1
|
Di Maro M, Gargiulo L, Gomez d'Ayala G, Duraccio D. Exploring Antimicrobial Compounds from Agri-Food Wastes for Sustainable Applications. Int J Mol Sci 2024; 25:13171. [PMID: 39684881 DOI: 10.3390/ijms252313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Transforming agri-food wastes into valuable products is crucial due to their significant environmental impact, when discarded, including energy consumption, water use, and carbon emissions. This review aims to explore the current research on the recovery of bioactive molecules with antimicrobial properties from agri-food waste and by-products, and discusses future opportunities for promoting a circular economy in its production and processing. Mainly, antibacterial molecules extracted from agri-food wastes are phenolic compounds, essential oils, and saponins. Their extraction and antimicrobial activity against a wide spectrum of bacteria is analyzed in depth. Also, their possible mechanisms of activity are described and classified based on their effect on bacteria, such as the (i) alteration of the cell membrane, (ii) inhibition of energy metabolism and DNA synthesis, and iii) disruption of quorum sensing and biofilm formation. These bioactive molecules have a wide range of possible applications ranging from cosmetics to food packaging. However, despite their potential, the amount of wastes transformed into valuable compounds is very low, due to the high costs relating to their extraction, technical challenges in managing supply chain complexity, limited infrastructure, policy and regulatory barriers, and public perception. For these reasons, further research is needed to develop cost-effective, scalable technologies for biomass valorization.
Collapse
Affiliation(s)
- Mattia Di Maro
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luca Gargiulo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
2
|
Lazaridis DG, Kitsios AP, Koutoulis AS, Malisova O, Karabagias IK. Fruits, Spices and Honey Phenolic Compounds: A Comprehensive Review on Their Origin, Methods of Extraction and Beneficial Health Properties. Antioxidants (Basel) 2024; 13:1335. [PMID: 39594476 PMCID: PMC11591358 DOI: 10.3390/antiox13111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Numerous health benefits have been attributed in the last decades to the regular consumption of fruits, vegetables, herbs and spices, along with honey, in a balanced diet. In this context, the aim of the present review was to provide the literature with the most relevant studies focusing on the determination protocols of these polyphenols and other reducing agents in selected fruits (orange, lemon, grapefruit, prunus, apricot, peach, plum, sweet cherry), spices (oregano, cinnamon, clove, saffron, turmeric) and honey of different botanical origin (nectar or honeydew). In addition, the content and the extraction methods of these compounds, along with their metabolic pathway, have been critically evaluated and discussed. Results showed that all fruits, spices and honey exhibit a considerably high antioxidant activity, which is mainly owed to their phytochemical content. Therefore, a balanced diet consisting of the combination of the foods studied herein may comprise a shield against chronic and other pathophysiological disorders and may be achieved through consecutive educational programs for consumers at an international level.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis K. Karabagias
- Department of Food Science and Technology, School of Agricultural Sciences, University of Patras, G. Seferi 2, 30100 Agrinio, Greece; (D.G.L.); (A.-P.K.); (A.S.K.); (O.M.)
| |
Collapse
|
3
|
Pourmousavi L, Asadi RH, Zehsaz F, Jadidi RP. Potential therapeutic effects of crocin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7395-7420. [PMID: 38758225 DOI: 10.1007/s00210-024-03131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Crocin, a natural bioactive compound derived from saffron (Crocus sativus) and other Crocus genera, has gained significant attention recently due to its potential therapeutic properties. The multifaceted nature of crocin's biological effects has piqued the interest of researchers and health enthusiasts, prompting further investigations into its mechanisms of action and therapeutic applications. This review article comprehensively explores the emerging evidence supporting crocin's role as a promising ally in protecting against metabolic disorders. The review covers the molecular mechanisms underlying crocin's beneficial effects and highlights its potential applications in preventing and treating diverse pathological conditions. Understanding the mechanisms through which crocin exerts its protective effects could advance scientific knowledge and offer potential avenues for developing novel therapeutic interventions. As we uncover the potential of crocin as a valuable ally in the fight against disorders, it becomes evident that nature's palette holds remarkable solutions for enhancing our health.
