1
|
Karin BR, Arellano S, Wang L, Walzer K, Pomerantz A, Vasquez JM, Chatla K, Sudmant PH, Bach BH, Smith LL, McGuire JA. Highly-multiplexed and efficient long-amplicon PacBio and Nanopore sequencing of hundreds of full mitochondrial genomes. BMC Genomics 2023; 24:229. [PMID: 37131128 PMCID: PMC10155392 DOI: 10.1186/s12864-023-09277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Mitochondrial genome sequences have become critical to the study of biodiversity. Genome skimming and other short-read based methods are the most common approaches, but they are not well-suited to scale up to multiplexing hundreds of samples. Here, we report on a new approach to sequence hundreds to thousands of complete mitochondrial genomes in parallel using long-amplicon sequencing. We amplified the mitochondrial genome of 677 specimens in two partially overlapping amplicons and implemented an asymmetric PCR-based indexing approach to multiplex 1,159 long amplicons together on a single PacBio SMRT Sequel II cell. We also tested this method on Oxford Nanopore Technologies (ONT) MinION R9.4 to assess if this method could be applied to other long-read technologies. We implemented several optimizations that make this method significantly more efficient than alternative mitochondrial genome sequencing methods. RESULTS With the PacBio sequencing data we recovered at least one of the two fragments for 96% of samples (~ 80-90%) with mean coverage ~ 1,500x. The ONT data recovered less than 50% of input fragments likely due to low throughput and the design of the Barcoded Universal Primers which were optimized for PacBio sequencing. We compared a single mitochondrial gene alignment to half and full mitochondrial genomes and found, as expected, increased tree support with longer alignments, though whole mitochondrial genomes were not significantly better than half mitochondrial genomes. CONCLUSIONS This method can effectively capture thousands of long amplicons in a single run and be used to build more robust phylogenies quickly and effectively. We provide several recommendations for future users depending on the evolutionary scale of their system. A natural extension of this method is to collect multi-locus datasets consisting of mitochondrial genomes and several long nuclear loci at once.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA.
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.
| | - Selene Arellano
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Laura Wang
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Kayla Walzer
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Aaron Pomerantz
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Juan Manuel Vasquez
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Peter H Sudmant
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Bryan H Bach
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Lydia L Smith
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Jimmy A McGuire
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Maduna SN, Vivian-Smith A, Jónsdóttir ÓDB, Imsland AK, Klütsch CF, Nyman T, Eiken HG, Hagen SB. Mitogenomics of the suborder Cottoidei (Teleostei: Perciformes): Improved assemblies, mitogenome features, phylogeny, and ecological implications. Genomics 2022; 114:110297. [DOI: 10.1016/j.ygeno.2022.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
3
|
Kirchhof S, Lyra ML, Rodríguez A, Ineich I, Müller J, Rödel MO, Trape JF, Vences M, Boissinot S. Mitogenome analyses elucidate the evolutionary relationships of a probable Eocene wet tropics relic in the xerophile lizard genus Acanthodactylus. Sci Rep 2021; 11:4858. [PMID: 33649347 PMCID: PMC7921649 DOI: 10.1038/s41598-021-83422-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022] Open
Abstract
Climate has a large impact on diversity and evolution of the world's biota. The Eocene-Oligocene transition from tropical climate to cooler, drier environments was accompanied by global species turnover. A large number of Old World lacertid lizard lineages have diversified after the Eocene-Oligocene boundary. One of the most speciose reptile genera in the arid Palearctic, Acanthodactylus, contains two sub-Saharan species with unresolved phylogenetic relationship and unknown climatic preferences. We here aim to understand how and when adaptation to arid conditions occurred in Acanthodactylus and when tropical habitats where entered. Using whole mitogenomes from fresh and archival DNA and published sequences we recovered a well-supported Acanthodactylus phylogeny and underpinned the timing of diversification with environmental niche analyses of the sub-Saharan species A. guineensis and A. boueti in comparison to all arid Acanthodactylus. We found that A. guineensis represents an old lineage that splits from a basal node in the Western clade, and A. boueti is a derived lineage and probably not its sister. Their long branches characterize them-and especially A. guineensis-as lineages that may have persisted for a long time without further diversification or have undergone multiple extinctions. Environmental niche models verified the occurrence of A. guineensis and A. boueti in hot humid environments different from the other 42 arid Acanthodactylus species. While A. guineensis probably remained in tropical habitat from periods prior to the Eocene-Oligocene boundary, A. boueti entered tropical environments independently at a later period. Our results provide an important baseline for studying adaptation and the transition from humid to arid environments in Lacertidae.
