1
|
Agrahari S, Singh AK, Gautam RK, Tiwari I. Electrochemical oxidation and sensing of para benzoquinone using a novel SPE based disposable sensor. CHEMOSPHERE 2023; 342:140078. [PMID: 37714484 DOI: 10.1016/j.chemosphere.2023.140078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Para-benzoquinone (PBQ) is an emerging micro-contaminant owing to its chronic toxicity to plants and animals as well as its potential to induce cytotoxicity in primary rat hepatocytes and kidney cell injury. Hence, it is of utmost importance to monitor this contaminant in industrial wastewater and groundwater. In this article, we devised a unique disposable sensor that is based on a screen-printed electrode using MnO2@Co-Ni MOFs/fMWCNTs nanocomposite and is able to detect PBQ. The as-produced nanocomposite was prepared via ultrasonic assisted reflux condition and thoroughly examined by several physicochemical characterisation methods such as SEM, EDX, TEM, Raman, AFM, UV-visible, and FT-IR. Moreover, electrochemical methods like CV, DPV, EIS, and chronoamperometry were used for detecting PBQ on MnO2@Co-Ni MOFs/fMWCNTs/SPCE. Sensor performance has been investigated thoroughly and optimized to enhance the analytical potential of the fabricated sensor. DPV analysis was done on MnO2@Co-Ni MOFs/fMWCNTs that exhibit high selectivity, low peak potential, a broader linear detection range (0.005 mM-30 mM), and a LOD of 0.0027 ± 0.0005 mM. The designed electrode has shown remarkable reproducibility and excellent repeatability, with relative standard deviations of 0.12%, and 0.17%, respectively. Additionally, MnO2@Co-Ni MOFs/fMWCNTs/SPCE have been used to analyse PBQ in industrial wastewater samples, and the results have shown a significant level of recovery between 96.91 and 105.67%. Moreover, the PBQ sensor displays high applicability and was verified via the use of HPLC techniques. This disposable sensor is quick, easy, and cost-effective, so it can be useful in the future for analysing other phenolic contaminants present in environmental samples.
Collapse
Affiliation(s)
- Shreanshi Agrahari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ankit Kumar Singh
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Ipadeola AK, Abdelgawad A, Salah B, Abdullah AM, Eid K. Interfacial Engineering of Porous Pd/M (M = Au, Cu, Mn) Sponge-like Nanocrystals with a Clean Surface for Enhanced Alkaline Electrochemical Oxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13830-13840. [PMID: 37724885 DOI: 10.1021/acs.langmuir.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The interfacial engineering of Pd-based alloys (i.e., PdM with distinct morphologies, compositions, and strain defects) is an efficient way for enhanced catalytic activity; however, it remains a grand challenge to fabricate such alloys in aqueous solutions without heating, organic solvents, and multiple reaction steps. Herein, we present a simple, aqueous-phase, one-step, and ultrafast approach for the interfacial engineering of surfactant-free porous PdM (M = Cu, Au, and Mn) nanocrystals with well-controlled spongy-like morphology and compositions. The electronic interaction in PdM nanocrystals and their effect on the alkaline electrochemical ethanol oxidation reaction (EOR) are investigated using XRD, XPS, and electrochemical tests. Notably, integrating M metals into Pd atoms results in upshifting the d-band center of Pd and subsequently modulating the EOR activity and stability substantially. The EOR mass activity (10.78 A/mgPd (6.93 A/mgPdCu)) of PdCu was 1.83, 3.09, 4.51, and 53.90 times higher than those of AuPd (5.90 A/mgPd (3.27 A/mgAuPd)), PdMn (3.48 A/mgPd (3.19 A/mgPdMn)), Pd (2.39 A/mgPd), and Pd/C (0.20 A/mgPd), respectively, besides substantial durability after 1000 cycles. This is due to the porous two-dimensional morphology, a low synergetic effect, higher interfacial interaction, and greater active surface area of PdCu, besides a high Cu content with more oxophilicity that facilitates activation/dissociation of H2O to generate -OH species needed for quick EOR electrocatalysis. The electrochemical impedance spectroscopy (EIS) reveals better electrolyte/electrode interfacial interaction and lower charge transfer resistance on PdCu. The EOR activity of PdCu porous sponge-like nanocrystals was superior to all previously reported Pd-based alloys for electrochemical EOR. This study indicates that binary Pd-based catalysts with less synergetic effect are preferred for boosting the EOR activity, which could help in manipulating the surface properties of Pd-based alloys to optimize EOR performance.