Collapse
Affiliation(s)
- Laleh Pourmousavi
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Farzad Zehsaz
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
4
|
Mir RA, Tyagi A, Hussain SJ, Almalki MA, Zeyad MT, Deshmukh R, Ali S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1467. [PMID: 38891276 PMCID: PMC11174376 DOI: 10.3390/plants13111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal 191201, India;
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, India;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
5
|
Benkerroum A, Oubella K, Zini S, Boussif K, Mouhanni H, Achemchem F. Stigmas and Petals of Crocus sativus L. (Taliouine, Morocco): Comparative Evaluation of Their Phenolic Compounds, Antioxidant, and Antibacterial Activities. ScientificWorldJournal 2024; 2024:6676404. [PMID: 38808159 PMCID: PMC11132812 DOI: 10.1155/2024/6676404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024] Open
Abstract
The dried stigmas of Crocus sativus L. produce saffron, a precious spice used for its culinary and medicinal properties since ancient times, while its petals are considered the main by-product of saffron production. The present study aimed to comparatively evaluate the phenolic content, antioxidant capacity, and antibacterial activity of methanolic extracts of stigmas and petals of Crocus sativus L. from Taliouine. The polyphenol content was measured using the Folin-Ciocalteu method, the antioxidant activity was determined using the DPPH free radical scavenging method, and the well-diffusion method was used to assess antibacterial activity against seven pathogenic bacterial strains (Bacillus subtilis, Escherichia coli, Listeria monocytogenes, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella enterica, and Staphylococcus aureus). Furthermore, the minimum inhibitory concentration (MIC) of the extracts was determined using the microdilution broth test. Our findings revealed that stigmas and petals contained phenolic compounds at the rate of 56.11 ± 4.70 and 64.73 ± 3.42 mg GAE/g, as well as DPPH radical scavenging capacity with IC50 of 1700 µg/ml and 430 µg/ml, respectively. Petal extract showed more effective antibacterial activity, with inhibition diameters ranging from 10.66 ± 0.57 to 22.00 ± 1.00 mm and MIC values ranging from 2.81 to 5.62 mg/ml, compared to the stigma extract, which displayed inhibition diameters from 10.00 ± 0.00 to 18.67 ± 0.76 mm and MIC from 2.81 to 11.25 mg/ml, against five of the seven bacterial strains tested, including S. aureus, E. coli, P. vulgaris, P. aeruginosa, and S. enterica. Statistical analyses were performed to determine the significance of these results. Thus, stigmas and petals of Crocus sativus L. might serve as a suitable source of natural antioxidant and antimicrobial agents for application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Asmaa Benkerroum
- Research Team Materials, Mechanical and Civil Engineering, National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco
| | - Khadija Oubella
- Research Team Materials, Mechanical and Civil Engineering, National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco
| | - Soukaina Zini
- Research Team Materials, Mechanical and Civil Engineering, National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco
| | - Kaoutar Boussif
- Bioprocess and Environment Team, LASIME Lab, Agadir Superior School of Technology, University Ibn Zohr, Agadir, Morocco
| | - Hind Mouhanni
- Research Team Materials, Mechanical and Civil Engineering, National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Lab, Agadir Superior School of Technology, University Ibn Zohr, Agadir, Morocco
| |
Collapse
|
6
|
Jabbari N, Goli M, Shahi S. Optimization of Bioactive Compound Extraction from Saffron Petals Using Ultrasound-Assisted Acidified Ethanol Solvent: Adding Value to Food Waste. Foods 2024; 13:542. [PMID: 38397518 PMCID: PMC10888204 DOI: 10.3390/foods13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The saffron industry produces large by-products, including petals with potential bioactive compounds, which are cheap and abundant, making them an attractive alternative to expensive stigmas for extracting bioactive components. This study aimed to optimize the extraction conditions of bioactive compounds from vacuum-dried saffron petals using an ultrasound-assisted acidified ethanol solvent. Three factors were considered: ethanol concentration (0-96%), citric acid concentration in the final solvent (0-1%), and ultrasound power (0-400 watt). This study examined the effects of these factors on parameters like maximum antioxidant activity, total anthocyanin content, total phenolic content, and the total flavonoid content of the extraction. This study found that saffron petal extract's antioxidant activity increases with higher ethanol concentration, citric acid dose, and ultrasound power, but that an increased water content leads to non-antioxidant compounds. Increasing the dosage of citric acid improved the extraction of cyanidin-3-glucoside at different ultrasound power levels. The highest extraction was achieved with 400 watts of ultrasound power and 1% citric acid. Ethanol concentration did not affect anthocyanin extraction. Higher ethanol concentration and greater citric acid concentration doses resulted in the maximum extraction of total phenolic content, with a noticeable drop in extraction at higher purity levels. This study found that increasing the proportion of citric acid in the final solvent did not affect flavonoid extraction at high ethanol concentration levels, and the highest efficiency was observed at 200 watts of ultrasound power. The optimum values of the independent parameters for extracting bioactive compounds from saffron petals included 96% ethanol concentration, 0.67% citric acid concentration, and 216 watts of ultrasound power, resulting in a desirability value of 0.82. This ultrasound-assisted acidified ethanolic extract can be used in the food industry as a natural antioxidant and pigment source.
Collapse
Affiliation(s)
- Nikoo Jabbari
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran;
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran;
| | - Sharifeh Shahi
- Department of Medical Engineering, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran;
| |
Collapse
|
7
|
Ricci A, Lazzi C, Bernini V. Natural Antimicrobials: A Reservoir to Contrast Listeria monocytogenes. Microorganisms 2023; 11:2568. [PMID: 37894226 PMCID: PMC10609241 DOI: 10.3390/microorganisms11102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Natural environments possess a reservoir of compounds exerting antimicrobial activity that are forms of defence for some organisms against others. Recently, they have become more and more attractive in the food sector due to the increasing demand for natural compounds that have the capacity to protect food from pathogenic microorganisms. Among foodborne pathogens, Listeria monocytogenes can contaminate food during production, distribution, or storage, and its presence is especially detected in fresh, raw food and ready-to-eat products. The interest in this microorganism is related to listeriosis, a severe disease with a high mortality rate that can occur after its ingestion. Starting from this premise, the present review aims to investigate plant extract and fermented plant matrices, as well as the compounds or mixtures of compounds produced during microbial fermentation processes that have anti-listeria activity.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Viale delle Scienze, 49/A, 43124 Parma, Italy; (C.L.); (V.B.)
