1
|
Echeverry C, Richeri A, Fagetti J, Martínez GF, Vignolo F, Prunell G, Cuñetti L, Martínez Busi M, Pérez S, de Medina VS, Ferreiro C, Scorza C. Neuroprotective Effect of a Pharmaceutical Extract of Cannabis with High Content on CBD Against Rotenone in Primary Cerebellar Granule Cell Cultures and the Relevance of Formulations. Cannabis Cannabinoid Res 2024; 9:e907-e916. [PMID: 37155642 DOI: 10.1089/can.2022.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Introduction: Preclinical research supports the benefits of pharmaceutical cannabis-based extracts for treating different medical conditions (e.g., epilepsy); however, their neuroprotective potential has not been widely investigated. Materials and Methods: Using primary cultures of cerebellar granule cells, we evaluated the neuroprotective activity of Epifractan (EPI), a cannabis-based medicinal extract containing a high level of cannabidiol (CBD), components like terpenoids and flavonoids, trace levels of Δ9-tetrahydrocannabinol, and the acid form of CBD. We determined the ability of EPI to counteract the rotenone-induced neurotoxicity by analyzing cell viability and morphology of neurons and astrocytes by immunocytochemical assays. The effect of EPI was compared with XALEX, a plant-derived and highly purified CBD formulation (XAL), and pure CBD crystals (CBD). Results: The results revealed that EPI induced a significant reduction in the rotenone-induced neurotoxicity in a wide range of concentrations without causing neurotoxicity per se. EPI showed a similar effect to XAL suggesting that no additive or synergistic interactions between individual substances present in EPI occurred. In contrast, CBD did show a different profile to EPI and XAL because a neurotoxic effect per se was observed at higher concentrations assayed. Medium-chain triglyceride oil used in EPI formulation could explain this difference. Conclusion: Our data support a neuroprotective effect of EPI that may provide neuroprotection in different neurodegenerative processes. The results highlight the role of CBD as the active component of EPI but also support the need for an appropriate formulation to dilute pharmaceutical cannabis-based products that could be critical to avoid neurotoxicity at very high doses.
Collapse
Affiliation(s)
- Carolina Echeverry
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Analía Richeri
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Jimena Fagetti
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gaby F Martínez
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Federico Vignolo
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Marcela Martínez Busi
- Plataforma de Química Analítica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Sandra Pérez
- Plataforma de Química Analítica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
2
|
Shafiee A, Beiky M, Mohammadi I, Rajai S, Jafarabady K, Moradi S, Beikmohamadi M, Teixeira AL. Effect of smoking on Brain-Derived Neurotrophic Factor (BDNF) blood levels: A systematic review and meta-analysis. J Affect Disord 2024; 349:525-533. [PMID: 38199418 DOI: 10.1016/j.jad.2024.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that plays a crucial role in neuronal survival and plasticity. Previous studies have suggested that smoking may influence BDNF levels, but the findings have been inconsistent. METHODS A comprehensive search of electronic databases was conducted to identify relevant studies. Inclusion criteria were applied to select studies that investigated the relationship between smoking and blood levels of BDNF. A random-effects model was used to estimate the overall effect size. RESULTS A total of 23 studies were included. The meta-analysis revealed a significant association between smoking and increased blood levels of BDNF (standardized mean difference [SMD] = -0.38, 95 % confidence interval [CI] 0.15 to 0.62, p = 0.002). Subgroup analyses based on BDNF source showed a significant increase in plasma-derived BDNF levels (SMD = 1.02, 95 % CI 0.50 to 1.53, p = 0.0001), while no significant difference was observed in serum-derived BDNF levels (SMD = 0.02, 95 % CI -0.19 to 0.22, p = 0.87). The pooled analysis revealed a non-significant difference in blood levels of BDNF between former smokers and non-smokers (random-effects model, SMD = 0.21, 95 % CI -0.04 to 0.46, p = 0.1). CONCLUSION Smokers exhibited significantly higher plasma levels of BDNF compared to non-smokers. Further research is needed to elucidate the underlying mechanisms and explore the potential therapeutic implications of targeting BDNF in smoking.