Collapse
Affiliation(s)
- Adewale K Ipadeola
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Ahmed Abdelgawad
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Kamel Eid
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
3
|
Bera K, Chowdhury A, Bera SK, Das MR, Roy A, Das S, Bhattacharya SK. Pd Nanoparticle-Decorated Novel Ternary Bi 2O 2CO 3-Bi 2MoO 6-CuO Heterojunction for Enhanced Photo-electrocatalytic Ethanol Oxidation. ACS OMEGA 2023; 8:28419-28435. [PMID: 37576621 PMCID: PMC10413847 DOI: 10.1021/acsomega.3c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Recently, photo-electrooxidation of fuel using a noble metal-semiconductor junction has been one of the most promising approaches in fuel cell systems. Herein, we report the development of a Pd-supported Bi2MoO6-Bi2O2CO3-CuO novel ternary heterojunction for ethanol oxidation in alkali in the presence and absence of visible light. Various spectroscopic and microscopic characterization techniques confirm strong coupling between palladium nanoparticles and Bi2MoO6-Bi2O2CO3-CuO ternary heterojunction supports. The photo-electrocatalytic efficacy of the synthesized catalysts was inspected by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The CV study reveals that the forward peak current density (in mA mg-1 of Pd) of the synthesized quaternary heterojunction was about 1482.5, which is 2.4, 4, and 4.6 times higher than that of Pd/CuO (608.3), Pd/Bi2MoO6-Bi2O2CO3 (368.3), and similarly synthesized Pd catalyst (321.5) under visible light radiation. The best heterojunction catalyst shows 2.21-fold higher peak current density in visible light compared to that in dark. CA study reveals that after operation for 6000 s, the current density of the quaternary electrode is 1.5 and 3.4 times greater than that of Pd/CuO and Pd/C catalysts, respectively. The greater photocurrent response, lower photoluminescence (PL) emission intensity, and smaller semicircle arc in the Nyquist plot of the quaternary catalyst demonstrate the efficient segregation and higher charge transfer conductance of photogenerated charges to facilitate the photo-electrooxidation process of ethanol. The stability test shows that the quaternary catalyst loses only 9.8 and 7.7% of its maximum current density after 500 cycles of CV operation in the dark and light, respectively, indicating that light energy is more beneficial in establishing high stability. The dramatic enhancement of the photo-electrocatalytic activity of the quaternary electrode is owing to the lower band gap, high ECSA, enhanced charge separation of photogenerated carriers (e--h+), and all cocatalytic support of Bi2MoO6, Bi2O2CO3, and CuO in Pd/ Bi2MoO6-Bi2O2CO3-CuO under visible light radiation. The morphology and structure of the used quaternary catalyst are tested using FESEM and PXRD. Finally, ex situ FTIR spectroscopy and HPLC techniques help understand the ethanol electrooxidation reaction mechanism.
Collapse
Affiliation(s)
- Kamal
Kanti Bera
- Physical
Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anupam Chowdhury
- Physical
Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Shyamal Kanti Bera
- School
of Chemical Science, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Mahima Ranjan Das
- Department
of Physics, The University of Burdwan, Burdwan 713104, India
| | - Atanu Roy
- Department
of Instrumentation Science, Jadavpur University, Kolkata 700032, India
| | - Sachindranath Das
- Department
of Instrumentation Science, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
4
|
Ipadeola AK, Salah B, Ghanem A, Ahmadaliev D, Sharaf MA, Abdullah AM, Eid K. Unveiling the effect of shapes and electrolytes on the electrocatalytic ethanol oxidation activity of self-standing Pd nanostructures. Heliyon 2023; 9:e16890. [PMID: 37484255 PMCID: PMC10360946 DOI: 10.1016/j.heliyon.2023.e16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Morphologically controlled Pd-based nanocrystals are the most efficient strategies for improving the electrocatalytic ethanol oxidation reaction (EOR) performance; however, their morphological-EOR activity relationship and effect of electrolytes at a wide pH range are still ambiguous. Here, we have synthesized porous self-standing Pd clustered nanospheres (Pd-CNSs) and Pd nanocubes (Pd-NCBs) for the EOR in acidic (H2SO4), alkaline (KOH), and neutral (NaHCO3) electrolytes compared to commercial spherical-like Pd/C catalysts. The fabrication process comprises the ice-cooling reduction of Pd precursor by sodium borohydride (NaBH4) and l-ascorbic acid to form Pd-CNSs and Pd-NCBs, respectively. The EOR activity of Pd-CNSs significantly outperformed those of Pd-NCBs, and Pd/C in all electrolytes, but the EOR activity was better in KOH than in H2SO4 and NaHCO3. This is due to the 3D porous clustered nanospherical morphology that makes Pd active centers more accessible and maximizes their utilization during EOR. The EOR specific/mass activities of Pd-CNSs reached (8.51 mA/cm2/2.39 A/mgPd) in KOH, (2.98 mA/cm2/0.88 A/mgPd) in H2SO4, and (0.061 mA/cm2/0.0083 A/mgPd) in NaHCO3, in addition to stability after 1000 cycles. This study affirms that porous 3D spherical Pd nanostructures are preferred for the EOR than those of 0D spherical-like and multi-dimensional cube-like nanostructures.
