1
|
Leslie AR, Ning S, Armstrong CM, D’Abronzo LS, Sharifi M, Schaaf ZA, Lou W, Liu C, Evans CP, Lombard AP, Gao AC. IGFBP3 promotes resistance to Olaparib via modulating EGFR signaling in advanced prostate cancer. iScience 2024; 27:108984. [PMID: 38327800 PMCID: PMC10847745 DOI: 10.1016/j.isci.2024.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Olaparib is a pioneering PARP inhibitor (PARPi) approved for treating castration-resistant prostate cancer (CRPC) tumors harboring DNA repair defects, but clinical resistance has been documented. To study acquired resistance, we developed Olaparib-resistant (OlapR) cell lines through chronic Olaparib treatment of LNCaP and C4-2B cell lines. Here, we found that IGFBP3 is highly expressed in acquired (OlapR) and intrinsic (Rv1) models of Olaparib resistance. We show that IGFBP3 expression promotes Olaparib resistance by enhancing DNA repair capacity through activation of EGFR and DNA-PKcs. IGFBP3 depletion enhances efficacy of Olaparib by promoting DNA damage accumulation and subsequently, cell death in resistant models. Mechanistically, we show that silencing IGFBP3 or EGFR expression reduces cell viability and resensitizes OlapR cells to Olaparib treatment. Inhibition of EGFR by Gefitinib suppressed growth of OlapR cells and improved Olaparib sensitivity, thereby phenocopying IGFBP3 inhibition. Collectively, our results highlight IGFBP3 and EGFR as critical mediators of Olaparib resistance.
Collapse
Affiliation(s)
- Amy R. Leslie
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | | | | | - Masuda Sharifi
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Zachary A. Schaaf
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Wei Lou
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Christopher P. Evans
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Alan P. Lombard
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Allen C. Gao
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
2
|
Zhong K, Luo W, Li N, Tan X, Li Y, Yin S, Huang Y, Fang L, Ma W, Cai Y, Yin Y. CDK12 regulates angiogenesis of advanced prostate cancer by IGFBP3. Int J Oncol 2024; 64:20. [PMID: 38186306 PMCID: PMC10783938 DOI: 10.3892/ijo.2024.5608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy among men, with a majority of patients presenting with distant metastases at the time of initial diagnosis. These patients are at a heightened risk of developing more aggressive castration‑resistant PCa following androgen deprivation therapy, which poses a greater challenge for treatment. Notably, the inhibition of tumor angiogenesis should not be considered an ineffective treatment strategy. The regulatory role of CDK12 in transcriptional and post‑transcriptional processes is essential for the proper functioning of various cellular processes. In the present study, the expression of CDK12 was first knocked down in cells using CRISPR or siRNA technology. Subsequently, RNA‑seq analysis, co‑immunoprecipitation, western blotting, reverse transcription‑quantitative polymerase chain reaction and the LinkedOmics database were employed to reveal that CDK12 inhibits insulin like growth factor binding protein 3 (IGFBP3). Western blot analysis also demonstrated that CDK12 promoted VEGFA expression by inhibiting IGFBP3, which involves the Akt signaling pathway. Then, CDK12 was found to promote PCa cell proliferation, cell migration and angiogenesis by inhibiting IGFBP3 through cell proliferation assays, cell migration assays and tube formation assays, respectively. Finally, animal experiments were performed for in vivo validation. It was concluded that CDK12 promoted PCa and its angiogenesis by inhibiting IGFBP3.
Collapse
Affiliation(s)
- Kun Zhong
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenwu Luo
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Nan Li
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xin Tan
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuqing Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shiyuan Yin
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuhang Huang
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Linna Fang
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Ma
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yongping Cai
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yu Yin
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
3
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
5
|
Zohar Y, Mabjeesh NJ. Targeting HIF-1 for prostate cancer: a synthesis of preclinical evidence. Expert Opin Ther Targets 2023; 27:715-731. [PMID: 37596912 DOI: 10.1080/14728222.2023.2248381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
INTRODUCTION Hypoxia-inducible factor (HIF) mediates multiple intracellular processes that drive cellular metabolism and induce proliferation. Dysregulated HIF expression is associated with oncogenic cellular transformation. Moreover, high HIF levels correlate with tumor aggressiveness and chemoresistance, indicating the vital effect of HIF-1α on tumorigenicity. Currently, widespread in-vitro and in-vivo research is focusing on targeting HIF with drugs that have already been approved for use by the FDA, such as belzutifan, in renal cell carcinoma. HIF inhibition is mostly associated with tumor size reduction; however, drug toxicity remains a challenge. AREA COVERED In this review, we focus on the potential of targeting HIF in prostate cancer (PC) and summarize the scientific background of HIF activity in PC. This finding emphasizes the rationale for using HIF as a therapeutic target in this malignancy. We have listed known HIF inhibitors that are being investigated in preclinical studies and their potential as anticancer drugs for PC. EXPERT OPINION Although HIF-targeting agents have been investigated for over a decade, their use in therapy-resistant cancers remains relevant and should be explored further. In addition, the use of naturally occurring HIF inhibitors should be considered as an add-on therapy for the currently used regimens.
Collapse
Affiliation(s)
- Yarden Zohar
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Nicola J Mabjeesh
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
6
|
Insulin‑like growth factor axis: A potential nanotherapy target for resistant cervical cancer tumors (Review). Oncol Lett 2023; 25:128. [PMID: 36844628 PMCID: PMC9950333 DOI: 10.3892/ol.2023.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/07/2022] [Indexed: 02/12/2023] Open
Abstract
Cervical cancer is among the most frequently occurring neoplasms worldwide, and it particularly affects individuals in developing countries. Factors such as the low quality of screening tests, the high incidence of locally advanced cancer stages and the intrinsic resistance of certain tumors are the main causes of failure in the treatment of this neoplasm. Due to advances in the understanding of carcinogenic mechanisms and bioengineering research, advanced biological nanomaterials have been manufactured. The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including IGF receptor 1. These receptors are activated by binding to their respective growth factor ligands, IGF-1 and IGF-2, and insulin, and play an important role in the development, maintenance, progression, survival and treatment resistance of cervical cancer. In the present review, the role of the IGF system in cervical cancer and three nanotechnological applications that use elements of this system are described, namely Trap decoys, magnetic iron oxide nanoparticles and protein nanotubes. Their use in the treatment of resistant cervical cancer tumors is also discussed.