Collapse
Affiliation(s)
- Arman Shafiee
- Department of Psychiatry and Mental Health, Alborz University of Medical Sciences, Karaj, Iran; Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Maryam Beiky
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahryar Rajai
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Moradi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Beikmohamadi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Li J, Wang H, Chen H, Li X, Liu Y, Hou H, Hu Q. Cell death induced by nicotine in human neuroblastoma SH-SY5Y cells is mainly attributed to cytoplasmic vacuolation originating from the trans-Golgi network. Food Chem Toxicol 2024; 185:114431. [PMID: 38176581 DOI: 10.1016/j.fct.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Humans are usually exposed to nicotine through the use of tobacco products. Although it is generally believed that nicotine is relatively harmless in tobacco consumption, it is, in fact, a toxic substance that warrants careful consideration of its potential toxicity. However, the current understanding of the neurotoxicity of nicotine is still very limited. In this study, we aim to reveal the toxic risk of nicotine to key target neuronal cells and its potential toxic mechanisms. The results showed that nicotine induced cell death, ROS increase, mitochondrial membrane potential decrease, and DNA damage in SH-SY5Y human neuroblastoma cells at millimolar concentrations, but did not cause toxic effects at the physiological concentration. These toxic effects were accompanied by cytoplasmic vacuolation. The inhibition of cytoplasmic vacuolation by bafilomycin A1 greatly reduced nicotine-induced cell death, indicating that cytoplasmic vacuolation is the key driving factor of cell death. These cytoplasmic vacuoles originated from the trans-Golgi network (TGN) and expressed microtubule-associated protein 1 light chain 3-II (LC3-II) and lysosomal associated membrane protein 1(LAMP1). The presence of LC3-II and LAMP1 within these vacuoles serves as evidence of compromised TGN structure and function. These findings provide valuable new insights into the potential neurotoxic risk and mechanisms of nicotine.
Collapse
Affiliation(s)
- Jun Li
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; University of Science and Technology of China, Hefei, 230000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Hongjuan Wang
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Xiao Li
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
| | - Qingyuan Hu
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; University of Science and Technology of China, Hefei, 230000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Olsen AL, Clemens SG, Feany MB. Nicotine-Mediated Rescue of α-Synuclein Toxicity Requires Synaptic Vesicle Glycoprotein 2 in Drosophila. Mov Disord 2023; 38:244-255. [PMID: 36416213 PMCID: PMC9974823 DOI: 10.1002/mds.29283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by α-synuclein aggregation and loss of dopamine neurons. Risk of PD arises due to a combination of genetic and environmental factors, which may interact, termed gene-environment (G×E) interactions. An inverse association between smoking and the risk of PD is well established, and a previous genome-wide G×E interaction study identified genetic variation in the synaptic-vesicle glycoprotein 2C (SV2C) locus as an important mediator of the degree to which smoking is inversely associated with PD. OBJECTIVE We sought to determine the mechanism of the smoking-SV2C interaction in a Drosophila model of PD. METHODS Flies expressing human α-synuclein in all neurons develop the hallmarks of PD, including motor dysfunction, loss of dopaminergic (DA) neurons, and formation of α-synuclein inclusions. We assessed the effects of increasing doses of nicotine on these parameters of neurodegeneration, in the presence or absence of knockdown of two Drosophila orthologues of SV2, hereafter referred to as SV2L1 and SV2L2. RESULTS The α-synuclein-expressing flies treated with nicotine had improved locomotion, DA neuron counts, and α-synuclein aggregation. However, in α-synuclein-expressing flies in which SV2L1 and SV2L2 were knocked down, nicotine failed to rescue neurodegeneration. CONCLUSIONS This work confirms a G×E interaction between nicotine and SV2, defines a role for this interaction in α-synuclein proteostasis, and suggests that future clinical trials on nicotine should consider genetic variation in SV2C. Furthermore, this provides proof of concept that our model can be used for the mechanistic study of G×E, paving the way for the investigation of additional G×E interactions or the identification of novel G×E. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Abby L. Olsen
- Brigham and Women’s Hospital, Department of Neurology
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | | | - Mel B. Feany
- Brigham and Women’s Hospital, Department of Pathology
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
5
|
Delijewski M, Radad K, Krewenka C, Kranner B, Moldzio R. The Reassessed Impact of Nicotine against Neurotoxicity in Mesencephalic Dopaminergic Cell Cultures and Neuroblastoma N18TG2 Cells. PLANTA MEDICA 2022; 88:548-558. [PMID: 34229355 DOI: 10.1055/a-1527-1390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neuroprotective effects of nicotine are still under debate, so further studies on its effectiveness against Parkinson's disease are required. In our present study, we used primary dopaminergic cell cultures and N18TG2 neuroblastoma cells to investigate the effect of nicotine and its neuroprotective potential against rotenone toxicity. Nicotine protected dopaminergic (tyrosine hydroxylase immunoreactive) neurons against rotenone. This effect was not nAChR receptor-dependent. Moreover, the alkaloid at a concentration of 5 µM caused an increase in neurite length, and at a concentration of 500 µM, it caused an increase in neurite count in dopaminergic cells exposed to rotenone. Nicotine alone was not toxic in either cell culture model, while the highest tested concentration of nicotine (500 µM) caused growth inhibition of N18TG2 neuroblastoma cells. Nicotine alone increased the level of glutathione in both cell cultures and also in rotenone-treated neuroblastoma cells. The obtained results may be helpful to explain the potential neuroprotective action of nicotine on neural cell cultures.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Khaled Radad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Christopher Krewenka