Collapse
Affiliation(s)
- Adewale K. Ipadeola
- Center for Advanced Materials, Qatar University, Doha, 2713, Qatar
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha, 2713, Qatar
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Alaa Ghanem
- PVT-Lab, Production Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Doniyorbek Ahmadaliev
- Department of Chemical & Material Science Engineering of School of Engineering, New Uzbekistan University, Tashkent, 100007, Uzbekistan
| | - Mohammed A. Sharaf
- Department of Maritime Transportation Management Engineering, Istanbul University-Cerrahpasa, 34320, Avcilar/Istanbul, Turkey
- Mericler Inc. Educational Consulting, Esentepe, Yazarlar Sk. No 21, 34381, Sisli/Istanbul, Turkey
| | | | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
5
|
Ipadeola AK, Eid K, Abdullah AM, Al-Hajri RS, Ozoemena KI. Pd/Ni-metal-organic framework-derived porous carbon nanosheets for efficient CO oxidation over a wide pH range. NANOSCALE ADVANCES 2022; 4:5044-5055. [PMID: 36504739 PMCID: PMC9680948 DOI: 10.1039/d2na00455k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/04/2022] [Indexed: 05/26/2023]
Abstract
Metal nanocrystal ornamented metal-organic frameworks (MOFs) are of particular interest in multidisciplinary applications; however, their electrocatalytic CO oxidation performance over wide pH ranges is not yet reported. Herein, Ni-MOF-derived hierarchical porous carbon nanosheets (Ni-MOF/PC) with abundant Ni-N x sites decorated with Pd nanocrystals (Pd/Ni-MOF/PC) were synthesized by microwave-irradiation (MW-I) followed by annealing at 900 °C and subsequent etching of Ni-MOF/C prior to Pd deposition. The fabrication mechanism comprises the generation of self-reduced reducing gases from triethylamine during the annealing and selective chemical etching of Ni, thereby facilitating the reduction of Ni-anchored MOF and Pd nanocrystal deposition with the aid of ethylene glycol and MW-I to yield Pd/Ni-N x enriched MOF/PC. The synthetic strategies endear the Pd/Ni-MOF/PC with unique physicochemical merits: abundant defects, interconnected pores, high electrical conductivity, high surface area, Ni-deficient but more active sites for Pd/Ni-N x in porous carbon nanosheets, and synergism. These merits endowed the CO oxidation activity and stability on Pd/Ni-MOF/PC substantially than those of Pd/Ni-MOF/C and Pd/C catalysts in wide pH conditions (i.e., KOH, HClO4, and NaHCO3). The CO oxidation activity study reveals the utilization of MOF/PC with metal nanocrystals (Pd/Ni) in CO oxidation catalysis.
