1
|
Srivastava A, Srivastava AK, Pandeya A, Pant AB. Pesticide mediated silent neurotoxicity and its unmasking: An update on recent progress. Toxicology 2023; 500:153665. [PMID: 37944577 DOI: 10.1016/j.tox.2023.153665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Being human's one of the most protected organs, brain is yet most vulnerable to xenobiotics exposure. Though pesticide-mediated neurotoxicity is well-explored, the fraternity of neurotoxicologists is less focused on the phenomenon of "silent" or "clinically undetectable" neurotoxicity. Silent neurotoxicity defines continual trivial changes in the nervous system that do not manifest any overt signs of toxicity unless unmasked by any natural or experimental event. Although this perception is not novel, insufficient experimental and epidemiological evidence makes it an outlier among toxicological research. A report in 2016 highlighted the need to investigate silent neurotoxicity and its potential challenges. The limited existing experimental data unveiled the unique responsiveness of neurons following silent neurotoxicity unmasking. Concerned studies have shown that low-dose developmental exposure to pesticides sensitizes the nigrostriatal dopaminergic system towards silent neurotoxicity, making it vulnerable to advanced cumulative neurotoxicity following pesticide challenges later in life. Therefore, conducting such studies may explain the precise etiology of pesticide-induced neurological disorders in humans. With no updates on this topic since 2016, this review is an attempt to acquaint the neurotoxicologist with silent neurotoxicity as a serious threat to human health, and proof-of-concept through a narrative using relevant published data so far with future perspectives.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| | - Ankur Kumar Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh 226001, India
| | - Abhishek Pandeya
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh 226001, India
| | - Aditya Bhushan Pant
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
2
|
Ait Lhaj Z, Ibork H, El Idrissi S, Ait Lhaj F, Sobeh M, Mohamed WMY, Alamy M, Taghzouti K, Abboussi O. Bioactive strawberry fruit ( Arbutus unedo L.) extract remedies paraquat-induced neurotoxicity in the offspring prenatally exposed rats. Front Neurosci 2023; 17:1244603. [PMID: 37901424 PMCID: PMC10600521 DOI: 10.3389/fnins.2023.1244603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Background Paraquat (1,1'-dimethyl-4-4'-bipyridinium dichloride) exposure is well-established as a neurotoxic agent capable of causing neurological deficits in offspring. This study aimed to investigate therapeutic effects of Arbutus unedo L. aqueous extract (AU) against paraquat (PQ) exposure. Methods For that the phytoconstituents of AU was determined by LC/MS, and then its antioxidant potential was assessed by DPPH and ABTS assays. The assessment included its impact on cell viability and mitochondrial metabolism using N27 dopaminergic cells. Additionally, we evaluated the effects of prenatal PQ exposure on motor coordination, dopamine levels, trace element levels, and total antioxidant capacity (TAC) in rat progeny. Results The phytochemical profile of AU extract revealed the presence of 35 compounds, primarily phenolic and organic acids, and flavonoids. This accounted for its strong in vitro antioxidant activities against DPPH and ABTS radicals, surpassing the activities of vitamin C. Our findings demonstrated that AU effectively inhibited PQ-induced loss of N27 rat dopaminergic neural cells and significantly enhanced their mitochondrial respiration. Furthermore, daily post-treatment with AU during the 21 days of the rat's pregnancy alleviated PQ-induced motor deficits and akinesia in rat progeny. These effects inhibited dopamine depletion and reduced iron levels in the striatal tissues. The observed outcomes appeared to be mediated by the robust antioxidant activity of AU, effectively counteracting the PQ-induced decrease in TAC in the blood plasma of rat progeny. These effects could be attributed to the bioactive compounds present in AU, including phenolic acids such as gallic acid and flavonoids such as quercetin, rutin, apigenin, glucuronide, and kaempferol, all known for their potent antioxidant capacity. Discussion In conclusion, this preclinical study provided the first evidence of the therapeutic potential of AU extract against PQ-induced neurotoxicity. These findings emphasize the need for further exploration of the clinical applicability of AU in mitigating neurotoxin-induced brain damage.
