1
|
Nguyen HA, Anh Thi NP, Thien Trang NP, Ho TT, Trinh TND, Tran NKS, Trinh KTL. Recent advances in biosensors for screening plant pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4485-4495. [PMID: 38940060 DOI: 10.1039/d4ay00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Worldwide, plant pathogens have been a considerably important cause of economic loss in agriculture especially in the decades of agricultural intensification. The increasing losses in agriculture due to biotic plant diseases have drawn attention towards the development of plant disease analyzing methods. In this context, biosensors have emerged as significantly important tools which help farmers in on-field diagnosis of plant diseases. Compared to traditional methods, biosensors have outstanding features such as being highly sensitive and selective, cost-effective, portable, fast and user-friendly operation, and so on. There are three common types of biosensors including electrochemical, fluorescent, and colorimetric biosensors. In this review, some common biotic plant diseases caused by fungi, bacteria, and viruses are first summarized. Then, current advances in developing biosensors are discussed.
Collapse
Affiliation(s)
- Hanh An Nguyen
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Pham Anh Thi
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Pham Thien Trang
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Biotechnology Department, College of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Vietnam
| | - Nguyen Khoi Song Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam.
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
2
|
Lorencova L, Kasak P, Kosutova N, Jerigova M, Noskovicova E, Vikartovska A, Barath M, Farkas P, Tkac J. MXene-based electrochemical devices applied for healthcare applications. Mikrochim Acta 2024; 191:88. [PMID: 38206460 PMCID: PMC10784403 DOI: 10.1007/s00604-023-06163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The initial part of the review provides an extensive overview about MXenes as novel and exciting 2D nanomaterials describing their basic physico-chemical features, methods of their synthesis, and possible interfacial modifications and techniques, which could be applied to the characterization of MXenes. Unique physico-chemical parameters of MXenes make them attractive for many practical applications, which are shortly discussed. Use of MXenes for healthcare applications is a hot scientific discipline which is discussed in detail. The article focuses on determination of low molecular weight analytes (metabolites), high molecular weight analytes (DNA/RNA and proteins), or even cells, exosomes, and viruses detected using electrochemical sensors and biosensors. Separate chapters are provided to show the potential of MXene-based devices for determination of cancer biomarkers and as wearable sensors and biosensors for monitoring of a wide range of human activities.
Collapse
Affiliation(s)
- Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Monika Jerigova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Eva Noskovicova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Marek Barath
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Pavol Farkas
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Shelash Al-Hawary SI, Sapaev IB, Althomali RH, Musad Saleh EA, Qadir K, Romero-Parra RM, Ismael Ouda G, Hussien BM, Ramadan MF. Recent Progress in Screening of Mycotoxins in Foods and Other Commodities Using MXenes-Based Nanomaterials. Crit Rev Anal Chem 2023; 54:3066-3082. [PMID: 37307199 DOI: 10.1080/10408347.2023.2222412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycotoxin pollution in agricultural food products endangers animal and human health during the supply chains, therefore the development of accurate and rapid techniques for the determination of mycotoxins is of great importance for food safety guarantee. MXenes-based nanoprobes have attracted enormous attention as a complementary analysis and promising alternative strategies to conventional diagnostic methods, because of their fascinating features, like high electrical conductivity, various surface functional groups, high surface area, superb thermal resistance, good hydrophilicity, and environmentally-friendlier characteristics. In this study, we outline the state-of-the-art research on MXenes-based probes in detecting various mycotoxins like aflatoxin, ochratoxin, deoxynivalenol, zearalenone, and other toxins as a most commonly founded mycotoxin in the agri-food supply chain. First, we present the diverse synthesis approaches and exceptional characteristics of MXenes. Afterward, based on the detecting mechanism, we divide the biosensing utilizations of MXenes into two subcategories: electrochemical, and optical biosensors. Then their performance in effective sensing of mycotoxins is comprehensively deliberated. Finally, present challenges and prospective opportunities for MXenes are debated.
Collapse
Affiliation(s)
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Saudi Arabia
| | - Kamran Qadir
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin, China
| | | | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
4
|
Negahdary M, Akira Ameku W, Gomes Santos B, dos Santos Lima I, Gomes de Oliveira T, Carvalho França M, Angnes L. Recent electrochemical sensors and biosensors for toxic agents based on screen-printed electrodes equipped with nanomaterials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Wang W, Gunasekaran S. MXene-Based Nucleic Acid Biosensors for Agricultural and Food Systems. BIOSENSORS 2022; 12:982. [PMID: 36354491 PMCID: PMC9688781 DOI: 10.3390/bios12110982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 05/04/2023]
Abstract
MXene is a two-dimensional (2D) nanomaterial that exhibits several superior properties suitable for fabricating biosensors. Likewise, the nucleic acid (NA) in oligomerization forms possesses highly specific biorecognition ability and other features amenable to biosensing. Hence the combined use of MXene and NA is becoming increasingly common in biosensor design and development. In this review, MXene- and NA-based biosensors are discussed in terms of their sensing mechanisms and fabrication details. MXenes are introduced from their definition and synthesis process to their characterization followed by their use in NA-mediated biosensor fabrication. The emphasis is placed on the detection of various targets relevant to agricultural and food systems, including microbial pathogens, chemical toxicants, heavy metals, organic pollutants, etc. Finally, current challenges and future perspectives are presented with an eye toward the development of advanced biosensors with improved detection performance.
Collapse
Affiliation(s)
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|