Collapse
Affiliation(s)
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University Doha 2713 Qatar
| | | | - Rashid S Al-Hajri
- Petroleum and Chemical Engineering Department, Sultan Qaboos University Muscat Oman
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
6
|
Ipadeola AK, Eid K, Abdullah AM, Ozoemena KI. Pd-Nanoparticles Embedded Metal-Organic Framework-Derived Hierarchical Porous Carbon Nanosheets as Efficient Electrocatalysts for Carbon Monoxide Oxidation in Different Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11109-11120. [PMID: 36040806 DOI: 10.1021/acs.langmuir.2c01841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rational synthesis of Co-ZIF-67 metal-organic framework (MOF)-derived carbon-supported metal nanoparticles is essential for various energy and environmental applications; however, their catalytic activity toward carbon monoxide (CO) oxidation in various electrolytes is not yet emphasized. Co-ZIF-67-derived hierarchical porous carbon nanosheet-supported Pd nanocrystals (Pd/ZIF-67/C) were prepared using a simple microwave-irradiation approach followed by carbonization and etching. Mechanistically, during microwave irradiation, triethyleneamine provides abundant reducing gases that promote the formation of Pd nanoparticles/Co-Nx in porous carbon nanosheets with the assistance of ethylene glycol and also form a multimodal pore size. The electrocatalytic CO oxidation activity and stability of Pd/ZIF-67/C outperformed those of commercial Pd/C and Pt/C catalysts by (4.2 and 4.4, 4.0 and 2.7, 3.59 and 2.7) times in 0.1 M HClO4, 0.1 M KOH, and 0.1 M NaHCO3, respectively, due to the catalytic properties of Pd besides the conductivity of Co-Nx active sites and delicate porous structures of ZIF-67. Notably, using Pd/ZIF-67/C results in a higher CO oxidation activity than Pd/C and Pt/C. This study may pave the way for using MOF-supported multi-metallic nanoparticles for CO oxidation electrocatalysis.
Collapse
Affiliation(s)
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa
| |
Collapse
|
7
|
K Lebechi A, Ipadeola AK, Eid K, Abdullah AM, Ozoemena KI. Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions. NANOSCALE 2022; 14:10717-10737. [PMID: 35861592 DOI: 10.1039/d2nr02330j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Porous spinel-type transition metal oxide (PS-TMO) nanocatalysts comprising two kinds of metal (denoted as AxB3-xO4, where A, B = Co, Ni, Zn, Mn, Fe, V, Sm, Li, and Zn) have emerged as promising electrocatalysts for oxygen reduction reactions (ORRs) in energy conversion and storage systems (ECSS). This is due to the unique catalytic merits of PS-TMOs (such as p-type conductivity, optical transparency, semiconductivity, multiple valence states of their oxides, and rich active sites) and porous morphologies with great surface area, low density, abundant transportation paths for intermediate species, maximized atom utilization and quick charge mobility. In addition, PS-TMOs nanocatalysts are easily prepared in high yield from Earth-abundant and inexpensive metal precursors that meet sustainability requirements and practical applications. Owing to the continued developments in the rational synthesis of PS-TMOs nanocatalysts for ORRs, it is utterly imperative to provide timely updates and highlight new advances in this research area. This review emphasizes recent research advances in engineering the morphologies and compositions of PS-TMOs nanocatalysts in addition to their mechanisms, to decipher their structure-activity relationships. Also, the ORR mechanisms and fundamentals are discussed, along with the current barriers and future outlook for developing the next generation of PS-TMOs nanocatalysts for large-scale ECSS.