Collapse
Affiliation(s)
- Zakaria Ait Lhaj
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Farida Ait Lhaj
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Faculty of Sciences, Center of Materials, Mohammed V University, Rabat, Morocco
| | - Mansour Sobeh
- AgroBiosciences Research Division, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Wael M. Y. Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Meryem Alamy
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| |
Collapse
|
3
|
Zuo Z, Li J, Zhang B, Hang A, Wang Q, Xiong G, Tang L, Zhou Z, Chang X. Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice. TOXICS 2023; 11:842. [PMID: 37888693 PMCID: PMC10611227 DOI: 10.3390/toxics11100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Early-life exposure to environmental neurotoxicants is known to have lasting effects on organisms. In this study, we aim to investigate the impacts of PQ exposure during early developmental stages and adult re-challenge in aged mice on non-motor neurobehavior. Two mouse models, which were exposed once during early life stage and re-exposure at adulthood, were created to explore the long-term effects of PQ on non-motor neurobehavior. As the results showed, early-life exposure to PQ caused impairment in working memory and cognitive ability in aged male mice, but not in female mice, exhibiting a sex-specific impairment. Moreover, male mice that were re-challenged with PQ at adulthood following early-life exposure also exhibited non-motor neurobehavioral disorders. Notably, re-exposure to PQ exacerbated neurobehavioral disorders and anxiety levels compared to single exposure during different life stages. Collectively, early-life exposure to PQ can result in irreversible impairments in non-motor neurobehavior and increase susceptibility to subsequent insults in male mice, but not in female mice, suggesting greater sensitivity in male rodents to PQ-induced non-motor neurobehavioral deficits.
Collapse
Affiliation(s)
- Zhenzi Zuo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Ai Hang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Qiaoxu Wang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (Q.W.); (L.T.)
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (Q.W.); (L.T.)
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| |
Collapse
|
4
|
Liu C, Liu Z, Fang Y, Du Z, Yan Z, Yuan X, Dai L, Yu T, Xiong M, Tian Y, Li H, Li F, Zhang J, Meng L, Wang Z, Jiang H, Zhang Z. Exposure to the environmentally toxic pesticide maneb induces Parkinson's disease-like neurotoxicity in mice: A combined proteomic and metabolomic analysis. CHEMOSPHERE 2022; 308:136344. [PMID: 36087732 DOI: 10.1016/j.chemosphere.2022.136344] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Maneb is a typical dithiocarbamate fungicide that has been extensively used worldwide. Epidemiological evidence shows that exposure to maneb is an environmental risk factor for Parkinson's disease (PD). However, the mechanisms underlying maneb-induced neurotoxicity have yet to be elucidated. In this study, we exposed SH-SY5Y cells to maneb at environmentally relevant concentrations (0, 0.1, 5, 10 mg/L) and found that maneb dose-dependently decreased the cell viability. Furthermore, maneb (60 mg/kg) induced PD-like motor impairment in α-synuclein A53T transgenic mice. The results of tandem mass tag (TMT) proteomics and metabolomics studies of mouse brain and serum revealed significant changes in proteins and metabolites in the pathways involved in the neurotransmitter system. The omics results were verified by targeted metabolomics and Western blot analysis, which demonstrated that maneb induced disturbance of the PD-related pathways, including the phenylalanine and tryptophan metabolism pathways, dopaminergic synapse, synaptic vesicle cycle, mitochondrial dysfunction, and oxidative stress. In addition, the PD-like phenotype induced by maneb was attenuated by the asparagine endopeptidase (AEP) inhibitor compound #11 (CP11) (10 mg/kg), indicating that AEP may play a role in maneb-induced neurotoxicity. To the best of our knowledge, this is the first study to investigate the molecular mechanisms underlying maneb-induced PD-like phenotypes using multiomics analysis, which identified novel therapeutic targets for PD associated with pesticides and other environmental pollutants.