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Viale delle Scienze, 49/A, 43124 Parma, Italy; (C.L.); (V.B.)
- SITEIA.PARMA, Viale delle Scienze, Tecnopolo, Padiglione 33, 43124 Parma, Italy
| | - Valentina Bernini
- Department of Food and Drug, University of Parma, Viale delle Scienze, 49/A, 43124 Parma, Italy; (C.L.); (V.B.)
- SITEIA.PARMA, Viale delle Scienze, Tecnopolo, Padiglione 33, 43124 Parma, Italy
| |
Collapse
|
8
|
Sharma N, Gupta M, Nabi G, Biswas S, Ali S, Sarwat M. Variation in the anti-oxidant, anti-obesity, and anti-cancer potential of different polarity extracts of saffron petals. 3 Biotech 2023; 13:249. [PMID: 37377980 PMCID: PMC10290976 DOI: 10.1007/s13205-023-03669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of the present study is to explore the anti-cancer, anti-oxidant, and anti-obesity potential of saffron petal extract (SPE) prepared through the hydro-alcoholic extraction method. Further partitioning was done with a series of polar and non-polar solvents to find out the most potent fraction of SPE against HCC. Organoleptic characterization depicted the color, odor, taste, and texture of the sub-fractions of SPE. Phytochemical, and pharmacognostic screening of these fractions revealed the presence of alkaloids, flavonoids, carbohydrates, glycosides, and phenols. The quantitative assessment demonstrated that the n-butanol fraction showed maximum phenolic (60.8 mg GAE eq./mg EW), and flavonoid (23.3 mg kaempferol eq./mg EW) content. The anti-oxidant study revealed that the n-butanol fraction exhibited the highest radical scavenging activity, as assessed through DPPH and FRAP assay. The results of the comparative cytotoxic potential also showed n-butanol as the best against liver cancer cells (Huh-7), as it has the least IC50 value (462.8 µg/ml). While other extracts viz., chloroform, n-hexane, ethyl acetate, and aqueous fractions have IC50 values as 1088, 733.9, 1043, and 1245 µg/ml, respectively. Additionally, the n-butanol fraction exerted the highest inhibitory potential against α-amylase (92.5%) and pancreatic lipase enzymes (78%), indicating its anti-adipogenesis property. Based on the current finding, we can deduce that the n-butanol fraction of SPE has better cytotoxic, anti-oxidant, and anti-obesity potential than the other fractions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03669-x.
Collapse
Affiliation(s)
- Nidhi Sharma
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301 India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301 India
| | - Gowher Nabi
- Molquest Diagnostic and Research Centre, New Delhi, 110059 India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201301 India
| | - Sher Ali
- Era University, Lucknow, Uttar Pradesh 226003 India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301 India
| |
Collapse
|
9
|
Antibacterial Activity of Crocus sativus L. Petals Extracts against Foodborne Pathogenic and Spoilage Microorganisms, with a Special Focus on Clostridia. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010060. [PMID: 36676009 PMCID: PMC9860927 DOI: 10.3390/life13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
In recent years, there has been a growing interest in the use of novel antimicrobial agents able to inhibit or kill food-borne bacteria or to interrupt the onset of food spoilage. Crocus sativus L. petals, typically considered as waste obtained from saffron spice production, could be a source of natural bioactive compounds to be used as food preservatives. The purpose of this work was to investigate the antibacterial properties of two hydroalcoholicsaffron petal extracts obtained by maceration (SPEA) and by ultrasonic bath (SPEB) methods. The main polyphenols identified in both extracts were gallic and chlorogenic acids, representing almost 70% of the phenolic fraction monitored. The antibacterial activity was studied by the agar well-diffusion method, against food-borne pathogenic and spoilage bacteria. Both extracts showed activity mainly against Gram-positive bacteria, in particular those belonging to the Clostridiaceae family (C. perfringens, C. botulinum and C. difficile), with inhibition zone diameters ranging from 13 to 18 mm. The antibacterial properties against Clostridia were further analyzed, determining MIC and MBC and performing a time-kill test. SPEA showed lower MIC/MBC values (250 mg/mL) compared to SPEB (500 mg/mL), suggesting that it could be more active against the assayed strains, probably because of its higher content of gallic acid. SPEA and SPEB, tested at a concentration of 1 × MIC, showed bactericidal activity against C. perfringens, C. botulinum and C. difficile and these results suggest that saffron petals could represent a valuable natural alternative source to conventional preservatives. Further investigations are needed to evaluate possible applications in the food industry.
Collapse
|