Collapse
Affiliation(s)
- Augustus K Lebechi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| | | | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| | | | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| |
Collapse
|
8
|
Ipadeola AK, Eid K, Lebechi AK, Abdullah AM, Ozoemena KI. Porous multi-metallic Pt-based nanostructures as efficient electrocatalysts for ethanol oxidation: A mini-review. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
9
|
Ogada JJ, Ipadeola AK, Mwonga PV, Haruna AB, Nichols F, Chen S, Miller HA, Pagliaro MV, Vizza F, Varcoe JR, Meira DM, Wamwangi DM, Ozoemena KI. CeO 2 Modulates the Electronic States of a Palladium Onion-Like Carbon Interface into a Highly Active and Durable Electrocatalyst for Hydrogen Oxidation in Anion-Exchange-Membrane Fuel Cells. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jimodo J. Ogada
- School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Adewale K. Ipadeola
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Patrick V. Mwonga
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Aderemi B. Haruna
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Forrest Nichols
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Hamish A. Miller
- Institute of Chemistry of Organometallic Compounds − National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - Maria V. Pagliaro
- Institute of Chemistry of Organometallic Compounds − National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - Francesco Vizza
- Institute of Chemistry of Organometallic Compounds − National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - John R. Varcoe
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Debora Motta Meira
- CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Daniel M. Wamwangi
- School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Kenneth I. Ozoemena
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
10
|
Ipadeola AK, Mwonga PV, Ozoemena KI. Hydrogen oxidation and oxygen reduction reactions on palladium nano-electrocatalyst supported on nickel-deficient MOF-derived carbons. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Bhattarai DP, Pant B, Acharya J, Park M, Ojha GP. Recent Progress in Metal-Organic Framework-Derived Nanostructures in the Removal of Volatile Organic Compounds. Molecules 2021; 26:molecules26164948. [PMID: 34443537 PMCID: PMC8400575 DOI: 10.3390/molecules26164948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Air is the most crucial and life-supporting input from nature to the living beings of the planet. The composition and quality of air significantly affects human health, either directly or indirectly. The presence of some industrially released gases, small particles of anthropogenic origin, and the deviation from the normal composition of air from the natural condition causes air pollution. Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants. Such pollutants represent acute or chronic health hazards to the human physiological system. In the environment, such polluted gases may cause chemical or photochemical smog, leading to detrimental effects such as acid rain, global warming, and environmental pollution through different routes. Ultimately, this will propagate into the food web and affect the ecosystem. In this context, the efficient removal of volatile organic compounds (VOCs) from the environment remains a major threat globally, yet satisfactory strategies and auxiliary materials are far from being in place. Metal–organic frameworks (MOFs) are known as an advanced class of porous coordination polymers, a smart material constructed from the covalently bonded and highly ordered arrangements of metal nodes and polyfunctional organic linkers with an organic–inorganic hybrid nature, high porosities and surface areas, abundant metal/organic species, large pore volumes, and elegant tunability of structures and compositions, making them ideal candidates for the removal of unwanted VOCs from air. This review summarizes the fundamentals of MOFs and VOCs with recent research progress on MOF-derived nanostructures/porous materials and their composites for the efficient removal of VOCs in the air, the remaining challenges, and some prospective for future efforts.
Collapse
Affiliation(s)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
| | - Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Department of Fire Disaster Prevention, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Correspondence: (M.P.); (G.P.O.)
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Correspondence: (M.P.); (G.P.O.)
| |
Collapse
|
12
|
Xie J, Yang H, Dong Q, Qin Q, Hu C, Yu G. Oxygen-rich PdSnCu nanocrystals with particle connection features as enhanced catalysts for ethanol oxidation reaction. NANOTECHNOLOGY 2021; 32:325704. [PMID: 33862606 DOI: 10.1088/1361-6528/abf8dc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Most electrocatalysts show a high mass and special activity during the ethanol oxidation reaction, but those still suffer from limited stability, finite renewable capability and poor anti-poisoning durability. Furthermore, the reliable structure and appropriate composition of catalysts are fairly associated with the electrocatalysis performance. Herein, we report the development of trimetallic Pd61Sn34Cu5nanocrystals (NCs) whose rough surfaces are rich in step atoms and coupled with abundant of SnOxand CuO, which may effectively boost reaction activity and rapidly remove carbonaceous intermediate, respectively. Under the tuning on the composition, the defect rich Pd61Sn34Cu5NCs exhibit elevated electrocatalysis activity and durability for ethanol oxidation reaction with an optimized mass activity (1.26 AmgPd-1) and specific activity (10.6 mA cm-2), which is about 2.21 and 2.58 times greater than that of the commercial Pd/C catalyst (0.57 AmgPd-1and 4.1 mA cm-2).
