1
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor for simultaneous determination of antiviral favipiravir drug, paracetamol and vitamin C based on host-guest inclusion complex of β-CD/CNTs nanocomposite. Sci Rep 2023; 13:19910. [PMID: 37963918 PMCID: PMC10645768 DOI: 10.1038/s41598-023-45353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Favipiravir (FVI) is extensively used as an effective medication against several diverse infectious RNA viruses. It is widely administered as an anti-influenza drug. Combination therapy formed from FVI, paracetamol (PAR) and vitamin C (VC) is needed for treating patients diseased by RNA viruses. Thus, an efficient electrochemical sensor is developed for detecting FVI in human serum samples. The sensor is fabricated by casting a thin layer of carbon nanotubes (CNTs) over a glassy carbon (GC) electrode surface followed by electrodeposition of another layer of β-cyclodextrin (β-CD). Under optimized conditions, the sensor shows excellent catalytic effect for FVI, PAR and VC oxidation in the concentration ranges (0.08 µM → 80 µM), (0.08 µM → 50 µM) and (0.8 µM → 80 µM) with low detection limits of 0.011 μM, 0.042 μM and 0.21 μM, respectively. The combined effect of host-guest interaction ability of β-CD for the drugs, and a large conductive surface area of CNTs improves the sensing performance of the electrode. The sensor exhibits stable response over 4 weeks, good reproducibility, and insignificant interference from common species present in serum samples. The reliability of using the sensor in serum samples shows good recovery of FVI, PAR and VC.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Kubiak A, Voronkina A, Pajewska-Szmyt M, Kotula M, Leśniewski B, Ereskovsky A, Heimler K, Rogoll A, Vogt C, Rahimi P, Falahi S, Galli R, Langer E, Förste M, Charitos A, Joseph Y, Ehrlich H, Jesionowski T. Creation of a 3D Goethite-Spongin Composite Using an Extreme Biomimetics Approach. Biomimetics (Basel) 2023; 8:533. [PMID: 37999174 PMCID: PMC10668986 DOI: 10.3390/biomimetics8070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which has already been successfully applied in biomedicine and bioinspired materials science. In the present study, spongin from the demosponge Hippospongia communis was used as a microporous template for the development of a new 3D composite containing goethite [α-FeO(OH)]. For this purpose, an extreme biomimetic technique using iron powder, crystalline iodine, and fibrous spongin was applied under laboratory conditions for the first time. The product was characterized using SEM and digital light microscopy, infrared and Raman spectroscopy, XRD, thermogravimetry (TG/DTG), and confocal micro X-ray fluorescence spectroscopy (CMXRF). A potential application of the obtained goethite-spongin composite in the electrochemical sensing of dopamine (DA) in human urine samples was investigated, with satisfactory recoveries (96% to 116%) being obtained.
Collapse
Affiliation(s)
- Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Alona Voronkina
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street 56, 21018 Vinnytsia, Ukraine
| | - Martyna Pajewska-Szmyt
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Bartosz Leśniewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Parvaneh Rahimi
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Sedigheh Falahi
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany;
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany
| | - Maik Förste
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, 09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Alexandros Charitos
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, 09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
3
|
Kubiak A, Pajewska-Szmyt M, Kotula M, Leśniewski B, Voronkina A, Rahimi P, Falahi S, Heimler K, Rogoll A, Vogt C, Ereskovsky A, Simon P, Langer E, Springer A, Förste M, Charitos A, Joseph Y, Jesionowski T, Ehrlich H. Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro. Mar Drugs 2023; 21:460. [PMID: 37755073 PMCID: PMC10532518 DOI: 10.3390/md21090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.
Collapse
Affiliation(s)
- Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Pajewska-Szmyt
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Bartosz Leśniewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Alona Voronkina
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street. 56, 21018 Vinnytsia, Ukraine
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Sedigheh Falahi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Paul Simon
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany;
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany;
| | - Armin Springer
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany;
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Strempelstr. 14, 18057 Rostock, Germany
| | - Maik Förste
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Alexandros Charitos
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
4
|
Aqsa Batool Bukhari S, Nasir H, Sitara E, Akhtar T, Ramazan Oduncu M, Iram S, Pan L. Efficient electrochemical detection of dopamine with carbon nanocoils and copper tetra(p-methoxyphenyl)porphyrin nanocomposite. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
5
|
Thadathil A, Thacharakkal D, Ismail YA, Periyat P. Polyindole-Derived Nitrogen-Doped Graphene Quantum Dots-Based Electrochemical Sensor for Dopamine Detection. BIOSENSORS 2022; 12:1063. [PMID: 36551030 PMCID: PMC9775058 DOI: 10.3390/bios12121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The sensitive monitoring of dopamine levels in the human body is of utmost importance since its abnormal levels can cause a variety of medical and behavioral problems. In this regard, we report the synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from polyindole (PIN) via a facile single-step hydrothermal synthetic strategy that can act as an efficient electrochemical catalyst for the detection of dopamine (DA). The average diameter of N-GQDs was ∼5.2 nm and showed a C/N atomic ratio of ∼2.75%. These N-GQDs exhibit a cyan fluorescence color under irradiation from a 365 nm lamp, while PIN has no characteristic PL. The presence of richly N-doped graphitic lattices in the N-GQDs possibly accounts for the improved catalytic activity of N-GQDs/GCE towards electrocatalytic DA detection. Under optimum conditions, this novel N-GQDs-modified electrode exhibits superior selectivity and sensitivity. Moreover, it could detect as low as 0.15 nM of DA with a linear range of 0.001-1000 µM. In addition, the outstanding sensing attributes of the detector were extended to the real samples as well. Overall, our findings evidence that N-GQDs-based DA electrochemical sensors can be synthesized from PIN precursor and could act as promising EC sensors in medical diagnostic applications.