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Kranner
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Ye X, Zhang Y, Song X, Liu Q. Research Progress in the Pharmacological Effects and Synthesis of Nicotine. ChemistrySelect 2022. [DOI: 10.1002/slct.202104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoping Ye
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Glycobiology and Glycotechnology Research center College of Food Science and Technology Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- College of Life Sciences Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Shaanxi Key Laboratory of Degradable Biomedical Materials College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| |
Collapse
|
7
|
Nemutlu Samur D, Akçay G, Yıldırım S, Özkan A, Çeker T, Derin N, Tanrıöver G, Aslan M, Ağar A, Özbey G. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson's disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology 2022; 208:108977. [PMID: 35092748 DOI: 10.1016/j.neuropharm.2022.108977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by motor and non-motor symptoms associated with dopaminergic and non-dopaminergic injury. Vortioxetine is a multimodal serotonergic antidepressant with potential procognitive effects. This study aimed to explore the effects of vortioxetine on motor functions, spatial learning and memory, and depression-like behavior in the rotenone-induced rat model of PD. Male Sprague-Dawley rats were daily administered with the rotenone (2 mg·kg-1, s.c.) and/or vortioxetine (10 mg·kg-1, s.c.) for 28 days. Motor functions (rotarod, catalepsy, open-field), depression-like behaviors (sucrose preference test), anxiety (elevated plus maze), and spatial learning and memory abilities (novel object recognition and Morris water maze) were evaluated in behavioral tests. Then immunohistochemical, neurochemical, and biochemical analysis on specific brain areas were performed. Vortioxetine treatment markedly reduced rotenone-induced neurodegeneration, improved motor and cognitive dysfunction, decreased depression-like behaviors without affecting anxiety-like parameters. Vortioxetine also restored the impaired inflammatory response and affected neurotransmitter levels in brain tissues. Interestingly, vortioxetine was thought to trigger a sort of dysfunction in basal ganglia as evidenced by increased Toll-like receptor-2 (TLR-2) and decreased TH immunoreactivity only in substantia nigra tissue of PD rats compared to the control group. The present study indicates that vortioxetine has beneficial effects on motor dysfunction as well as cognitive impairment associated with neurodegeneration in the rotenone-induced PD model. Possible mechanisms underlying these beneficial effects cover TLR-2 inhibition and neurochemical restoration of vortioxetine.
Collapse
Affiliation(s)
- Dilara Nemutlu Samur
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey.
| | - Güven Akçay
- Akdeniz University, Faculty of Medicine, Department of Biophysics, 07058, Antalya, Turkey
| | - Sendegül Yıldırım
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Ayşe Özkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07058, Antalya, Turkey
| | - Tuğçe Çeker
- Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07058, Antalya, Turkey
| | - Narin Derin
- Akdeniz University, Faculty of Medicine, Department of Biophysics, 07058, Antalya, Turkey
| | - Gamze Tanrıöver
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Mutay Aslan
- Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07058, Antalya, Turkey
| | - Aysel Ağar
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07058, Antalya, Turkey
| | - Gül Özbey
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey.
| |
Collapse
|
8
|
Elgayar SAM, Hussein OA, Mubarak HA, Ismaiel AM, Gomaa AMS. Testing efficacy of the nicotine protection of the substantia nigra pars compacta in a rat Parkinson disease model. Ultrastructure study. Ultrastruct Pathol 2022; 46:37-53. [PMID: 35001795 DOI: 10.1080/01913123.2021.2015499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with subsequent motor manifestations. This study aimed to assess the ameliorative effects of nicotine, in rotenone-induced PD rat model. Thirty adult male Albino Wistar rats were divided into three equal groups. Group I received an injection of normal saline. Group II received subcutaneous injection of rotenone at a dose of 1.5 mg/kg every other day. Group III received rotenone in the same previous dose and nicotine at a dose of 1.5 mg/kg daily. After 11 days of treatment, body weight (BW) and rat motor behavior were estimated. Specimens from the midbrain were processed for light and electron microscopy. The expression of tyrosine hydroxylase (TH), α-synuclein, and GFAP was examined. Serum levels of total antioxidant capacity (TAC) and malondialdehyde (MDA), and striatal levels of dopamine (DA) were analyzed. Group III revealed a significant improvement in BW and motor activity. Nicotine upregulated the expression of TH, downregulated the expression of α-synuclein and GFAP. The levels of MDA and TAC were improved but were still far from those of the control. Striatal DA levels increased. Nicotine activated the neurons and glial cells. The vascular endothelium, however, did not elicit improvement. Although nicotine ameliorated the loss of the dopaminergic neurons and motor deficit, it did not show improvement of vascular endothelium. It is still necessary to examine nicotin's ability to maintain the dopaminergic neurons in a good functioning state.