Collapse
Affiliation(s)
- Jian Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Hui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qizhi Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qian Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Chao Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Gang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
13
|
Yaqoob L, Noor T, Iqbal N. A comprehensive and critical review of the recent progress in electrocatalysts for the ethanol oxidation reaction. RSC Adv 2021; 11:16768-16804. [PMID: 35479139 PMCID: PMC9032615 DOI: 10.1039/d1ra01841h] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023] Open
Abstract
The human craving for energy is continually mounting and becoming progressively difficult to gratify. At present, the world's massive energy demands are chiefly encountered by nonrenewable and benign fossil fuels. However, the development of dynamic energy cradles for a gradually thriving world to lessen fossil fuel reserve depletion and environmental concerns is currently a persistent issue for society. The discovery of copious nonconventional resources to fill the gap between energy requirements and supply is the extreme obligation of the modern era. A new emergent, clean, and robust alternative to fossil fuels is the fuel cell. Among the different types of fuel cells, the direct ethanol fuel cell (DEFCs) is an outstanding option for light-duty vehicles and portable devices. A critical tactic for obtaining sustainable energy sources is the production of highly proficient, economical and green catalysts for energy storage and conversion devices. To date, a broad range of research is available for using Pt and modified Pt-based electrocatalysts to augment the C2H5OH oxidation process. Pt-based nanocubes, nanorods, nanoflowers, and the hybrids of Pt with metal oxides such as Fe2O3, TiO2, SnO2, MnO, Cu2O, and ZnO, and with conducting polymers are extensively utilized in both acidic and basic media. Moreover, Pd-based materials, transition metal-based materials, as well as transition metal-based materials are also points of interest for researchers nowadays. This review article delivers a broad vision of the current progress of the EOR process concerning noble metals and transition metals-based materials.
Collapse
Affiliation(s)
- Lubna Yaqoob
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan +92 51 9085 5121
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| |
Collapse
|
14
|
Mehrjo F, Hashemi M, Solati Z, Hashemnia S. Biosynthesis of ZnO Nanosheets Decorated with Pd Nanoparticles and Their Application for Electrochemical Investigation of Ethanol. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ren F, Chen X, Xing R, Du Y. Rod-like MnO 2 boost Pd/reduced graphene oxide nanocatalyst for ethylene glycol electrooxidation. J Colloid Interface Sci 2021; 582:561-568. [PMID: 32911405 DOI: 10.1016/j.jcis.2020.07.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023]
Abstract
Anode catalyst is one of the core components of fuel cell, but its poor catalytic activity, short lifespan, and high price are tricky problems to the commercialization of fuel cell. Herein, a novel rod-like MnO2 decorated reduced graphene oxide (RGO) supported Pd hybrid (Pd/RGO-MnO2) has been designed, which manifests more negative onset oxidation potential, higher peak current density, and better long-term stability relative to Pd/RGO and pure Pd catalysts when serving for ethylene glycol electrooxidation. This enhancement may be due to the addition of MnO2, which can effectively promote the adsorption of hydroxyl at a lower potential and produce a strong electronic interaction with Pd, as confirmed by X-ray photoelectron spectroscopy (XPS) technique. In view of its excellent performance and low cost, Pd/RGO-MnO2 is considered to be a potential and effective anode catalyst for DEGFCs.
Collapse
Affiliation(s)
- Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China.
| | - Xuanrong Chen
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Rong Xing
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
16
|
Ipadeola AK, Mwonga PV, Ray SC, Maphanga RR, Ozoemena KI. Bifunctional Behavior of Pd/Ni Nanocatalysts on MOF‐Derived Carbons for Alkaline Water‐splitting. ELECTROANAL 2020. [DOI: 10.1002/elan.202060427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adewale K. Ipadeola
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Patrick V. Mwonga
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Sekar C. Ray
- Department of Physics University of South Africa, Florida Campus Johannesburg 1709 South Africa
| | - Rapela R. Maphanga
- Next Generation Enterprises and Institutions Council for Scientific and Industrial Research (CSIR) P.O. Box 395 Pretoria 0001 South Africa
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
17
|
Ipadeola AK, Mwonga PV, Ray SC, Maphanga RR, Ozoemena KI. Palladium/Stannic Oxide Interfacial Chemistry Promotes Hydrogen Oxidation Reactions in Alkaline Medium. ChemElectroChem 2020. [DOI: 10.1002/celc.202000952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adewale K. Ipadeola