Collapse
|
7
|
Unveiling the m6A Methylation Regulator Links between Prostate Cancer and Periodontitis by Transcriptomic Analysis. DISEASE MARKERS 2022; 2022:4030046. [PMID: 36133437 PMCID: PMC9484949 DOI: 10.1155/2022/4030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Objective To identify the N6-methyladenosine (m6A) methylation regulator genes linking prostate adenocarcinoma (PRAD) and periodontitis (PD). Materials and Methods PD and TCGA-PRAD GEO datasets were downloaded and analyzed through differential expression analysis to determine the differentially expressed genes (DEGs) deregulated in both conditions. Twenty-three m6A RNA methylation-related genes were downloaded in total. The m6A-related genes that overlapped between PRAD and PD were identified as crosstalk genes. Survival analysis was performed on these genes to determine their prognostic values in the overall survival outcomes of prostate cancer. The KEGG pathways were the most significantly enriched by m6A-related crosstalk genes. We also performed lasso regression analysis and univariate survival analysis to identify the most important m6A-related crosstalk genes, and a protein-protein interaction (PPI) network was built from these genes. Results Twenty-three m6A methylation-related regulator genes were differentially expressed and deregulated in PRAD and PD. Among these, seven (i.e., ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as m6A-related cross-talk genes. Survival analysis showed that only the FMR1 gene was a prognostic indicator for PRAD. All other genes had no significant influence on the overall survival of patients with PRAD. Lasso regression analysis and univariate survival analysis identified four m6A-related cross-talk genes (i.e., ALKBH5, IGFBP3, RBM15B, and FMR1) that influenced risk levels. A PPI network was constructed from these genes, and 183 genes from this network were significantly enriched in pathogenic Escherichia coli infection, p53 signaling pathway, nucleocytoplasmic transport, and ubiquitin-mediated proteolysis. Conclusion Seven m6A methylation-related genes (ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as cross-talk genes between prostate cancer and PD.
Collapse
|
8
|
Borziak K, Finkelstein J. Gene Expression Markers of Prognostic Importance for Prostate Cancer Risk in Patients with Benign Prostate Hyperplasia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:73-76. [PMID: 36086411 DOI: 10.1109/embc48229.2022.9871422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Comparative analyses utilizing publicly available big data have the potential to generate novel hypotheses and knowledge. However, this approach is underutilized in the realm of cancer research, particularly for prostate cancer. While the general progression of prostate cancer is now well understood, how individual cell types transition from healthy, to pre-cancerous, to cancerous cell types, remains to be further elucidated. To address this, we re-analyzed two publicly available single-cell RNA-seq datasets of prostate cancer and benign prostate hyperplasia cell types. The differential expression analysis of 15,505 epithelial cell profiles across 18,638 genes revealed 791 genes that were up regulated in prostate cancer epithelial cells. Here we report six markers that show significant upregulation in prostate cancer cells relative to BPH epithelial cells: HPN (5.62X), RAC3 (3.51X), CD24 (2.18X), HOXC6 (1.77X), AGR2 (1.71X), and IGFBP2 (1.28X). In particular, the significant differential expression of AGR2 further supports its clinical relevance in supplementing prostate-specific antigen screening for detecting prostate cancer. These findings have the potential to further advance our knowledge of genes governing the development of cancer in prostate epithelial cells. Clinical Relevance- Our results establish the importance of 6 prostate cancer markers (HPN, RAC3, CD24, HOXC6, AGR2, and IGFBP3) in distinguishing between prostate cancer epithelial cells and benign prostate hyperplasia epithelial cells.
Collapse
|
9
|
Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 2022; 41:3385-3393. [PMID: 35597813 PMCID: PMC9203274 DOI: 10.1038/s41388-022-02353-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factors (IGFs) and their regulatory proteins—IGF receptors and binding proteins—are strongly implicated in cancer progression and modulate cell survival and proliferation, migration, angiogenesis and metastasis. By regulating the bioavailability of the type-1 IGF receptor (IGF1R) ligands, IGF-1 and IGF-2, the IGF binding proteins (IGFBP-1 to -6) play essential roles in cancer progression. IGFBPs also influence cell communications through pathways that are independent of IGF1R activation. Noncoding RNAs (ncRNAs), which encompass a variety of RNA types including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have roles in multiple oncogenic pathways, but their many points of intersection with IGF axis functions remain to be fully explored. This review examines the functional interactions of miRNAs and lncRNAs with IGFs and their binding proteins in cancer, and reveals how the IGF axis may mediate ncRNA actions that promote or suppress cancer. A better understanding of the links between ncRNA and IGF pathways may suggest new avenues for prognosis and therapeutic intervention in cancer. Further, by exploring examples of intersecting ncRNA-IGF pathways in non-cancer conditions, it is proposed that new opportunities for future discovery in cancer control may be generated.
Collapse
|
10
|
Thioredoxin 1 (Trx1) is associated with poor prognosis in clear cell renal cell carcinoma (ccRCC): an example for the crucial role of redox signaling in ccRCC. World J Urol 2021; 40:739-746. [PMID: 34859284 PMCID: PMC8948103 DOI: 10.1007/s00345-021-03900-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/23/2021] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Thioredoxins are major regulatory proteins of oxidative signaling. Trx1 is the most prominent thioredoxin and, therefore, the current study sought to evaluate the prognostic role of Trx1 in ccRCC. METHODS AND PATIENTS A tissue micro-array (TMA) study was carried out to evaluate the association of Trx1 with clinicopathological features and survival outcome. Data from the Cancer Genome Atlas (TCGA) were evaluated for the association of characteristics in the Trx1 gene with clinicopathological features and survival outcome. RESULTS In the TMA, patients with ccRCC that had high Trx1 levels had lower T stages (p < 0.001), less often distant metastases (p = 0.018), lower nuclear grades (p < 0.001), and less often tumor necrosis (p = 0.037) or sarcomatoid features (p = 0.008). Patients with a combined score of ≥ 10 had better DSS than patients with a low combined score of < 10 (HR 95% CI 0.62 (0.39-0.98)). Interestingly, the survival outcome is compartment specific: ccRCC patients whose tumors had exclusively Trx1 expression in the cytoplasm had the worst survival outcome (HR 3.1; 95% CI 1.2-8.0). Genomic data from the TCGA demonstrated that patients with ccRCCs that had Trx1 losses had more advanced clinicopathological features and worse survival outcome in disease specific (p < 0.001), overall (p = 0.001), and progression free survival (p = 0.001) when compared to patients with ccRCCs without copy number variations (CNV) or gains. CONCLUSION The current study suggests a possible role of Trx1 in the tumor biology of ccRCC and thus, the current study strongly advises in depth investigations of redox signaling pathways in ccRCC.