Collapse
Affiliation(s)
- Sebastian Kirchhof
- New York University Abu Dhabi, Abu Dhabi, Saadiyat Island, United Arab Emirates.
| | - Mariana L Lyra
- Instituto de Biociências, Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP, CEP 13506-900, Brazil
| | - Ariel Rodríguez
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Ivan Ineich
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, CP 30, 57 rue Cuvier, 75005, Paris, France
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Jean-François Trape
- Laboratoire de Paludologie et Zoologie médicale, IRD, UMR MIVEGEC, B. P. 1386, Dakar, Senegal
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Stéphane Boissinot
- New York University Abu Dhabi, Abu Dhabi, Saadiyat Island, United Arab Emirates
| |
Collapse
|
4
|
Allio R, Tilak MK, Scornavacca C, Avenant NL, Kitchener AC, Corre E, Nabholz B, Delsuc F. High-quality carnivoran genomes from roadkill samples enable comparative species delineation in aardwolf and bat-eared fox. eLife 2021; 10:e63167. [PMID: 33599612 PMCID: PMC7963486 DOI: 10.7554/elife.63167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
In a context of ongoing biodiversity erosion, obtaining genomic resources from wildlife is essential for conservation. The thousands of yearly mammalian roadkill provide a useful source material for genomic surveys. To illustrate the potential of this underexploited resource, we used roadkill samples to study the genomic diversity of the bat-eared fox (Otocyon megalotis) and the aardwolf (Proteles cristatus), both having subspecies with similar disjunct distributions in Eastern and Southern Africa. First, we obtained reference genomes with high contiguity and gene completeness by combining Nanopore long reads and Illumina short reads. Then, we showed that the two subspecies of aardwolf might warrant species status (P. cristatus and P. septentrionalis) by comparing their genome-wide genetic differentiation to pairs of well-defined species across Carnivora with a new Genetic Differentiation index (GDI) based on only a few resequenced individuals. Finally, we obtained a genome-scale Carnivora phylogeny including the new aardwolf species.
Collapse
Affiliation(s)
- Rémi Allio
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Marie-Ka Tilak
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Nico L Avenant
- National Museum and Centre for Environmental Management, University of the Free StateBloemfonteinSouth Africa
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums ScotlandEdinburghUnited Kingdom
| | - Erwan Corre
- CNRS, Sorbonne Université, CNRS, ABiMS, Station Biologique de RoscoffRoscoffFrance
| | - Benoit Nabholz
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| |
Collapse
|
5
|
Dias CAR, Santos Júnior JE, Pinto CM, Santos FR, Perini FA. Mitogenomics of
Didelphis
(Mammalia; Didelphimorphia; Didelphidae) and insights into character evolution in the genus. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Cayo Augusto Rocha Dias
- Laboratório de Evolução de Mamíferos Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - José Eustáquio Santos Júnior
- Laboratório de Biodiversidade e Evolução Molecular Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Christian Miguel Pinto
- Departamento de Biologia Facultad de Ciencias Escuela Politécnica Nacional Quito Ecuador
| | - Fabrício Rodrigues Santos
- Laboratório de Biodiversidade e Evolução Molecular Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Fernando Araújo Perini
- Laboratório de Evolução de Mamíferos Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
6
|
Phillips MJ, Shazwani Zakaria S. Enhancing mitogenomic phylogeny and resolving the relationships of extinct megafaunal placental mammals. Mol Phylogenet Evol 2021; 158:107082. [PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
Collapse
Affiliation(s)
- Matthew J Phillips
- School of Biology and Environmental Science, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia.