Collapse
Affiliation(s)
| | | | | | | | - Asmaa M S Gomaa
- Depts, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Ritz BR, Kusters CDJ. The Promise of Mendelian Randomization in Parkinson's Disease: Has the Smoke Cleared Yet for Smoking and Parkinson's Disease Risk? JOURNAL OF PARKINSON'S DISEASE 2022; 12:807-812. [PMID: 35213390 PMCID: PMC10564582 DOI: 10.3233/jpd-223188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This commentary discusses the strengths and limitations of utilizing the Mendelian randomization (MR) approach in Parkinson's disease (PD) studies. Epidemiologists proposed to employ MR when genetic instruments are available that represent reliable proxies for modifiable lifelong exposures which elude easy measurement in studies of late onset diseases like PD. Here, we are using smoking as an example. The great promise of the MR approach is its resilience to confounding and reverse causation. Nevertheless, the approach has some drawbacks such as being liable to selection- and survival-bias, it makes some strong assumptions about the genetic instruments employed, and requires very large sample sizes. When interpreted carefully and put into the context of other studies that take both genetics and the environment into consideration, MR studies help us to not only ask interesting questions but also can support causal inference and provide novel insights.
Collapse
Affiliation(s)
- Beate R. Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Cynthia DJ Kusters
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
10
|
Jung YJ, Choi H, Oh E. Effects of particulate matter and nicotine for the MPP+-induced SH-SY5Y cells: Implication for Parkinson's disease. Neurosci Lett 2021; 765:136265. [PMID: 34563623 DOI: 10.1016/j.neulet.2021.136265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Exposure to particulate matter (PM) has been considered a potential risk factor for various neurodegenerative diseases, whereas nicotine has protective effects on Parkinson's disease (PD). However, it is still unclear whether or how PM alone and in combination with nicotine affects the pathogenesis of PD. We investigated the potential neurotoxicity of PM and the protective properties of nicotine in an in vitro PD model. A 1-methyl-4-phenylpyridimium (MPP+)-induced neurotoxicity model was established with SH-SY5Y cells. Cell viability and apoptosis were measured using MTT and TUNEL assays, respectively. Intracellular reactive oxygen species (ROS) levels were analyzed using the cell-permeant fluorescent probe DCFH-DA. We investigated mitochondrial apoptotic markers such as Bax, Bcl2, cytochrome C, and cleaved caspase-3 and analyzed their levels by Western blotting. SH-SY5Y cells exposed to PM and MPP+ exhibited significantly increased intracellular ROS and decreased cell viability with those exposed to PM alone. PM strikingly exacerbated MPP+-induced mitochondrial dysfunction, including an increase in the Bax/Bcl2 ratio and the release of cytochrome C and cleaved caspase-3. On the other hand, pretreatment of SH-SY5Y cells with nicotine reduced the MPP+-induced loss of cell viability and levels of intracellular ROS and mitochondrial apoptotic signaling proteins. However, pretreatment with nicotine did not prevent PM-induced toxicity in MPP+-treated SHSY5Y cells. PM and MPP+ synergistically increased ROS levels and mitochondrial apoptosis, which led to SH-SY5Y cell death. The protective effect of nicotine cannot rescue PM-induced synergistic neurotoxicity in the MPP+-induced PD model. Our findings verified the opposing roles of PM and nicotine in a model of PD pathogenesis. A large number of in vivo and in vitro studies would verify the roles of PM and nicotine in the future.
Collapse
Affiliation(s)
- Yu Jin Jung
- Department of Neurology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Mursaleen L, Noble B, Somavarapu S, Zariwala MG. Micellar Nanocarriers of Hydroxytyrosol Are Protective against Parkinson's Related Oxidative Stress in an In Vitro hCMEC/D3-SH-SY5Y Co-Culture System. Antioxidants (Basel) 2021; 10:antiox10060887. [PMID: 34073115 PMCID: PMC8226543 DOI: 10.3390/antiox10060887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinson’s disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68® (P68) and dequalinium (DQA) which have suitable characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferoxamine (DFO), and assess their physical characteristics and ability to pass the blood–brain barrier and protect against rotenone in a cellular hCMEC/D3-SH-SY5Y co-culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean blood–brain barrier (BBB) passage of HT by 50% (p < 0.0001, n = 6). This resulted in increased protection against rotenone induced cytotoxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p < 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD-related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models.
Collapse
Affiliation(s)
- Leah Mursaleen
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Cure Parkinson’s, 120 New Cavendish Street, Fitzrovia, London W1W 6XX, UK
| | - Brendon Noble
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Correspondence: (S.S.); (M.G.Z.)
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
- Correspondence: (S.S.); (M.G.Z.)
| |
Collapse
|
12
|
Carvajal-Oliveros A, Domínguez-Baleón C, Zárate RV, Campusano JM, Narváez-Padilla V, Reynaud E. Nicotine suppresses Parkinson's disease like phenotypes induced by Synphilin-1 overexpression in Drosophila melanogaster by increasing tyrosine hydroxylase and dopamine levels. Sci Rep 2021; 11:9579. [PMID: 33953275 PMCID: PMC8099903 DOI: 10.1038/s41598-021-88910-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 03/30/2021] [Indexed: 11/12/2022] Open
Abstract
It has been observed that there is a lower Parkinson's disease (PD) incidence in tobacco users. Nicotine is a cholinergic agonist and is the principal psychoactive compound in tobacco linked to cigarette addiction. Different studies have shown that nicotine has beneficial effects on sporadic and genetic models of PD. In this work we evaluate nicotine's protective effect in a Drosophila melanogaster model for PD where Synphilin-1 (Sph-1) is expressed in dopaminergic neurons. Nicotine has a moderate effect on dopaminergic neuron survival that becomes more evident as flies age. Nicotine is beneficial on fly survival and motility increasing tyrosine hydroxylase and dopamine levels, suggesting that cholinergic agonists may promote survival and metabolic function of the dopaminergic neurons that express Sph-1. The Sph-1 expressing fly is a good model for the study of early-onset phenotypes such as olfaction loss one of the main non-motor symptom related to PD. Our data suggest that nicotine is an interesting therapeutic molecule whose properties should be explored in future research on the phenotypic modulators of the disease and for the development of new treatments.