Collapse
|
11
|
Diesing K, Ribback S, Winter S, Gellert M, Oster AM, Stühler V, Gläser E, Adler F, Hartwig C, Scharpf M, Bedke J, Burchardt M, Schwab M, Lillig CH, Kroeger N. p53 is functionally inhibited in clear cell renal cell carcinoma (ccRCC): a mechanistic and correlative investigation into genetic and molecular characteristics. J Cancer Res Clin Oncol 2021; 147:3565-3576. [PMID: 34499221 PMCID: PMC8557161 DOI: 10.1007/s00432-021-03786-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022]
Abstract
Purpose Although p53 is rarely mutated in ccRCC, its overexpression has been linked to poor prognosis. The current study sought to elucidate the unique role of p53 in ccRCC with genomic, proteomic, and functional analyses. Materials and methods Data from the Cancer Genome Atlas (TCGA) were evaluated for genomic and proteomic characteristics of p53; a tissue micro array (TMA) study was carried out to evaluate the association of p53 and phosphorylated p53 (pp53) with clinical outcome. Mechanistic in vitro experiments were performed to confirm a pro-apoptotic loss of p53 in ccRCC and p53 isoforms as well as posttranslational modifications of p53 where assessed to provide possible reasons for a functional inhibition of p53 in ccRCC. Results A low somatic mutation rate of p53 could be confirmed. Although mRNA levels were correlated with poor prognosis and clinicopathological features, there was no monotonous association of mRNA levels with survival outcome. Higher p53 protein levels could be confirmed as poor prognostic features. In vitro, irradiation of ccRCC cell lines markedly induced levels of p53 and of activated (phosphorylated) p53. However, irradiated ccRCC cells demonstrated similar proliferation, migration, and p53 transcriptional activity like non-irradiated controls indicating a functional inhibition of p53. p53 isoforms and could not be correlated with clinical outcome of ccRCC patients. Conclusions p53 is rarely mutated but the wildtype p53 is functionally inhibited in ccRCC. To investigate mechanisms that underlie functional inhibition of p53 may provide attractive therapeutic targets in ccRCC. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03786-1.
Collapse
Affiliation(s)
- Karoline Diesing
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, E17475, Greifswald, Germany
| | - Silvia Ribback
- The Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Winter
- The Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,The University of Tübingen, Tübingen, Germany
| | - Manuela Gellert
- The Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Antonia M Oster
- The Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Viktoria Stühler
- The Department of Urology, University of Tübingen, Tübingen, Germany
| | - Eva Gläser
- The Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Frank Adler
- The Institute of Radiation Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Hartwig
- The Institute of Radiation Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Markus Scharpf
- The Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Jens Bedke
- The Department of Urology, University of Tübingen, Tübingen, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, E17475, Greifswald, Germany
| | - Matthias Schwab
- The Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,The University of Tübingen, Tübingen, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Christopher H Lillig
- The Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nils Kroeger
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, E17475, Greifswald, Germany. .,The Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
12
|
Lakshmanan VK, Ojha S, Jung YD. A modern era of personalized medicine in the diagnosis, prognosis, and treatment of prostate cancer. Comput Biol Med 2020; 126:104020. [PMID: 33039808 DOI: 10.1016/j.compbiomed.2020.104020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
The present era is witnessing rapid advancements in the field of medical informatics and modern healthcare management. The role of translational bioinformatics (TBI), an infant discipline in the field of medical informatics, is pivotal in this revolution. The development of high-throughput technologies [e.g., microarrays, next-generation sequencing (NGS)] has propelled TBI to the next stage in this modern era of medical informatics. In this review, we assess the promising translational outcomes of microarray- and NGS-based discovery of genes, proteins, micro RNAs, and other active biological compounds aiding in the diagnosis, prognosis, and therapy of prostate cancer (PCa) to improve treatment strategies at the localized and/or metastatic stages in patients. Several promising candidate biomarkers in circulating blood (miR-25-3p and miR-18b-5p), urine (miR-95, miR-21, miR-19a, and miR-19b), and prostatic secretions (miR-203) have been identified. AURKA and MYCN, novel candidate biomarkers, were found to be specifically expressed in neuroendocrine PCa. The use of BTNL2 gene mutations and inflammasomes as biomarkers in immune function-mediated, inherited PCa has also been elucidated based on NGS data. Although TBI discoveries can benefit clinical performance metrics, the translational potential and the in vivo performance of TBI outcomes need to be verified. In conclusion, TBI aids in the effective clinical management of PCa; furthermore, the fate of personalized/precision medicine mostly relies on the enhanced diagnostic, prognostic, and therapeutic potential of TBI.
Collapse
Affiliation(s)
- Vinoth-Kumar Lakshmanan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600 116, Tamil Nadu, India; Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, 160 Baeksuh-Roh, Dong Gu, Gwangju, 61469, Republic of Korea
| |
Collapse
|
13
|
Thomas D, Radhakrishnan P. Role of Tumor and Stroma-Derived IGF/IGFBPs in Pancreatic Cancer. Cancers (Basel) 2020; 12:E1228. [PMID: 32414222 PMCID: PMC7281733 DOI: 10.3390/cancers12051228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is the utmost stroma-rich cancer, which is accompanied by fibrotic reactions that stimulate interactions between tumor cells and stroma to promote tumor progression. Considerable research evidence denotes that insulin-like growth factor (IGF)/IGF binding proteins (IGFBP) signaling axis facilitate tumor growth, metastasis, drug resistance, and thereby facilitate PC into an advanced stage. The six members of IGFBPs were initially considered as passive carriers of free IGFs; however, current evidence revealed their functions beyond the endocrine role in IGF transport. Though numerous efforts have been made in blocking IGF/IGFBPs, the targeted therapies remain unsuccessful due to the complexity of tumor-stromal interactions in the pancreas. In this review, we explore the emerging evidence of the various roles of the tumor as well as stroma derived IGF/IGFBPs and highlight as a novel therapeutic target against PC progression.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA;
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Yuan YF, Zhu WX, Liu T, He JQ, Zhou Q, Zhou X, Zhang X, Yang J. Cyclopamine functions as a suppressor of benign prostatic hyperplasia by inhibiting epithelial and stromal cell proliferation via suppression of the Hedgehog signaling pathway. Int J Mol Med 2020; 46:311-319. [PMID: 32319534 PMCID: PMC7255449 DOI: 10.3892/ijmm.2020.4569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Stromal-epithelial interaction serves a pivotal role in normal prostate growth, as well as the onset of benign prostatic hyperplasia (BPH). The present study aimed to explore the role of cyclopamine in the proliferation and apoptosis of epithelial and stromal cells in rats with BPH by blocking the Hedgehog signaling pathway. Cyclopamine (an inhibitor of the Hedgehog signaling pathway) was administered in a rat model of BPH, and the expression of Ki67 (proliferation factor) was determined by immunohistochemistry. In addition, epithelial and stromal cells were separated and cultured in order to investigate the role of cyclopamine in the progression of BPH. The expression of Hedgehog signaling pathway- and apoptosis-related genes, including basic fibroblastic growth factor (b-FGF) and transforming growth factor β (TGF-β), was evaluated using reverse transcription-quantitative polymerase chain reaction and western blot analysis. Cell proliferation, cell cycle and apoptosis were analyzed using an MTT assay and flow cytometry. We identified upregulated Ki67 expression and activated Hedgehog signaling pathway in rats with BPH. Cyclopamine inhibited the activation of the Hedgehog signaling pathway. In response to cyclopamine treatment, epithelial and stromal cell proliferation was inhibited; this was concomitant with decreased Ki67, TGF-β, and b-FGF expression. On the other hand, epithelial cell apoptosis was enhanced, which was associated with increased Bax and reduced Bcl-2 expression. Based on these findings, we proposed that cyclopamine may serve as a potential therapeutic agent in the treatment of BPH. Cyclopamine could inhibit epithelial and stromal cell proliferation, and induce epithelial cell apoptosis by suppressing the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yi-Feng Yuan