Collapse
Affiliation(s)
- Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yanyan Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zhen Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhi Yan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Fei Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Paredes-Barquero M, Niso-Santano M, Fuentes JM, Martínez-Chacón G. In vitro and in vivo models to study the biological and pharmacological properties of queen bee acid (QBA, 10-hydroxy-2-decenoic acid): A systematic review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Devi S, Chaturvedi M, Fatima S, Priya S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology 2022; 465:153049. [PMID: 34818560 DOI: 10.1016/j.tox.2021.153049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
The adverse physiological conditions have been long known to impact protein synthesis, folding and functionality. Major physiological factors such as the effect of pH, temperature, salt and pressure are extensively studied for their impact on protein structure and homeostasis. However, in the current scenario, the environmental risk factors (pollutants) have gained impetus in research because of their increasing concentrations in the environment and strong epidemiologic link with protein aggregation disorders. Here, we review the physiological and environmental risk factors for their impact on protein conformational changes, misfolding, aggregation, and associated pathological conditions, especially environmental risk factors associated pathologies.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Khan AH, Lee LK, Smith DJ. Single-cell analysis of gene expression in the substantia nigra pars compacta of a pesticide-induced mouse model of Parkinson's disease. Transl Neurosci 2022; 13:255-269. [PMID: 36117858 PMCID: PMC9438968 DOI: 10.1515/tnsci-2022-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Exposure to pesticides in humans increases the risk of Parkinson’s disease (PD), but the mechanisms remain poorly understood. To elucidate these pathways, we dosed C57BL/6J mice with a combination of the pesticides maneb and paraquat. Behavioral analysis revealed motor deficits consistent with PD. Single-cell RNA sequencing of substantia nigra pars compacta revealed both cell-type-specific genes and genes expressed differentially between pesticide and control, including Fam241b, Emx2os, Bivm, Gm1439, Prdm15, and Rai2. Neurons had the largest number of significant differentially expressed genes, but comparable numbers were found in astrocytes and less so in oligodendrocytes. In addition, network analysis revealed enrichment in functions related to the extracellular matrix. These findings emphasize the importance of support cells in pesticide-induced PD and refocus our attention away from neurons as the sole agent of this disorder.
Collapse
Affiliation(s)
- Arshad H. Khan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Box 951735, 23-151 A CHS, Los Angeles, CA 90095-1735, United States of America
| | - Lydia K. Lee
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-6928, United States of America
| | - Desmond J. Smith
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Box 951735, 23-151 A CHS, Los Angeles, CA 90095-1735, United States of America
| |
Collapse
|
8
|
Hamdaoui Q, Zekri Y, Richard S, Aubert D, Guyot R, Markossian S, Gauthier K, Gaie-Levrel F, Bencsik A, Flamant F. Prenatal exposure to paraquat and nanoscaled TiO 2 aerosols alters the gene expression of the developing brain. CHEMOSPHERE 2022; 287:132253. [PMID: 34543901 DOI: 10.1016/j.chemosphere.2021.132253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Nanopesticides are innovative pesticides involving engineered nanomaterials in their formulation to increase the efficiency of plant protection products, while mitigating their environmental impact. Despite the predicted growth of the nanopesticide use, no data is available on their inhalation toxicity and the potential cocktail effects between their components. In particular, the neurodevelopmental toxicity caused by prenatal exposures might have long lasting consequences. In the present study, we repeatedly exposed gestating mice in a whole-body exposure chamber to three aerosols, involving the paraquat herbicide, nanoscaled titanium dioxide particles (nTiO2), or a mixture of both. Particle number concentrations and total mass concentrations were followed to enable a metrological follow-up of the exposure sessions. Based on the aerosols characteristics, the alveolar deposited dose in mice was then estimated. RNA-seq was used to highlight dysregulations in the striatum of pups in response to the in utero exposure. Modifications in gene expression were identified at post-natal day 14, which might reflect neurodevelopmental alterations in this key brain area. The data suggest an alteration in the mitochondrial function following paraquat exposure, which is reminiscent of the pathological process leading to Parkinson disease. Markers of different cell lineages were dysregulated, showing effects, which were not limited to dopaminergic neurons. Exposure to the nTiO2 aerosol modulated the regulation of cytokines and neurotransmitters pathways, perhaps reflecting a minor neuroinflammation. No synergy was found between paraquat and nTiO2. Instead, the neurodevelopmental effects were surprisingly lower than the one measured for each substance separately.