Collapse
Affiliation(s)
- Angel Carvajal-Oliveros
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, A.P. 510-3, 62210, Cuernavaca, Mor., Mexico
| | - Carmen Domínguez-Baleón
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, A.P. 510-3, 62210, Cuernavaca, Mor., Mexico
| | - Rafaella V Zárate
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge M Campusano
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica Narváez-Padilla
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Enrique Reynaud
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, A.P. 510-3, 62210, Cuernavaca, Mor., Mexico.
| |
Collapse
|
13
|
A Propagated Skeleton Approach to High Throughput Screening of Neurite Outgrowth for In Vitro Parkinson's Disease Modelling. Cells 2021; 10:cells10040931. [PMID: 33920556 PMCID: PMC8072564 DOI: 10.3390/cells10040931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Neuronal models of neurodegenerative diseases such as Parkinson's Disease (PD) are extensively studied in pathological and therapeutical research with neurite outgrowth being a core feature. Screening of neurite outgrowth enables characterization of various stimuli and therapeutic effects after lesion. In this study, we describe an autonomous computational assay for a high throughput skeletonization approach allowing for quantification of neurite outgrowth in large data sets from fluorescence microscopic imaging. Development and validation of the assay was conducted with differentiated SH-SY5Y cells and primary mesencephalic dopaminergic neurons (MDN) treated with the neurotoxic lesioning compound Rotenone. Results of manual annotation using NeuronJ and automated data were shown to correlate strongly (R2-value 0.9077 for SH-SY5Y cells and R2-value 0.9297 for MDN). Pooled linear regressions of results from SH-SY5Y cell image data could be integrated into an equation formula (y=0.5410·x+1792; y=0.8789·x+0.09191 for normalized results) with y depicting automated and x depicting manual data. This automated neurite length algorithm constitutes a valuable tool for modelling of neurite outgrowth that can be easily applied to evaluate therapeutic compounds with high throughput approaches.
Collapse
|
14
|
Echeverry C, Prunell G, Narbondo C, de Medina VS, Nadal X, Reyes-Parada M, Scorza C. A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT 1A Receptors. Neurotox Res 2021; 39:335-348. [PMID: 32886342 DOI: 10.1007/s12640-020-00277-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Previous preclinical studies have demonstrated that cannabidiol (CBD) and cannabigerol (CBG), two non-psychotomimetic phytocannabinoids from Cannabis sativa, induce neuroprotective effects on toxic and neurodegenerative processes. However, a comparative study of both compounds has not been reported so far, and the targets involved in this effect remain unknown. The ability of CBD and CBG to attenuate the neurotoxicity induced by two insults involving oxidative stress (hydrogen peroxide, H2O2) and mitochondrial dysfunction (rotenone) was evaluated in neural cell cultures. The involvement of CB-1 and CB-2 or 5-HT1A receptors was investigated. The neuroprotective effect of their respective acids forms, cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA), was also analyzed. MTT and immunocytochemistry assays were used to evaluate cell viability. No significant variation on cell viability was per se induced by the lower concentrations tested of CBD and CBG or CBDA and CBGA; however, high concentrations of CBD, CBDA, or CBGA were toxic since a 40-50% reduction of cell viability was observed. CBD and CBG showed neuroprotective effects against H2O2 or rotenone; however, both compounds were more effective in attenuating the rotenone-induced neurotoxicity. A high concentration of CBDA reduced the rotenone-induced neurotoxicity. WAY100635 (5-HT1A receptor antagonist) but not AM251 and AM630 (CB1 or CB2 receptor antagonists, respectively) significantly diminished the neuroprotective effect induced by CBG only against rotenone. Our results contribute to the understanding of the neuroprotective effect of CBD and CBG, showing differences with their acid forms, and also highlight the role of 5-HT1A receptors in the mechanisms of action of CBG.