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Wen-Xiong Zhu
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Tao Liu
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Ju-Qiao He
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Qing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xi Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jing Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
15
|
Poreba E, Durzynska J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108307. [PMID: 32430099 DOI: 10.1016/j.mrrev.2020.108307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor (IGF) system stimulates growth, proliferation, and regulates differentiation of cells in a tissue-specific manner. It is composed of two insulin-like growth factors (IGF-1 and IGF-2), six insulin-like growth factor-binding proteins (IGFBPs), and two insulin-like growth factor receptors (IGF-1R and IGF-2R). IGF actions take place mostly through the activation of the plasma membrane-bound IGF-Rs by the circulating ligands (IGFs) released from the IGFBPs that stabilize their levels in the serum. This review focuses on the IGF-1 part of the system. The IGF-1 gene, which is expressed mainly in the liver as well as in other tissues, comprises six alternatively spliced exons that code for three protein isoforms (pro-IGF-1A, pro-IGF-1B, and pro-IGF-1C), which are processed to mature IGF-1 and E-peptides. The IGF-1R undergoes autophosphorylation, resulting in a signaling cascade involving numerous cytoplasmic proteins such as AKT and MAPKs, which regulate the expression of target genes. However, a more complex picture of the axis has recently emerged with all its components being translocated to the nuclear compartment. IGF-1R takes part in the regulation of gene expression by forming transcription complexes, modifying the activity of chromatin remodeling proteins, and participating in DNA damage tolerance mechanisms. Four IGFBPs contain a nuclear localization signal (NLS), which targets them to the nucleus, where they regulate gene expression (IGFBP-2, IGFBP-3, IGFBP-5, IGFBP-6) and DNA damage repair (IGFBP-3 and IGFBP-6). Last but not least, the IGF-1B isoform has been reported to be localized in the nuclear compartment. However, no specific molecular actions have been assigned to the nuclear pro-IGF-1B or its derivative EB peptide. Therefore, further studies are needed to shed light on their nuclear activity. These recently uncovered nuclear actions of different components of the IGF-1 axis are relevant in cancer cell biology and are discussed in this review.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Julia Durzynska
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
16
|
Sakata J, Hirosue A, Yoshida R, Matsuoka Y, Kawahara K, Arita H, Nakashima H, Yamamoto T, Nagata M, Kawaguchi S, Gohara S, Nagao Y, Yamana K, Toya R, Murakami R, Kuwahara Y, Fukumoto M, Nakayama H. Enhanced Expression of IGFBP-3 Reduces Radiosensitivity and Is Associated with Poor Prognosis in Oral Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020494. [PMID: 32093285 PMCID: PMC7072421 DOI: 10.3390/cancers12020494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) modulates various cell functions through IGF-dependent or independent mechanisms. However, its biological roles in the radiosensitivity of oral squamous cell carcinoma (OSCC) remain largely unknown. The purpose of this study was to determine the clinical significance and molecular mechanisms of the association between IGFBP-3 and OSCC radiosensitivity. We performed an immunohistochemical analysis of IGFBP-3 in 52 OSCC specimens from patients treated with preoperative chemoradiotherapy and surgery (phase II study). Associations between IGFBP-3 expression and clinicopathological features were also evaluated. In addition, we examined the effects of IGFBP-3 on post-X-ray irradiation radiosensitivity and DNA damage in vitro. High IGFBP-3 expression was significantly correlated with poor chemoradiotherapy responses and prognosis. With IGFBP-3 knockdown, irradiated OSCC cells exhibited significantly higher radiosensitivity compared with that of control cells. Moreover, IGFBP-3 depletion in OSCC cells reduced phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), which is required for DNA double-strand break repair during non-homologous end joining. These findings indicate that IGFBP-3 may have a significant role in regulating DNA repair and is be a potential biomarker for predicting clinical response to radiotherapy and prognosis in OSCC.
Collapse
Affiliation(s)
- Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
- Correspondence: (A.H.); (H.N.); Tel.: +81-96-373-5288 (A.H. & H.N.)
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Yuichiro Matsuoka
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Tatsuro Yamamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
| | - Ryo Toya
- Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto 860-8556, Japan;
| | - Ryuji Murakami
- Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0976, Japan;
| | - Yoshikazu Kuwahara
- Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba, Sendai, Miyagi 981-8558, Japan;
| | - Manabu Fukumoto
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku, Tokyo 160-8402, Japan;
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (J.S.); (R.Y.); (Y.M.); (K.K.); (H.A.); (H.N.); (T.Y.); (M.N.); (S.K.); (S.G.); (Y.N.); (K.Y.)
- Correspondence: (A.H.); (H.N.); Tel.: +81-96-373-5288 (A.H. & H.N.)
| |
Collapse
|
17
|
Sreenivasulu K, Nandeesha H, Dorairajan LN, Rajappa M, Vinayagam V, Cherupanakkal C. Gene expression of insulin receptor, insulin-like growth factor increases and insulin-like growth factor-binding protein-3 reduces with increase in prostate size in benign prostatic hyperplasia. Aging Male 2018; 21:138-144. [PMID: 29129118 DOI: 10.1080/13685538.2017.1401994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Although the role of insulin in the development of benign prostatic hyperplasia (BPH) is well established, there are no studies regarding alteration in the gene expression of components of insulin-signaling pathway and their association with prostate size in BPH. Hence, the study was designed to analyze the gene and protein expression of insulin receptor and its related components in patients with BPH. MATERIALS AND METHODS Twenty-seven BPH patients aged between 55 and 75 years were recruited in the study and prostatic tissues were obtained after transurethral resection of the prostate. Gene expression levels of Insulin receptor (IR), insulin receptor substrate (IRS), insulin-like growth factor (IGF) and insulin-like growth factor-binding protein-3 (IGFBP-3) were assessed by q-PCR. RESULTS Insulin receptor (IR-A and B) and insulin-like growth factors (IGF-1 and IGF-2) gene expression were significantly increased and IGFBP-3 gene expression was reduced in BPH patients with larger prostate size. Also, serum insulin was significantly increased and IGFBP-3 was significantly reduced in patients with larger prostate size. CONCLUSION Increased expression of IR-A, B and IGF-1, 2 genes and reduced IGFBP-3 gene expression was associated with larger prostate size in BPH.