Collapse
Affiliation(s)
- Quentin Hamdaoui
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France; Laboratoire National de Métrologie et D'essais (LNE), Paris, France
| | - Yanis Zekri
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Sabine Richard
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Denise Aubert
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Romain Guyot
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Suzy Markossian
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Karine Gauthier
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | | | - Anna Bencsik
- Université Claude Bernard Lyon 1, ANSES, Laboratoire de Lyon, France
| | - Frédéric Flamant
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France.
| |
Collapse
|
9
|
Goyal S, Seth B, Chaturvedi RK. Polyphenols and Stem Cells for Neuroregeneration in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Curr Pharm Des 2021; 28:806-828. [PMID: 34781865 DOI: 10.2174/1381612827666211115154450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS) are neurological disorders, pathologically characterized by chronic degeneration of dopaminergic neurons and motor neurons respectively. There is still no cure or effective treatment against the disease progression and most of the treatments are symptomatic. The present review offers an overview of the different factors involved in the pathogenesis of these diseases. Subsequently, we focused on the recent advanced studies of dietary polyphenols and stem cell therapies, which have made it possible to slow down the progression of neurodegeneration. To date, stem cells and different polyphenols have been used for the directional induction of neural stem cells into dopaminergic neurons and motor neurons. We have also discussed their involvement in the modulation of different signal transduction pathways and growth factor levels in various in vivo and in vitro studies. Likewise stem cells, polyphenols also exhibit the potential of neuroprotection by their anti-apoptotic, anti-inflammatory, anti-oxidant properties regulating the growth factors levels and molecular signaling events. Overall this review provides a detailed insight into recent strategies that promise the use of polyphenol with stem cell therapy for the possible treatment of PD and ALS.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| |
Collapse
|
10
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
11
|
Pinson MR, Chung DD, Adams AM, Scopice C, Payne EA, Sivakumar M, Miranda RC. Extracellular Vesicles in Premature Aging and Diseases in Adulthood Due to Developmental Exposures. Aging Dis 2021; 12:1516-1535. [PMID: 34527425 PMCID: PMC8407878 DOI: 10.14336/ad.2021.0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The developmental origins of health and disease (DOHaD) is a paradigm that links prenatal and early life exposures that occur during crucial periods of development to health outcome and risk of disease later in life. Maternal exposures to stress, some psychoactive drugs and alcohol, and environmental chemicals, among others, may result in functional changes in developing fetal tissues, creating a predisposition for disease in the individual as they age. Extracellular vesicles (EVs) may be mediators of both the immediate effects of exposure during development and early childhood as well as the long-term consequences of exposure that lead to increased risk and disease severity later in life. Given the prevalence of diseases with developmental origins, such as cardiovascular disease, neurodegenerative disorders, osteoporosis, metabolic dysfunction, and cancer, it is important to identify persistent mediators of disease risk. In this review, we take this approach, viewing diseases typically associated with aging in light of early life exposures and discuss the potential role of EVs as mediators of lasting consequences.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amy M Adams
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Chiara Scopice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Elizabeth A Payne
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Monisha Sivakumar
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
12
|