| | - Sarah Shazwani Zakaria
- School of Biology and Environmental Science, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia; School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Caw. Negeri Sembilan, Kuala Pilah 72000, Malaysia
| |
Collapse
|
7
|
Nykänen M, Kaschner K, Dabin W, Brownlow A, Davison NJ, Deaville R, Garilao C, Kesner-Reyes K, Gilbert MTP, Penrose R, Islas-Villanueva V, Wales N, Ingram SN, Rogan E, Louis M, Foote AD. Postglacial Colonization of Northern Coastal Habitat by Bottlenose Dolphins: A Marine Leading-Edge Expansion? J Hered 2020; 110:662-674. [PMID: 31211393 DOI: 10.1093/jhered/esz039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/14/2019] [Indexed: 11/15/2022] Open
Abstract
Oscillations in the Earth's temperature and the subsequent retreating and advancing of ice-sheets around the polar regions are thought to have played an important role in shaping the distribution and genetic structuring of contemporary high-latitude populations. After the Last Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct coastal and pelagic ecotypes, with finer-scale genetic structuring observed within each ecotype. We reconstruct the postglacial colonization of the Northeast Atlantic (NEA) by bottlenose dolphins using habitat modeling and phylogenetics. The AquaMaps model hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete mitochondrial genomes including 30 generated for this study and created using a multispecies coalescent model, suggests that the expansion to the available coastal habitat in the NEA happened via founder events starting ~15 000 years ago (95% highest posterior density interval: 4 900-26 400). The founders of the 2 distinct coastal NEA populations comprised as few as 2 maternal lineages that originated from the pelagic population. The low effective population size and genetic diversity estimated for the shared ancestral coastal population subsequent to divergence from the pelagic source population are consistent with leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial cycles on the genetic structuring and diversity of contemporary populations.
Collapse
Affiliation(s)
- Milaja Nykänen
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland
| | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Straße, Freiburg, Germany
| | - Willy Dabin
- Centre d'Etudes Biologiques de Chizé. UMR 7372 CNRS-Université de La Rochelle, Villiers-en-Bois, France.,Observatoire PELAGIS, UMS 3462 CNRS-Université de La Rochelle, 5 allées de l'Océan, La Rochelle, France
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Inverness, UK
| | - Nicholas J Davison
- Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Inverness, UK
| | - Rob Deaville
- UK Cetacean Strandings Investigation Programme, The Wellcome Building, Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | | | | | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rod Penrose
- Marine Environmental Monitoring, Penwalk, Llechryd, Cardigan, Ceredigion, Wales, UK
| | | | - Nathan Wales
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon N Ingram
- Marine Vertebrate Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Emer Rogan
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland
| | - Marie Louis
- Centre d'Etudes Biologiques de Chizé. UMR 7372 CNRS-Université de La Rochelle, Villiers-en-Bois, France.,Scottish Oceans Institute, East Sands, St Andrews, UK
| | - Andrew D Foote
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland.,Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Rousselle M, Simion P, Tilak MK, Figuet E, Nabholz B, Galtier N. Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals. PLoS Genet 2020; 16:e1008668. [PMID: 32251427 PMCID: PMC7162527 DOI: 10.1371/journal.pgen.1008668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/16/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Whether adaptation is limited by the beneficial mutation supply is a long-standing question of evolutionary genetics, which is more generally related to the determination of the adaptive substitution rate and its relationship with species effective population size (Ne) and genetic diversity. Empirical evidence reported so far is equivocal, with some but not all studies supporting a higher adaptive substitution rate in large-Ne than in small-Ne species. We gathered coding sequence polymorphism data and estimated the adaptive amino-acid substitution rate ωa, in 50 species from ten distant groups of animals with markedly different population mutation rate θ. We reveal the existence of a complex, timescale dependent relationship between species adaptive substitution rate and genetic diversity. We find a positive relationship between ωa and θ among closely related species, indicating that adaptation is indeed limited by the mutation supply, but this was only true in relatively low-θ taxa. In contrast, we uncover no significant correlation between ωa and θ at a larger taxonomic scale, suggesting that the proportion of beneficial mutations scales negatively with species' long-term Ne.