Collapse
Affiliation(s)
- Karli Sreenivasulu
- a Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India
| | - Hanumanthappa Nandeesha
- a Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India
| | - Lalgudi Narayanan Dorairajan
- b Department of Urology , Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India
| | - Medha Rajappa
- a Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India
| | - Vickneshwaran Vinayagam
- a Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India
| | - Cleetus Cherupanakkal
- a Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India
| |
Collapse
|
18
|
Scully T, Scott CD, Firth SM, Sedger LM, Pintar JE, Twigg SM, Baxter RC. Enhancement of mammary tumour growth by IGFBP-3 involves impaired T cell accumulation. Endocr Relat Cancer 2018; 25:111-122. [PMID: 29217518 DOI: 10.1530/erc-17-0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023]
Abstract
Epidemiological studies show an association between obesity and poor breast cancer prognosis. We previously demonstrated that global IGFBP-3 deficiency, in IGFBP-3-null mice, resulted in a 50% reduction in mammary tumour growth over 3 weeks relative to tumours in wild-type (WT) C57BL/6 mice. This growth reduction was ameliorated by high fat feeding-induced obesity. This study aimed to examine how IGFBP-3 promotes tumour growth by influencing the immune tumour microenvironment in healthy and obese mice. Syngeneic EO771 cells, which lack detectable IGFBP-3 expression, were grown as orthotopic tumours in WT and IGFBP-3-null C57BL/6 mice placed on either a control chow or a high-fat diet (HFD), and examined by quantitative PCR and immunohistochemistry. In WT mice, increased stromal expression of IGFBP-3 was positively associated with tumour growth, supporting the hypothesis that IGFBP-3 in the microenvironment promotes tumour progression. Examining markers of immune cell subsets, gene expression of Ifng, Cd8a, Cd8b1 and Tnf and CD8 measured by immunohistochemistry were elevated in tumours of IGFBP-3-null mice compared to WT, indicating an accumulation of CD8+ T cells, but this increase was absent if the IGFBP-3-null mice had been exposed to HFD. Expression of these genes was negatively associated with tumour growth. Although similar among groups overall, Nkg2d and Tnfsf10 tumoural expression was associated with decreased tumour growth. Overall, the results of this study provide an immune-based mechanism by which host IGFBP-3 may promote breast tumour growth in the EO771 murine breast cancer model, and suggest that targeting IGFBP-3 might make a novel contribution to immune therapy for breast cancer.
Collapse
Affiliation(s)
- Tiffany Scully
- Hormones and Cancer LaboratoriesKolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carolyn D Scott
- Hormones and Cancer LaboratoriesKolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Sue M Firth
- Hormones and Cancer LaboratoriesKolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lisa M Sedger
- School of Life SciencesFaculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - John E Pintar
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical School, New Jersey, USA
| | - Stephen M Twigg
- Charles Perkins CentreSydney Medical School, University of Sydney, New South Wales, Australia
| | - Robert C Baxter
- Hormones and Cancer LaboratoriesKolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
19
|
Julovi SM, Martin JL, Baxter RC. Nuclear Insulin-Like Growth Factor Binding Protein-3 As a Biomarker in Triple-Negative Breast Cancer Xenograft Tumors: Effect of Targeted Therapy and Comparison With Chemotherapy. Front Endocrinol (Lausanne) 2018; 9:120. [PMID: 29623068 PMCID: PMC5874320 DOI: 10.3389/fendo.2018.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Triple-negative breast cancer (TNBC) typically has a worse outcome than other breast cancer subtypes, in part owing to a lack of approved therapeutic targets or prognostic markers. We have previously described an oncogenic pathway in basal-like TNBC cells, initiated by insulin-like growth factor binding protein-3 (IGFBP-3), in which the epidermal growth factor receptor (EGFR) is transactivated by sphingosine-1-phosphate (S1P) resulting from sphingosine kinase (SphK)-1 activation. Oncogenic IGFBP-3 signaling can be targeted by combination treatment with the S1P receptor modulator and SphK inhibitor, fingolimod, and the EGFR kinase inhibitor, gefitinib (F + G). However, the interaction of this treatment with chemotherapy has not been documented. Since we observed nuclear localization of IGFBP-3 in some TNBC tumors, this study aimed to evaluate the prognostic significance of nuclear IGFBP-3 in pre-clinical models of basal-like TNBC treated with F + G and doxorubicin. Orthotopic xenograft tumors were grown in nude mice from the human basal-like TNBC cell lines MDA-MB-468 and HCC1806, and were treated with gefitinib, 25 mg/Kg, plus fingolimod, 5 mg/Kg, 3-times weekly. In some studies, doxorubicin was also administered once weekly for 6 weeks. Tumor tissue proteins were quantitated by immunohistochemistry (IHC). Interaction between doxorubicin and F + G was also studied in proliferation assays in vitro. In both tumor models, tissue staining for IGFBP-3 was predominantly nuclear. Combination of F + G significantly enhanced mouse survival, decreased nuclear IGFBP-3 and Ki67 staining, and increased apoptosis (cleaved caspase-3) staining. Kaplan-Meier survival analysis showed that a high tumor IGFBP-3 IHC score (>median), like a high Ki67 score, was significantly associated with shorter survival time, whereas a high apoptosis score was associated with prolonged survival. Studied in vitro in both cell lines, low-dose doxorubicin that had little effect alone, strongly enhanced the cytostatic effect of low-dose F + G combination. However, in both in vivo models, doxorubicin at maximum-tolerated dose neither inhibited tumor growth when administered alone, nor enhanced the significant inhibitory effect of F + G. We conclude that doxorubicin may not add benefit to the inhibitory effect of F + G unless its dose-limiting toxicity can be overcome. Nuclear IGFBP-3 appears to have potential as a prognostic marker in TNBC and could be evaluated for clinical utility.