Collapse
Affiliation(s)
- Carolina Echeverry
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| | - Giselle Prunell
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Camila Narbondo
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | | | - Xavier Nadal
- EthnoPhytoTech Research & Consulting S.L.U., Sant Cugat del Valles, Spain
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, IIBCE, Montevideo, Uruguay
| |
Collapse
|
15
|
Deng H, Liu S, Pan D, Jia Y, Ma ZG. Myricetin reduces cytotoxicity by suppressing hepcidin expression in MES23.5 cells. Neural Regen Res 2021; 16:1105-1110. [PMID: 33269757 PMCID: PMC8224113 DOI: 10.4103/1673-5374.300461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple studies implicate iron accumulation in the substantia nigra in the degeneration of dopaminergic neurons in Parkinson’s disease. Indeed, slowing of iron accumulation in cells has been identified as the key point for delaying and treating Parkinson’s disease. Myricetin reportedly plays an important role in anti-oxidation, anti-apoptosis, anti-inflammation, and iron chelation. However, the mechanism underlying its neuroprotection remains unclear. In the present study, MES23.5 cells were treated with 1 × 10–6 M myricetin for 1 hour, followed by co-treatment with 400 nM rotenone for 24 hours to establish an in vitro cell model of Parkinson’s disease. Our results revealed that myricetin alleviated rotenone-induced decreases in cell viability, suppressed the production of intracellular reactive oxygen species, and restored mitochondrial transmembrane potential. In addition, myricetin significantly suppressed rotenone-induced hepcidin gene transcription and partly relieved rotenone-induced inhibition of ferroportin 1 mRNA and protein levels. Furthermore, myricetin inhibited rotenone-induced phosphorylation of STAT3 and SMAD1 in MES23.5 cells. These findings suggest that myricetin protected rotenone-treated MES23.5 cells by potently inhibiting hepcidin expression to prevent iron accumulation, and this effect was mediated by alteration of STAT3 and SMAD1 signaling pathways.
Collapse
Affiliation(s)
- Han Deng
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Dong Pan
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yi Jia
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ze-Gang Ma
- Department of Physiology, School of Basic Medicine; Institute of Brain Science and Disorders, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
16
|
Yarmohammadi F, Wallace Hayes A, Najafi N, Karimi G. The protective effect of natural compounds against rotenone‐induced neurotoxicity. J Biochem Mol Toxicol 2020; 34:e22605. [DOI: 10.1002/jbt.22605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - A. Wallace Hayes
- Institute for Integrative Toxicology University of South Florida Tampa Florida
- Institute for Integrative Toxicology Michigan State University East Lansing Michigan
| | - Nahid Najafi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
17
|
Liang T, Qian ZM, Mu MD, Yung WH, Ke Y. Brain Hepcidin Suppresses Major Pathologies in Experimental Parkinsonism. iScience 2020; 23:101284. [PMID: 32623334 PMCID: PMC7334576 DOI: 10.1016/j.isci.2020.101284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/26/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Despite intensive research on Parkinson disease (PD) for decades, this common neurodegenerative disease remains incurable. We hypothesize that abnormal iron accumulation is a common thread underlying the emergence of the hallmarks of PD, namely mitochondrial dysfunction and α-synuclein accumulation. We investigated the powerful action of the main iron regulator hepcidin in the brain. In both the rotenone and 6-hydroxydopamine models of PD, overexpression of hepcidin by means of a virus-based strategy prevented dopamine neuronal loss and suppressed major pathologies of Parkinsonism as well as motor deficits. Hepcidin protected rotenone-induced mitochondrial deficits by reducing cellular and mitochondrial iron accumulation. In addition, hepcidin decreased α-synuclein accumulation and promoted clearance of α-synuclein through decreasing iron content that leads to activation of autophagy. Our results not only pinpoint a critical role of iron-overload in the pathogenesis of PD but also demonstrate that targeting brain iron levels through hepcidin is a promising therapeutic direction.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong 226001, China
| | - Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
N-Acetylcysteine Nanocarriers Protect against Oxidative Stress in a Cellular Model of Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070600. [PMID: 32660079 PMCID: PMC7402157 DOI: 10.3390/antiox9070600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a key mediator in the development and progression of Parkinson's disease (PD). The antioxidant n-acetylcysteine (NAC) has generated interest as a disease-modifying therapy for PD but is limited due to poor bioavailability, a short half-life, and limited access to the brain. The aim of this study was to formulate and utilise mitochondria-targeted nanocarriers for delivery of NAC alone and in combination with the iron chelator deferoxamine (DFO), and assess their ability to protect against oxidative stress in a cellular rotenone PD model. Pluronic F68 (P68) and dequalinium (DQA) nanocarriers were prepared by a modified thin-film hydration method. An MTT assay assessed cell viability and iron status was measured using a ferrozine assay and ferritin immunoassay. For oxidative stress, a modified cellular antioxidant activity assay and the thiobarbituric acid-reactive substances assay and mitochondrial hydroxyl assay were utilised. Overall, this study demonstrates, for the first time, successful formulation of NAC and NAC + DFO into P68 + DQA nanocarriers for neuronal delivery. The results indicate that NAC and NAC + DFO nanocarriers have the potential characteristics to access the brain and that 1000 μM P68 + DQA NAC exhibited the strongest ability to protect against reduced cell viability (p = 0.0001), increased iron (p = 0.0033) and oxidative stress (p ≤ 0.0003). These NAC nanocarriers therefore demonstrate significant potential to be transitioned for further preclinical testing for PD.