Chen J, Su Y, Lin F, Iqbal M, Mehmood K, Zhang H, Shi D. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112711. [PMID: 34455184 DOI: 10.1016/j.ecoenv.2021.112711] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a cheap and an effective herbicide, which is widely being used worldwide to remove weeds in cultivated crop fields. However, it can cause soil and water pollution, and pose serious harm to the environment and organisms. Several countries have started to limit or prohibit the use of PQ because of the increasing number of human deaths. Its toxicity can damage the organisms with a multi-target mechanism, which has not been fully understood yet. That is why it is hard to treat as well. The current research on PQ focuses on its targeted organ, the lungs, in which PQ mostly trigger pulmonary fibrosis. While there is a lack of systematic research, there are few studies published discussing its toxic effects at systematic level. This review summarizes the major damages caused by PQ in different organisms and partial mechanisms by which it causes these damages. For this purpose, we consulted several research articles that studied the toxicity of PQ in various tissues. We also listed some drugs that can be used to alleviate the toxicity of PQ. However, at present, the effectiveness of these drugs is still being explored in animal experiments and the study of their mechanism will also help in understanding the poisoning mechanism of PQ, which will ultimately lead to effective treatment in future.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson's disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci 2021; 21:422-433. [PMID: 33357211 PMCID: PMC8292858 DOI: 10.17305/bjbms.2020.5181] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
Among the popular animal models of Parkinson's disease (PD) commonly used in research are those that employ neurotoxins, especially 1-methyl- 4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). This neurotoxin exerts it neurotoxicity by causing a barrage of insults, such as oxidative stress, mitochondrial apoptosis, inflammation, excitotoxicity, and formation of inclusion bodies acting singly and in concert, ultimately leading to dopaminergic neuronal damage in the substantia nigra pars compacta and striatum. The selective neurotoxicity induced by MPTP in the nigrostriatal dopaminergic neurons of the mouse brain has led to new perspectives on PD. For decades, the MPTP-induced mouse model of PD has been the gold standard in PD research even though it does not fully recapitulate PD symptomatology, but it does have the advantages of simplicity, practicability, affordability, and fewer ethical considerations and greater clinical correlation than those of other toxin models of PD. The model has rejuvenated PD research and opened new frontiers in the quest for more novel therapeutic and adjuvant agents for PD. Hence, this review summarizes the role of MPTP in producing Parkinson-like symptoms in mice and the experimental role of the MPTP-induced mouse model. We discussed recent developments of more promising PD therapeutics to enrich our existing knowledge about this neurotoxin using this model.
Collapse
Affiliation(s)
- Musa Mustapha
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
- Department of Human Anatomy, Faculty of Basic Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
14
|
Dextromethorphan Dampens Neonatal Astrocyte Activation and Endoplasmic Reticulum Stress Induced by Prenatal Exposure to Buprenorphine. Behav Neurol 2021; 2021:6301458. [PMID: 34336001 PMCID: PMC8289573 DOI: 10.1155/2021/6301458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal exposure to buprenorphine renders offspring vulnerable to cerebral impairments. In this study, our data demonstrate, for the first time, that prenatal exposure to buprenorphine escalates astrocyte activation concurrent with indications of endoplasmic reticulum (ER) stress in the hippocampi of neonates, and this can be prevented by the coadministration of dextromethorphan with buprenorphine. Furthermore, dextromethorphan can inhibit the accumulation of GPR37 in the hippocampus of newborns caused by buprenorphine and is accompanied by the proapoptotic ER stress response that involves the procaspase-3/CHOP pathway. Primary astrocyte cultures derived from the neonates of the buprenorphine group also displayed aberrant ER calcium mobilization and elevated basal levels of cyclooxygenase-2 (COX-2) at 14 days in vitro while showing sensitivity to lipopolysaccharide-activated expression of COX-2. Similarly, these long-lasting defects in the hippocampus and astrocytes were abolished by dextromethorphan. Our findings suggest that prenatal exposure to buprenorphine might instigate long-lasting effects on hippocampal and astrocytic functions. The beneficial effects of prenatal coadministration of dextromethorphan might be, at least in part, attributed to its properties in attenuating astrocyte activation and hippocampal ER stress in neonates.