Collapse
|
20
|
Martin JL, Julovi SM, Lin MZ, de Silva HC, Boyle FM, Baxter RC. Inhibition of basal-like breast cancer growth by FTY720 in combination with epidermal growth factor receptor kinase blockade. Breast Cancer Res 2017; 19:90. [PMID: 28778177 PMCID: PMC5545026 DOI: 10.1186/s13058-017-0882-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New molecular targets are needed for women with triple-negative breast cancer (TNBC). This pre-clinical study investigated the combination of the EGFR inhibitor gefitinib with the sphingosine kinase (SphK) inhibitor FTY720 (Fingolimod), aiming to block tumorigenic signaling downstream of IGFBP-3, which is abundantly expressed in basal-like TNBC. METHODS In studies of breast cancer cell growth in culture, proliferation was monitored by IncuCyte live-cell imaging, and protein abundance was determined by western blotting. In vivo studies of mammary tumor growth used two models: orthotopic xenograft tumors derived from three basal-like TNBC cell lines, grown in immune-deficient mice, and syngeneic murine 4T1 tumors grown in immune-competent mice. Protein abundance in tumor tissue was assessed by immunohistochemistry. RESULTS Quantitated by live-cell imaging, the inhibitor combination showed synergistic cytostatic activity in basal-like cell lines across several TNBC molecular subtypes, the synergy being decreased by IGFBP-3 downregulation. Suppression of the tumorigenic mediator CD44 by gefitinib was potentiated by FTY720, consistent with CD44 involvement in the targeted pathway. In MDA-MB-468 and HCC1806 orthotopic TNBC xenograft tumors in nude mice, the drug combination inhibited tumor growth and prolonged mouse survival, although this effect was not significant for the gefitinib-resistant cell line HCC70. Combination treatment of murine 4T1 TNBC tumors in syngeneic BALB/c mice was more effective in immune-competent than immune-deficient (nude) mice, and a relative loss of tumor CD3 (T-cell) immunoreactivity caused by FTY720 treatment alone was alleviated by the drug combination, suggesting that, even at an FTY720 dose causing relative lymphopenia, the combination is still effective in an immune-competent setting. Immunohistochemistry of xenograft tumors showed significant enhancement of caspase-3 cleavage and suppression of Ki67 and phospho-EGFR by the drug combination, but SphK1 downregulation occurred only in MDA-MB-468 tumors, so is unlikely to be integral to treatment efficacy. CONCLUSIONS Our data indicate that targeting IGFBP-3-dependent signaling pathways through gefitinib-FTY720 co-therapy may be effective in many basal-like breast cancers, and suggest tissue IGFBP-3 and CD44 measurement as potential biomarkers of treatment efficacy.
Collapse
Affiliation(s)
- Janet L Martin
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Sohel M Julovi
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Mike Z Lin
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Present address: Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Hasanthi C de Silva
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Frances M Boyle
- Patricia Ritchie Centre for Cancer Care and Research, Mater Hospital, North Sydney, NSW, 2065, Australia
| | - Robert C Baxter
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| |
Collapse
|
21
|
Cao Z, Koochekpour S, Strup SE, Kyprianou N. Reversion of epithelial-mesenchymal transition by a novel agent DZ-50 via IGF binding protein-3 in prostate cancer cells. Oncotarget 2017; 8:78507-78519. [PMID: 29108245 PMCID: PMC5667978 DOI: 10.18632/oncotarget.19659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 01/10/2023] Open
Abstract
Dysregulation of transforming growth factor-β1 (TGF-β1) and insulin-like growth factor (IGF) axis has been linked to reactive stroma dynamics in prostate cancer progression. IGF binding protein-3 (IGFBP3) induction is initiated by stroma remodeling and could represent a potential therapeutic target for prostate cancer. In previous studies a lead quinazoline-based Doxazosin® derivative, DZ-50, impaired prostate tumor growth by targeting proteins involved in focal adhesion, anoikis resistance and epithelial-mesenchymal-transition (EMT). This study demonstrates that DZ-50 increased expression of the epithelial marker E-cadherin, and decreased the mesenchymal marker N-cadherin in human prostate cancer cells. In DU-145 cells, the effect of DZ-50 on EMT towards mesenchymal epithelial transition (MET) was inhibited by talin1 overexpression, a focal adhesion regulator promoting anoikis resistance and tumor invasion. DZ-50 treatment of human prostate cancer cells and cancer-associated fibroblasts (CAFs) downregulated IGFBP3 expression at mRNA and protein level. In TGF-β1 responsive LNCaPTβRII, TGF-β1 reversed DZ-50-induced MET by antagonizing the drug-induced decrease of nuclear IGFBP3. Furthermore, co-culture with CAFs promoted prostate cancer epithelial cell invasion, an effect that was significantly inhibited by DZ-50. Our findings demonstrate that the lead compound, DZ-50, inhibited the invasive properties of prostate cancer epithelial cells by targeting IGFBP3 and mediating EMT conversion to MET. This study integrated the mechanisms underlying the effect of DZ-50 and further supported the therapeutic value of this compound in the treatment of advanced metastatic prostate cancer.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Urology, University of Kentucky, Lexington, KY, USA
| | - Shahriar Koochekpour
- Department of Genetics and Genomic and Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Stephen E Strup
- Department of Urology, University of Kentucky, Lexington, KY, USA
| | - Natasha Kyprianou
- Department of Urology, University of Kentucky, Lexington, KY, USA.,Departments of Biochemistry and Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
22
|
Harrison S, Lennon R, Holly J, Higgins JPT, Gardner M, Perks C, Gaunt T, Tan V, Borwick C, Emmet P, Jeffreys M, Northstone K, Rinaldi S, Thomas S, Turner SD, Pease A, Vilenchick V, Martin RM, Lewis SJ. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control 2017; 28:497-528. [PMID: 28361446 PMCID: PMC5400803 DOI: 10.1007/s10552-017-0883-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/10/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE To establish whether the association between milk intake and prostate cancer operates via the insulin-like growth factor (IGF) pathway (including IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3). METHODS Systematic review, collating data from all relevant studies examining associations of milk with IGF, and those examining associations of IGF with prostate cancer risk and progression. Data were extracted from experimental and observational studies conducted in either humans or animals, and analyzed using meta-analysis where possible, with summary data presented otherwise. RESULTS One hundred and seventy-two studies met the inclusion criteria: 31 examining the milk-IGF relationship; 132 examining the IGF-prostate cancer relationship in humans; and 10 animal studies examining the IGF-prostate cancer relationship. There was moderate evidence that circulating IGF-I and IGFBP-3 increase with milk (and dairy protein) intake (an estimated standardized effect size of 0.10 SD increase in IGF-I and 0.05 SD in IGFBP-3 per 1 SD increase in milk intake). There was moderate evidence that prostate cancer risk increased with IGF-I (Random effects meta-analysis OR per SD increase in IGF-I 1.09; 95% CI 1.03, 1.16; n = 51 studies) and decreased with IGFBP-3 (OR 0.90; 0.83, 0.98; n = 39 studies), but not with other growth factors. The IGFBP-3 -202A/C single nucleotide polymorphism was positively associated with prostate cancer (pooled OR for A/C vs. AA = 1.22; 95% CI 0.84, 1.79; OR for C/C vs. AA = 1.51; 1.03, 2.21, n = 8 studies). No strong associations were observed for IGF-II, IGFBP-1 or IGFBP-2 with either milk intake or prostate cancer risk. There was little consistency within the data extracted from the small number of animal studies. There was additional evidence to suggest that the suppression of IGF-II can reduce tumor size, and contradictory evidence with regards to the effect of IGFBP-3 suppression on tumor progression. CONCLUSION IGF-I is a potential mechanism underlying the observed associations between milk intake and prostate cancer risk.