Collapse
Affiliation(s)
- Anjitha Thadathil
- Department of Chemistry, University of Calicut, Malappuram 673635, India
| | - Dipin Thacharakkal
- Department of Chemistry, University of Calicut, Malappuram 673635, India
| | - Yahya A. Ismail
- Department of Chemistry, University of Calicut, Malappuram 673635, India
| | - Pradeepan Periyat
- Department of Environmental Studies, Kannur University, Kannur 670567, India
| |
Collapse
|
6
|
Kumar P, Soni I, Jayaprakash GK, Flores-Moreno R. Studies of Monoamine Neurotransmitters at Nanomolar Levels Using Carbon Material Electrodes: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5782. [PMID: 36013918 PMCID: PMC9415512 DOI: 10.3390/ma15165782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Neurotransmitters (NTs) with hydroxyl groups can now be identified electrochemically, utilizing a variety of electrodes and voltammetric techniques. In particular, in monoamine, the position of the hydroxyl groups might alter the sensing properties of a certain neurotransmitter. Numerous research studies using electrodes modified on their surfaces to better detect specific neurotransmitters when other interfering factors are present are reviewed to improve the precision of these measures. An investigation of the monoamine neurotransmitters at nanoscale using electrochemical methods is the primary goal of this review article. It will be used to determine which sort of electrode is ideal for this purpose. The use of carbon materials, such as graphite carbon fiber, carbon fiber micro-electrodes, glassy carbon, and 3D printed electrodes are only some of the electrodes with surface modifications that can be utilized for this purpose. Electrochemical methods for real-time detection and quantification of monoamine neurotransmitters in real samples at the nanomolar level are summarized in this paper.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
| | - Isha Soni
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
| | - Gururaj Kudur Jayaprakash
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - Roberto Flores-Moreno
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Mexico
| |
Collapse
|
7
|
Zine A, Ferkhi M, Khaled A, Kuyumcu Savan E. A2BO4±δ as New Materials for Electrocatalytic Detection of Paracetamol and Diclofenac Drugs. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00745-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Electrochemical Sensor Based on CuO Nanoparticles Fabricated From Copper Wire Recycling-loaded Carbon Paste Electrode for Excellent Detection of Theophylline in Pharmaceutical Formulations. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-021-00698-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MA, Ahammad AJS. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine. Chem Asian J 2021; 16:3516-3543. [PMID: 34487610 DOI: 10.1002/asia.202100898] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
10
|
Sensor based on redox conjugated poly(para-phenylene) for the simultaneous detection of dopamine, ascorbic acid, and uric acid in human serum sample. Anal Bioanal Chem 2020; 412:4433-4446. [DOI: 10.1007/s00216-020-02686-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
|
11
|
Liu W, Shi Q, Zheng G, Zhou J, Chen M. Electrocatalytic oxidation toward dopamine and acetaminophen based on AuNPs@TCnA/GN modified glassy carbon electrode. Anal Chim Acta 2019; 1075:81-90. [DOI: 10.1016/j.aca.2019.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
|
12
|
Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00543-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Nanomolar Detection of Dopamine at ZnO/Graphene Modified Carbon Paste Electrode. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01134-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Ozoemena OC, Shai LJ, Maphumulo T, Ozoemena KI. Electrochemical Sensing of Dopamine Using Onion-like Carbons and Their Carbon Nanofiber Composites. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00520-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
A gold-nanoparticle/horizontal-graphene electrode for the simultaneous detection of ascorbic acid, dopamine, uric acid, guanine, and adenine. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4019-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Niu X, Mo Z, Yang X, Sun M, Zhao P, Li Z, Ouyang M, Liu Z, Gao H, Guo R, Liu N. Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Mikrochim Acta 2018; 185:328. [DOI: 10.1007/s00604-018-2859-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
|