Collapse
|
15
|
Liu F, Yuan M, Li C, Guan X, Li B. The protective function of taurine on pesticide-induced permanent neurodevelopmental toxicity in juvenile rats. FASEB J 2021; 35:e21273. [PMID: 33368748 DOI: 10.1096/fj.202001290r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
Numerous studies have confirmed that prenatal or early postnatal exposure to pesticides can lead to functional deficits in the developing brain. This study aimed to investigate whether combined exposure to paraquat (PQ) and maneb (MB) during puberty could cause permanent toxic effects in the neural system of rats. In addition, the neuroprotective function of taurine (T) and its possible mechanism were investigated. Rats were administered PQ + MB intragastrically for 12 continuous weeks, while taurine dissolved in water was fed to the rats for 24 continuous weeks. In the behavioral tests, the rats' trajectories became complex, and the reaction latencies and mistake frequencies increased. Significant changes were found in the hippocampal neurons of the PQ + MB groups but not in the taurine treatment groups. PQ + MB stimulated cAMP to reduce the production of protein kinase A (PKA) and inhibited the activation of other elements, such as brain-derived neurotrophic factor (BDNF), cAMP response element binding protein (CREB), phospho-CREB (p-CREB), immediate-early genes (IEGs)Arc, and c-Fos. Importantly, taurine regulated the level of cAMP and the expression of the abovementioned proteins. Together, our findings implied that adolescent exposure to PQ + MB may impact the behavior and cognitive function of rats via the cAMP-PKA-CREB signaling pathway, while taurine may in turn exert neuroprotection by diminishing these impacts.
Collapse
Affiliation(s)
- Fukai Liu
- Animal Laboratory Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengtong Yuan
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Guan
- Animal Laboratory Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bai Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Ramires Júnior OV, Alves BDS, Barros PAB, Rodrigues JL, Ferreira SP, Monteiro LKS, Araújo GDMS, Fernandes SS, Vaz GR, Dora CL, Hort MA. Nanoemulsion Improves the Neuroprotective Effects of Curcumin in an Experimental Model of Parkinson's Disease. Neurotox Res 2021; 39:787-799. [PMID: 33860897 DOI: 10.1007/s12640-021-00362-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction. Recent studies have shown that curcumin (CUR) has neuroprotective effects in PD experimental models. However, its efficacy is limited due to low water solubility, bioavailability, and access to the central nervous system. In this study, we compared the effects of new curcumin-loaded nanoemulsions (NC) and free CUR in an experimental model of PD. Adult Swiss mice received NC or CUR (25 and 50 mg/kg) or vehicle orally for 30 days. Starting on the eighth day, they were administered rotenone (1 mg/kg) intraperitoneally until the 30th day. At the end of the treatment, motor assessment was evaluated by open field, pole test, and beam walking tests. Oxidative stress markers and mitochondrial complex I activity were measured in the brain tissue. Both NC and CUR treatment significantly improved motor impairment, reduced lipoperoxidation, modified antioxidant defenses, and prevented inhibition of complex I. However, NC was more effective in preventing motor impairment and inhibition of complex I when compared to CUR in the free form. In conclusion, our results suggest that NC effectively enhances the neuroprotective potential of CUR and is a promising nanomedical application for PD.
Collapse
Affiliation(s)
- Osmar Vieira Ramires Júnior
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil
| | - Barbara da Silva Alves
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil
| | - Paula Alice Bezerra Barros
- Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil
| | - Jamile Lima Rodrigues
- Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil
| | - Shana Pires Ferreira
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil
| | - Linda Karolynne Seregni Monteiro
- Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil
| | - Gabriela de Moraes Soares Araújo
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil
| | - Sara Silva Fernandes
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil
| | - Gustavo Richter Vaz
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil
| | - Cristiana Lima Dora
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil.,Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil
| | - Mariana Appel Hort
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil. .,Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|