Collapse
Affiliation(s)
- Sean Harrison
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Rosie Lennon
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Jeff Holly
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences at North Bristol, Southmead Hospital, BS10 5NB, Bristol, UK
| | - Julian P T Higgins
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Mike Gardner
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Claire Perks
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences at North Bristol, Southmead Hospital, BS10 5NB, Bristol, UK
| | - Tom Gaunt
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Vanessa Tan
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Cath Borwick
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Cardiff University, Cardiff, UK
| | - Pauline Emmet
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Mona Jeffreys
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Sabina Rinaldi
- International Agency for Research on Cancer, Lyon, France
| | - Stephen Thomas
- School of Oral and Dental Sciences,, University of Bristol, Bristol, UK
| | | | - Anna Pease
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Vicky Vilenchick
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, BS2 8AE, Bristol, UK
| | - Sarah J Lewis
- School of Social and Community Medicine, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Raza S, Meyer M, Goodyear C, Hammer KDP, Guo B, Ghribi O. The cholesterol metabolite 27-hydroxycholesterol stimulates cell proliferation via ERβ in prostate cancer cells. Cancer Cell Int 2017; 17:52. [PMID: 28503095 PMCID: PMC5425984 DOI: 10.1186/s12935-017-0422-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND For every six men, one will be diagnosed with prostate cancer (PCa) in their lifetime. Estrogen receptors (ERs) are known to play a role in prostate carcinogenesis. However, it is unclear whether the estrogenic effects are mediated by estrogen receptor α (ERα) or estrogen receptor β (ERβ). Although it is speculated that ERα is associated with harmful effects on PCa, the role of ERβ in PCa is still ill-defined. The cholesterol oxidized metabolite 27-hydroxycholesterol (27-OHC) has been found to bind to ERs and act as a selective ER modulator (SERM). Increased 27-OHC levels are found in individuals with hypercholesterolemia, a condition that is suggested to be a risk factor for PCa. METHODS In the present study, we determined the extent to which 27-OHC causes deleterious effects in the non-tumorigenic RWPE-1, the low tumorigenic LNCaP, and the highly tumorigenic PC3 prostate cancer cells. We conducted cell metabolic activity and proliferation assays using MTS and CyQUANT dyes, protein expression analyses via immunoblots and gene expression analyses via RT-PCR. Additionally, immunocytochemistry and invasion assays were performed to analyze intracellular protein distribution and quantify transepithelial cell motility. RESULTS We found that incubation of LNCaP and PC3 cells with 27-OHC significantly increased cell proliferation. We also demonstrate that the ER inhibitor ICI 182,780 (fulvestrant) significantly reduced 27-OH-induced cell proliferation, indicating the involvement of ERs in proliferation. Interestingly, ERβ levels, and to a lesser extent ERα, were significantly increased following incubation of PCa cells with 27-OHC. Furthermore, in the presence of the ERβ specific inhibitor, PHTPP, 27-OHC-induced proliferation is attenuated. CONCLUSIONS Altogether, our results show for the first time that 27-OHC, through ER activation, triggers deleterious effect in prostate cancer cell lines. We propose that dysregulated levels of 27-OHC may trigger or exacerbate prostate cancer via acting on ERβ.
Collapse
Affiliation(s)
- Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202 USA
| | - Megan Meyer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202 USA
| | - Casey Goodyear
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202 USA
| | - Kimberly D P Hammer
- Department of Veteran Affairs, Fargo VA Health Care System, Fargo, ND 58102 USA
| | - Bin Guo
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202 USA
| |
Collapse
|
24
|
Interactions of the Insulin-Like Growth Factor Axis and Vitamin D in Prostate Cancer Risk in the Prostate Cancer Prevention Trial. Nutrients 2017; 9:nu9040378. [PMID: 28417914 PMCID: PMC5409717 DOI: 10.3390/nu9040378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
Some, but not all, epidemiologic studies report an association between vitamin D and prostate cancer risk. The inconsistent findings might be explained in the context of modification by members of the insulin-like growth factor (IGF) axis. Data and specimens for this nested case-control study (n = 1695 cases and n = 1682 controls) are from the Prostate Cancer Prevention Trial (PCPT). Baseline serum samples were assayed for 25(OH)D, IGF-1, IGF-2, IGFBP-2, IGFBP-3, and the ratio of IGF1:BP3, along with insulin-related markers c-peptide and leptin. The presence of prostate cancer was assessed by prostate biopsy. Multivariate logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs) for prostate cancer risk. There were no interactions between serum 25(OH)D and IGF analytes in relation to prostate cancer risk when PCPT treatment arms were combined. In the placebo arm, above median serum 25(OH)D levels were associated with increased risk of prostate cancer among men with higher IGF-2 (OR:1.33, 95% CI: 1.00–1.65), with a significant interaction between 25(OH)D and treatment arm (Pinteraction = 0.04). Additionally, there was an interaction between treatment arm and serum IGFBP-3 (Pinteraction = 0.03). Higher serum 25(OH)D may increase risk of prostate cancer in the presence of higher circulating IGF-2.
Collapse
|
25
|
L-López F, Sarmento-Cabral A, Herrero-Aguayo V, Gahete MD, Castaño JP, Luque RM. Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1. J Cell Mol Med 2017; 21:1893-1904. [PMID: 28244645 PMCID: PMC5571563 DOI: 10.1111/jcmm.13109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/01/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine–metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat–diet obese mouse model, as well as in vitro primary cultures of normal‐mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet‐induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine–metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.
Collapse
Affiliation(s)
- Fernando L-López
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| |
Collapse
|
26
|
Pickard A, Durzynska J, McCance DJ, Barton ER. The IGF axis in HPV associated cancers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 772:67-77. [PMID: 28528691 DOI: 10.1016/j.mrrev.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPV) infect and replicate in stratified epithelium at cutaneous and mucosal surfaces. The proliferation and maintenance of keratinocytes, the cells which make up this epithelium, are controlled by a number of growth factor receptors such as the keratinocyte growth factor receptor (KGFR, also called fibroblast growth factor receptor 2b (FGFR2b)), the epithelial growth factor receptor (EGFR) and the insulin-like growth factor receptors 1 and 2 (IGF1R and IGF2R). In this review, we will delineate the mutation, gene transcription, translation and processing of the IGF axis within HPV associated cancers. The IGFs are key for developmental and postnatal growth of almost all tissues; we explore whether this crucial axis has been hijacked by HPV.
