 061001China
| | - Ning‐Ning Liu
- Department of NeurologyCangzhou Central HospitalCangzhou CityHebei Province 061001China
| |
Collapse
|
38
|
Methylglyoxal-Induced Protection Response and Toxicity: Role of Glutathione Reductase and Thioredoxin Systems. Neurotox Res 2017; 32:340-350. [DOI: 10.1007/s12640-017-9738-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022]
|