Collapse
Affiliation(s)
| | - Paul Simion
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEGE, Department of Biology, University of Namur, Namur, Belgium
| | - Marie-Ka Tilak
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Emeric Figuet
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Benoit Nabholz
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nicolas Galtier
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
9
|
Nicolas V, Fabre PH, Bryja J, Denys C, Verheyen E, Missoup AD, Olayemi A, Katuala P, Dudu A, Colyn M, Kerbis Peterhans J, Demos T. The phylogeny of the African wood mice (Muridae, Hylomyscus) based on complete mitochondrial genomes and five nuclear genes reveals their evolutionary history and undescribed diversity. Mol Phylogenet Evol 2019; 144:106703. [PMID: 31816395 DOI: 10.1016/j.ympev.2019.106703] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 11/26/2022]
Abstract
Wood mice of the genus Hylomyscus, are small-sized rodents widely distributed in lowland and montane rainforests in tropical Africa, where they can be locally abundant. Recent morphological and molecular studies have increased the number of recognized species from 8 to 18 during the last 15 years. We used complete mitochondrial genomes and five nuclear genes to infer the number of candidate species within this genus and depict its evolutionary history. In terms of gene sampling and geographical and taxonomic coverage, this is the most comprehensive review of the genus Hylomyscus to date. The six species groups (aeta, alleni, anselli, baeri, denniae and parvus) defined on morphological grounds are monophyletic. Species delimitation analyses highlight undescribed diversity within this genus: perhaps up to 10 taxa need description or elevation from synonymy, pending review of type specimens. Our divergence dating and biogeographical analyses show that diversification of the genus occurred after the end of the Miocene and is closely linked to the history of the African forest. The formation of the Rift Valley combined with the declining global temperatures during the Late Miocene caused the fragmentation of the forests and explains the first split between the denniae group and remaining lineages. Subsequently, periods of increased climatic instability during Plio-Pleistocene probably resulted in elevated diversification in both lowland and montane forest taxa.
Collapse
Affiliation(s)
- Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 75005 Paris, France.
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon CC 064 - 34095, Montpellier Cedex 5, France
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 75005 Paris, France
| | - Erik Verheyen
- Royal Belgian Institute for Natural Sciences, Operational Direction Taxonomy and Phylogeny, 1000 Brussels, Belgium
| | - Alain Didier Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, HO 220005 Ile Ife, Nigeria
| | - Pionus Katuala
- Animal Ecology and Resource Management, Laboratory (LEGERA), University of Kisangani, B.P. 2012, Kisangani, Congo
| | - Akaibe Dudu
- Animal Ecology and Resource Management, Laboratory (LEGERA), University of Kisangani, B.P. 2012, Kisangani, Congo
| | - Marc Colyn
- Université de Rennes 1, CNRS, UMR 6553 Ecobio, Station Biologique, 35380 Paimpont, France
| | - Julian Kerbis Peterhans
- Science & Education, Field Museum of Natural History, 60605 Chicago, IL, USA; College of Arts & Sciences, Roosevelt University, 430 S Michigan, Chicago, IL 60605, USA
| | - Terrence Demos
- College of Arts & Sciences, Roosevelt University, 430 S Michigan, Chicago, IL 60605, USA
| |
Collapse
|
10
|
Trevisan B, Alcantara DM, Machado DJ, Marques FP, Lahr DJ. Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ 2019; 7:e7543. [PMID: 31565556 PMCID: PMC6746217 DOI: 10.7717/peerj.7543] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Global loss of biodiversity is an ongoing process that concerns both local and global authorities. Studies of biodiversity mainly involve traditional methods using morphological characters and molecular protocols. However, conventional methods are a time consuming and resource demanding task. The development of high-throughput sequencing (HTS) techniques has reshaped the way we explore biodiversity and opened a path to new questions and novel empirical approaches. With the emergence of HTS, sequencing the complete mitochondrial genome became more accessible, and the number of genome sequences published has increased exponentially during the last decades. Despite the current state of knowledge about the potential of mitogenomics in phylogenetics, this is still a relatively under-explored area for a multitude of taxonomic groups, especially for those without commercial relevance, non-models organisms and with preserved DNA. Here we take the first step to assemble and annotate the genomes from HTS data using a new protocol of genome skimming which will offer an opportunity to extend the field of mitogenomics to under-studied organisms. We extracted genomic DNA from specimens preserved in ethanol. We used Nextera XT DNA to prepare indexed paired-end libraries since it is a powerful tool for working with diverse samples, requiring a low amount of input DNA. We sequenced the samples in two different Illumina platform (MiSeq or NextSeq 550). We trimmed raw reads, filtered and had their quality tested accordingly. We performed the assembly using a baiting and iterative mapping strategy, and the annotated the putative mitochondrion through a semi-automatic procedure. We applied the contiguity index to access the completeness of each new mitogenome. Our results reveal the efficiency of the proposed method to recover the whole mitogenomes of preserved DNA from non-model organisms even if there are gene rearrangement in the specimens. Our findings suggest the potential of combining the adequate platform and library to the genome skimming as an innovative approach, which opens a new range of possibilities of its use to obtain molecular data from organisms with different levels of preservation.