Collapse
|
19
|
Ostendorf F, Metzdorf J, Gold R, Haghikia A, Tönges L. Propionic Acid and Fasudil as Treatment Against Rotenone Toxicity in an In Vitro Model of Parkinson's Disease. Molecules 2020; 25:molecules25112502. [PMID: 32481507 PMCID: PMC7321113 DOI: 10.3390/molecules25112502] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease (PD) is a multifactorial neurodegenerative disease. In recent years, several studies demonstrated that the gastroenteric system and intestinal microbiome influence central nervous system function. The pathological mechanisms triggered thereby change neuronal function in neurodegenerative diseases including dopaminergic neurons in Parkinson´s disease. In this study, we employed a model system for PD of cultured primary mesencephalic cells and used the pesticide rotenone to model dopaminergic cell damage. We examined neuroprotective effects of the Rho kinase inhibitor Fasudil and the short chain fatty acid (SCFA) propionic acid on primary neurons in cell morphological assays, cell survival, gene and protein expression. Fasudil application resulted in significantly enhanced neuritic outgrowth and increased cell survival of dopaminergic cells. The application of propionic acid primarily promoted cell survival of dopaminergic cells against rotenone toxicity and increased neurite outgrowth to a moderate extent. Interestingly, Fasudil augmented gene expression of synaptophysin whereas gene expression levels of tyrosine hydroxylase (TH) were substantially increased by propionic acid. Concerning protein expression propionic acid treatment increased STAT3 levels but did not lead to an increased phosphorylation indicative of pathway activation. Our findings indicate that both Fasudil and propionic acid treatment show beneficial potential in rotenone-lesioned primary mesencephalic cells.
Collapse
Affiliation(s)
- Friederike Ostendorf
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
| | - Judith Metzdorf
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44801 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44801 Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44801 Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44801 Bochum, Germany
- Correspondence:
| |
Collapse
|
20
|
Qin W, Zhang L, Li Z, Xiao D, Zhang Y, Zhang H, Mokembo JN, Monayo SM, Jha NK, Kopylov P, Shchekochikhin D, Zhang Y. Endothelial to mesenchymal transition contributes to nicotine-induced atherosclerosis. Theranostics 2020; 10:5276-5289. [PMID: 32373212 PMCID: PMC7196288 DOI: 10.7150/thno.42470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Nicotine exposure via cigarette smoking is strongly associated with atherosclerosis. However, the underlying mechanisms remain poorly understood. The current study aimed to identify whether endothelial to mesenchymal transition (EndMT) contributes to nicotine-induced atherosclerosis. Methods: ApoE-/- mice were administered nicotine in their drinking water for 12 weeks. The effects of nicotine on EndMT were determined by immunostaining on aortic root and RNA analysis in aortic intima. In vitro nicotine-treated cell model was established on human aortic endothelial cells (HAECs). The effects of nicotine on the expression of EndMT-related markers, ERK1/2 and Snail were quantified by real-time PCR, western blot and immunofluorescent staining. Results: Nicotine treatment resulted in larger atherosclerotic plaques in ApoE-/- mice. The vascular endothelial cells from nicotine-treated mice showed mesenchymal phenotype, indicating EndMT. Moreover, nicotine-induced EndMT process was accompanied by cytoskeleton reorganization and impaired barrier function. The α7 nicotine acetylcholine receptor (α7nAChR) was highly expressed in HAECs and its antagonist could effectively relieve nicotine-induced EndMT and atherosclerotic lesions in mice. Further experiments revealed that ERK1/2 signaling was activated by nicotine, which led to the upregulation of Snail. Blocking ERK1/2 with inhibitor or silencing Snail by small interfering RNA efficiently preserved endothelial phenotype upon nicotine stimulation. Conclusion: Our study provides evidence that EndMT contributes to the pro-atherosclerotic property of nicotine. Nicotine induces EndMT through α7nAChR-ERK1/2-Snail signaling in endothelial cells. EndMT may be a therapeutic target for smoking-related endothelial dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Longyin Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Haiying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Justine Nyakango Mokembo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Seth Mikaye Monayo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Nabanit Kumar Jha
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Philipp Kopylov
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Dmitri Shchekochikhin
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang, China
| |
Collapse
|
21
|
Cavelli M, Prunell G, Costa G, Velásquez N, Gonzalez J, Castro-Zaballa S, Lima MM, Torterolo P. Electrocortical high frequency activity and respiratory entrainment in 6-hydroxydopamine model of Parkinson’s disease. Brain Res 2019; 1724:146439. [DOI: 10.1016/j.brainres.2019.146439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022]
|
22
|
Zhou ZD, Xie SP, Saw WT, Ho PGH, Wang H, Lei Z, Yi Z, Tan EK. The Therapeutic Implications of Tea Polyphenols Against Dopamine (DA) Neuron Degeneration in Parkinson's Disease (PD). Cells 2019; 8:cells8080911. [PMID: 31426448 PMCID: PMC6721683 DOI: 10.3390/cells8080911] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