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Patrick V. Mwonga
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Sekar C. Ray
- Department of Physics University of South Africa, Florida Campus Johannesburg 1709 South Africa
| | - Rapela R. Maphanga
- Next Generation Enterprises and Institutions Council for Scientific and Industrial Research (CSIR) P.O. Box 395 Pretoria 0001 South Africa
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
18
|
Tresatayawed A, Glinrun P, Autthanit C, Jongsomjit B. Pd Modification and Supporting Effects on Catalytic Dehydration of Ethanol to Ethylene and Diethyl Ether over W/TiO 2 Catalysts. J Oleo Sci 2020; 69:503-515. [PMID: 32378552 DOI: 10.5650/jos.ess19220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present work, the palladium (Pd) modification and supporting effect of W/TiO2 catalysts on catalytic ethanol dehydration to ethylene and diethyl ether were investigated. The Pd modification with different sequence of Pd and W impregnation on the catalysts was prepared by the incipient wetness impregnation technique. The catalyst characterization and activity testing revealed that the different sequence during impregnation influenced the physicochemical properties and ethanol conversion of catalyst. The differences in structure and surface properties were investigated by XRD, BET, SEM, EDX, XPS and NH3-TPD. Upon the reaction temperature between 200 to 400°C, it was found that the conversion increased with increasing of temperature for all catalysts. The Pd incorporated into catalysts enhanced the ethanol conversion depending on the sequence of impregnation. At low temperature (ca. 200 to 300°C), diethyl ether is a major product and the Pd modification over W/TiO2 catalyst resulted in increased diethyl ether yield. This is because an increase of ethanol conversion was obtained with Pd modification, while diethyl ether selectivity did not change. This can be attributed to the higher amount of weak acids sites present after Pd modification into catalyst. Among all catalysts, the PdW/TiO2 catalyst (coimpregnation) achieved the highest diethyl ether yield of 41.4% at 300℃. At high temperature (ca. 350 to 400°C), ethylene is the major product. The W/Pd/TiO2 catalyst (with sequential impregnation of Pd on TiO2 followed by W) exhibited the highest ethylene yield of 68.1% at 400°C. It can be concluded that the modification of Pd onto W/TiO2 upon different sequence of Pd and W impregnation can improve the diethyl ether and ethylene yield in catalytic ethanol dehydration.
Collapse
Affiliation(s)
- Anchale Tresatayawed
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| | - Peangpit Glinrun
- Department of Petrochemicals and Environmental Management, Faculty of Engineering, Pathumwan Institute of Technology
| | - Chaowat Autthanit
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| | - Bunjerd Jongsomjit
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| |
Collapse
|
19
|
Voltammetric responses of porous Co3O4 spinels supported on MOF-derived carbons: Effects of porous volume on dopamine diffusion processes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Mofokeng T, Ipadeola AK, Tetana ZN, Ozoemena KI. Defect-Engineered Nanostructured Ni/MOF-Derived Carbons for an Efficient Aqueous Battery-Type Energy Storage Device. ACS OMEGA 2020; 5:20461-20472. [PMID: 32832799 PMCID: PMC7439376 DOI: 10.1021/acsomega.0c02563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
A Ni-based metal-organic framework (Ni-MOF) has been synthesized using a microwave-assisted strategy and converted to nanostructured Ni/MOF-derived mesoporous carbon (Ni/MOFDC) by carbonization and acid treatment (AT-Ni/MOFDC). The materials are well characterized with Raman, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET), revealing that chemical etching confers on the AT-Ni/MOFDC-reduced average nanoparticle size (high surface area) and structural defects including oxygen vacancies. AT-Ni/MOFDC displays low series resistances and a higher specific capacity (C s) of 199 mAh g-1 compared to Ni/MOFDC (92 mAh g-1). This study shows that the storage mechanism of the Ni-based electrode as a battery-type energy storage (BTES) system can be controlled by both non-faradic and faradic processes and dependent on the sweep rate or current density. AT-Ni/MOFDC reveals mixed contributions at different rates: 75.2% faradic and 24.8% non-faradic contributions at 5 mV s-1, and 34.1% faradic and 65.9% non-faradic at 50 mV s-1. The full BTES device was assembled with AT-Ni/MOFDC as the cathode and acetylene black (AB) as the anode. Compared to recent literature, the AT-Ni/MOFDC//AB BTES device exhibits high energy (33 Wh kg-1) and high power (983 W kg-1) with excellent cycling performance (about 88% capacity retention over 2000 cycles). This new finding opens a window of opportunity for the rational designing of next-generation energy storage devices, supercapatteries, that combine the characteristics of batteries (high energy) and supercapacitors (high power).