Collapse
MESH Headings
- Cell Proliferation
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Keratinocytes/cytology
- Keratinocytes/virology
- Neoplasms/genetics
- Neoplasms/virology
- Papillomaviridae/pathogenicity
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, IGF Type 1
- Receptor, IGF Type 2/genetics
- Receptor, IGF Type 2/metabolism
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Somatomedins/genetics
- Somatomedins/metabolism
Collapse
Affiliation(s)
- Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, UK; Wellcome Centre for Cell Matrix Research, University of Manchester, M13 9PL, UK.
| | - Julia Durzynska
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland; Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Dennis J McCance
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
YANG HAIPING, XU LIJUAN, QIAN HAILI, NIU XINQIANG, ZHAO DAN, ZHAO ZHILONG, WU JUN, LIU JUNFENG, WANG YANYU. Correlation between insulin‑like growth factor binding protein 3 and metastasis‑associated gene 1 protein in esophageal squamous cell carcinoma. Mol Med Rep 2016; 13:4143-50. [PMID: 27035126 PMCID: PMC4838119 DOI: 10.3892/mmr.2016.5046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the correlation between insulin‑like growth factor binding protein 3 (IGFBP‑3) and metastasis‑associated gene 1 (MTA1) protein, and the clinicopathological features and prognosis of esophageal squamous cell carcinoma (ESCC). Patients with ESCC who underwent surgical resection were enrolled in the current study, ESCC tissues and adjacent normal tissues (control) were obtained from 197 patients. The protein expression levels of IGFBP‑3 and MTA1 were detected using immunohistochemistry. The results demonstrated that the expression of IGFBP‑3 in ESCC tissues was significantly lower than in the adjacent normal tissues (27.4 vs. 40.6%; P<0.05), and was negatively correlated with smoking status, degree of tumor differentiation and lymph node metastasis (P<0.05). The expression of MTA1 protein in ESCC tissues was significantly higher than that of the adjacent tissues (42.1 vs. 11.2%; P<0.05), and was positively correlated with the tumor size, extent of tumor invasion and lymph node metastasis (P<0.05). No association was identified between the protein expression levels of IGFBP‑3 and MTA1. The protein expression levels of IGFBP‑3 and MTA1 were not independent risk factors for ESCC prognosis; however, the degree of tumor invasion (P=0.02) and rate of lymph node metastasis (P=0.027) were. IGFBP‑3 inhibits the proliferation and metastasis of ESCC; however, MTA1 promotes the proliferation and metastasis of ESCC. There is no interaction between IGFBP‑3 and MTA1 in ESCC, and they are not independent risk factors for ESCC prognosis.
Collapse
Affiliation(s)
- HAIPING YANG
- Department of Thoracic and Cardiovascular Surgery, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing 101100, P.R. China
| | - LIJUAN XU
- Department of Thoracic and Cardiovascular Surgery, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing 101100, P.R. China
| | - HAILI QIAN
- State Key Laboratory of Molecular Oncology, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - XINQIANG NIU
- Department of Thoracic Surgery, Cixian People's Hospital, Handan, Hebei 056500, P.R. China
| | - DAN ZHAO
- Department of Pathology, Beijing Chest Hospital of Capital Medical University, Beijing 101100, P.R. China
| | - ZHILONG ZHAO
- Department of Cardiothoracics, Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - JUN WU
- Department of Thoracic and Cardiovascular Surgery, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing 101100, P.R. China
| | - JUNFENG LIU
- Department of Thoracic Surgery, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - YANYU WANG
- Department of Thoracic and Cardiovascular Surgery, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing 101100, P.R. China
| |
Collapse
|
28
|
Baxter RC. Nuclear actions of insulin-like growth factor binding protein-3. Gene 2015; 569:7-13. [PMID: 26074086 PMCID: PMC4496269 DOI: 10.1016/j.gene.2015.06.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/27/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Level 8, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
29
|
Lodhia KA, Tienchaiananda P, Haluska P. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment. Front Oncol 2015. [PMID: 26217584 PMCID: PMC4495315 DOI: 10.3389/fonc.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success.
Collapse
Affiliation(s)
| | | | - Paul Haluska
- Department of Oncology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
30
|
Liu D, Zhang X, Gao J, Palombo M, Gao D, Chen P, Sinko PJ. Core functional sequence of C-terminal GAG-binding domain directs cellular uptake of IGFBP-3-derived peptides. Protein Pept Lett 2014; 21:124-31. [PMID: 24059751 DOI: 10.2174/09298665113206660095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 12/24/2022]
Abstract
The current study clarifies the role of the Glycosaminoglycan (GAG)-binding domain of insulin-like growth factor binding protein-3 (IGFBP-3) in cell penetration. The cell penetration function of IGFBP-3 has been mapped to an 18-residue GAG-binding domain in the C-terminal region that mobilizes cellular uptake and nuclear localization of unrelated proteins. Uptake of KW-22, a 22-residue peptide that encompasses the 18-residue GAG-binding domain, and another IGFBP-3 peptide carrying a streptavidin protein cargo was investigated in Chinese hamster ovary (CHO) cells defective at several steps of biosynthesis of cell surface GAGs. The severity of GAG truncation was highly correlated to the impairment of uptake ranging from complete abrogation to only a partial reduction, suggesting that GAG-binding is required for uptake. The 18-residue GAG-binding domain consists of an 8-residue KK-8 basic sequence devoid of Arg and an adjacent 10-residue QR-10 sequence rich in Arg. Peptide mapping of uptake and GAG-binding activities within the KW-22 peptide showed that the 8-residue KK-8 basic peptide retained 80% of GAG-binding activity with no uptake activity while the 10-residue QR-10 peptide retained 53% of uptake activity and 18% of GAG-binding activity. This suggests that KK-8 carries out the majority of GAG-binding function while QR-10 carries out the majority of the cell entry function. To our knowledge, this is the first report of physical separation of the uptake and GAG-binding functions within a short cell penetrating peptide and may shed light on the general mechanism of uptake of Arg-rich CPPs and guide new design of Arg-rich CPP-assisted drug/gene delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patrick J Sinko
- Ernest Mario School of Pharmacy, Rutgers, the State University of NJ, Pharmaceutics, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
31
|
Abstract
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
32
|
|