: Accumulative evidence indicated that the pathologically accumulated metal ions (iron species and Mn3+) and abnormally up-regulated monoamine oxidase B (MAOB) activity induced oxidation of endogenous dopamine (DA) can lead to mitochondria impairment, lysosome dysfunction, proteasome inhibition, and selective DA neuron vulnerability, which is implicated in the pathogenesis of Parkinson's disease (PD). The DA oxidation can generate deleterious reactive oxygen species (ROS) and highly reactive DA quinones (DAQ) to induce DA-related toxicity, which can be alleviated by DA oxidation suppressors, ROS scavengers, DAQ quenchers, and MAOB inhibitors. On the other hand, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Keap1 and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) anti-oxidative and proliferative signaling pathways play roles in anti-oxidative cell defense and mitochondria biogenesis, which is implicated in DA neuron protections. Therefore, agents with capabilities to suppress DA-related toxicity including inhibition of DA oxidation, scavenge of ROS, detoxification of DAQ, inhibition of MAOB, and modulations of anti-oxidative signaling pathways can be protective to DA neurons. Accumulative evidence shows that tea or coffee consumptions and smoking are related to deceased PD prevalence with unknown mechanisms. In this study, we investigate the protective capabilities of tea polyphenols and other PD relevant agents to inhibit DA-related toxicity and protect against environmental or genetic factors induced DA neuron degeneration in vitro and in vivo. We find that tea polyphenols can significantly suppress DA-related toxicity to protect DA neurons. The tea polyphenols can protect DA neurons via inhibition of DA oxidation, conjugation with DAQ, scavenge of ROS, inhibition of MAOB, and modulations of Nrf2-Keap1 and PGC-1α anti-oxidative signaling pathways. The tea polyphenols with more phenolic hydroxyl groups and ring structures have stronger protective functions. The protective capabilities of tea polyphenols is further strengthened by evidence that phenolic hydroxyl groups can directly conjugate with DAQ. However, GSH and other sulfhydyl groups containing agents have weaker capabilities to abrogate DA oxidation, detoxify ROS and DAQ and inhibit MAOB; whereas nicotine (NICO) and caffeine (CAF) can only modulate Nrf2-Keap1 and PGC-1α pathways to protect DA neurons weakly. The tea polyphenols are identified to protect against overexpression of mutant A30P α-synuclein (α-syn) induced DA neuron degeneration and PD-like symptoms in transgenic Drosophila. Based on achievements from current studies, the excellent and versatile protective capabilities of tea polyphenols are highlighted, which will contribute and benefit to future anti-PD therapy.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Shao Ping Xie
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Wuan Ting Saw
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Patrick Ghim Hoe Ho
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Hongyan Wang
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhou Lei
- Ocular Proteomics Laboratory, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhao Yi
- Department of Neurology, Singapore General Hospital, Singapore 169608, Singapore
| | - Eng King Tan
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.
- Department of Neurology, Singapore General Hospital, Singapore 169608, Singapore.
| |
Collapse
|
23
|
Kumar P, Choonara YE, du Toit LC, Singh N, Pillay V. In Vitro and In Silico Analyses of Nicotine Release from a Gelisphere-Loaded Compressed Polymeric Matrix for Potential Parkinson's Disease Interventions. Pharmaceutics 2018; 10:pharmaceutics10040233. [PMID: 30445765 PMCID: PMC6320845 DOI: 10.3390/pharmaceutics10040233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
This study aimed to develop a prolonged-release device for the potential site-specific delivery of a neuroprotective agent (nicotine). The device was formulated as a novel reinforced crosslinked composite polymeric system with the potential for intrastriatal implantation in Parkinson's disease interventions. Polymers with biocompatible and bioerodible characteristics were selected to incorporate nicotine within electrolyte-crosslinked alginate-hydroxyethylcellulose gelispheres compressed within a release rate-modulating external polymeric matrix, comprising either hydroxypropylmethylcellulose (HPMC), polyethylene oxide (PEO), or poly(lactic-co-glycolic) acid (PLGA) to prolong nicotine release. The degradation and erosion studies showed that the produced device had desirable robustness with the essential attributes for entrapping drug molecules and retarding their release. Zero-order drug release was observed over 50 days from the device comprising PLGA as the external matrix. Furthermore, the alginate-nicotine interaction, the effects of crosslinking on the alginate-hydroxyethycellulose (HEC) blend, and the effects of blending PLGA, HPMC, and PEO on device performance were mechanistically elucidated using molecular modelling simulations of the 3D structure of the respective molecular complexes to predict the molecular interactions and possible geometrical orientation of the polymer morphologies affecting the geometrical preferences. The compressed polymeric matrices successfully retarded the release of nicotine over several days. PLGA matrices offered minimal rates of matrix degradation and successfully retarded nicotine release, leading to the achieved zero-order release for 50 days following exposure to simulated cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Neha Singh
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|