Collapse
Affiliation(s)
- Thapelo
Prince Mofokeng
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South
Africa
- DSI-NRF
Centre of Excellence in Strong Materials, School of Chemistry, University of the Witwatersrand, Private Bag 3,
PO Wits, Johannesburg 2050, South Africa
| | - Adewale Kabir Ipadeola
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South
Africa
| | - Zikhona Nobuntu Tetana
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South
Africa
- DSI-NRF
Centre of Excellence in Strong Materials, School of Chemistry, University of the Witwatersrand, Private Bag 3,
PO Wits, Johannesburg 2050, South Africa
| | - Kenneth Ikechukwu Ozoemena
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South
Africa
- DSI-NRF
Centre of Excellence in Strong Materials, School of Chemistry, University of the Witwatersrand, Private Bag 3,
PO Wits, Johannesburg 2050, South Africa
| |
Collapse
|
21
|
Fabrication of Composite Material with Pd Nanoparticles and Graphene on Nickel Foam for Its Excellent Electrocatalytic Performance. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00611-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractIncorporation of precious metallic nanoparticles onto a carbon support material is used to obtain an electrocatalyst for ethanol oxidation. A composite material of spherical palladium nanoparticles (Pd NPs), reduced graphene oxide (rGO), and polydopamine (PDA) on three-dimensional nickel foam (NF) substrate (Pd/rGO/PDA@NF) has been synthesized for ethanol electrocatalysis. The Pd nanoparticles were obtained via reduction of precursor K2PdCl4 using ascorbic acid at 60 °C for 80 min. The rGO with large specific surface area was used in catalysts to provide large amounts of active sites for Pd NPs. Meanwhile, Pd NPs as an effective ingredient in catalyst exhibited excellent electrochemical activity of ethanol oxidation. Local surface plasmon resonance was carried out to determine the optimal concentration of precursor K2PdCl4 aqueous solution, and the absorbance peak of Pd NPs was found at about 340–370 nm by UV-visible spectroscopy. An enhanced property of the composite material Pd/rGO/PDA@NF was demonstrated to catalyze the ethanol oxidation reaction in alkaline electrolyte solution. A higher ratio of forward scan peak current intensity (If) to reverse scan peak current intensity (Ib) was 1.59, which demonstrated the significant anti-poison effect to carbonaceous intermediates of the Pd/rGO/PDA@NF. The value of If can maintain 90.6% after 400 cycles, indicating the higher cycling stability and better electrocatalytic performance toward ethanol oxidation.
Collapse
|
22
|
Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213214] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Ipadeola AK, Ozoemena KI. Alkaline water-splitting reactions over Pd/Co-MOF-derived carbon obtained via microwave-assisted synthesis. RSC Adv 2020; 10:17359-17368. [PMID: 35521459 PMCID: PMC9053437 DOI: 10.1039/d0ra02307h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
Cobalt-based metal-organic framework-derived carbon (MOFDC) has been studied as a new carbon-based support for a Pd catalyst for electrochemical water-splitting; i.e., the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline medium. The study shows a high increase in the HER activity, in terms of low onset overpotential (onset η = 35 mV vs. RHE), high exchange current density (j o,s ≈ 0.22 mA cm-2), high mass activity (j o,m ≈ 59 mA mg-1), high kinetic current (j K ≈ 5-8 mA cm-2) and heterogeneous rate constant (k 0 ≈ 4 × 10-4 cm s-1), which are attributed to the high porosity of MOFDC and contribution from residual Co, while the large Tafel slope (b c = 261 mV dec-1) is ascribed to the high degree of hydrogen adsorption onto polycrystalline Pd as a supplementary reaction step to the suggested Volmer-Heyrovsky mechanism. These values for the catalyst are comparable to or better than many recent reports that adopted nano-carbon materials and/or use bi- or ternary Pd-based electrocatalysts for the HER. The improved HER activity of Pd/MOFDC is associated with the positive impact of MOFDC and residual Co on the Pd catalyst (i.e., low activation energy, E A ≈ 12 kJ mol-1) which allows for easy desorption of the Hads to generate hydrogen. Moreover, Pd/MOFDC displays better OER activity than its analogue, with lower onset η (1.29 V vs. RHE) and b a (≈78 mV dec-1), and higher current response (ca. 18 mA cm-2). Indeed, this study provides a new strategy of designing and synthesizing MOFDC with physico-chemical features for Pd-based electrocatalysts that will allow for efficient electrochemical water-splitting processes.
Collapse
Affiliation(s)
- Adewale K Ipadeola
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa +27 11 717 6730
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa +27 11 717 6730
| |
Collapse
|