Collapse
Affiliation(s)
- Bruna Trevisan
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel M.C. Alcantara
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Denis Jacob Machado
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Bioinformatics and Genomics / College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Fernando P.L. Marques
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel J.G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Mol Phylogenet Evol 2019; 136:241-253. [PMID: 30885830 DOI: 10.1016/j.ympev.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Next generation sequencing (NGS) and genomic database mining allow biologists to gather and select large molecular datasets well suited to address phylogenomics and molecular evolution questions. Here we applied this approach to a mammal family, the Echimyidae, for which generic relationships have been difficult to recover and often referred to as a star phylogeny. These South-American spiny rats represent a family of caviomorph rodents exhibiting a striking diversity of species and life history traits. Using a NGS exon capture protocol, we isolated and sequenced ca. 500 nuclear DNA exons for 35 species belonging to all major echimyid and capromyid clades. Exons were carefully selected to encompass as much diversity as possible in terms of rate of evolution, heterogeneity in the distribution of site-variation and nucleotide composition. Supermatrix inferences and coalescence-based approaches were subsequently applied to infer this family's phylogeny. The inferred topologies were the same for both approaches, and support was maximal for each node, entirely resolving the ambiguous relationships of previous analyses. Fast-evolving nuclear exons tended to yield more reliable phylogenies, as slower-evolving sequences were not informative enough to disentangle the short branches of the Echimyidae radiation. Based on this resolved phylogeny and on molecular and morphological evidence, we confirm the rank of the Caribbean hutias - formerly placed in the Capromyidae family - as Capromyinae, a clade nested within Echimyidae. We also name and define Carterodontinae, a new subfamily of Echimyidae, comprising the extant monotypic genus Carterodon from Brazil, which is the closest living relative of West Indies Capromyinae.
Collapse
|
12
|
Vieira GA, Prosdocimi F. Accessible molecular phylogenomics at no cost: obtaining 14 new mitogenomes for the ant subfamily Pseudomyrmecinae from public data. PeerJ 2019; 7:e6271. [PMID: 30697483 PMCID: PMC6348091 DOI: 10.7717/peerj.6271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
The advent of Next Generation Sequencing has reduced sequencing costs and increased genomic projects from a huge amount of organismal taxa, generating an unprecedented amount of genomic datasets publicly available. Often, only a tiny fraction of outstanding relevance of the genomic data produced by researchers is used in their works. This fact allows the data generated to be recycled in further projects worldwide. The assembly of complete mitogenomes is frequently overlooked though it is useful to understand evolutionary relationships among taxa, especially those presenting poor mtDNA sampling at the level of genera and families. This is exactly the case for ants (Hymenoptera:Formicidae) and more specifically for the subfamily Pseudomyrmecinae, a group of arboreal ants with several cases of convergent coevolution without any complete mitochondrial sequence available. In this work, we assembled, annotated and performed comparative genomics analyses of 14 new complete mitochondria from Pseudomyrmecinae species relying solely on public datasets available from the Sequence Read Archive (SRA). We used all complete mitogenomes available for ants to study the gene order conservation and also to generate two phylogenetic trees using both (i) concatenated set of 13 mitochondrial genes and (ii) the whole mitochondrial sequences. Even though the tree topologies diverged subtly from each other (and from previous studies), our results confirm several known relationships and generate new evidences for sister clade classification inside Pseudomyrmecinae clade. We also performed a synteny analysis for Formicidae and identified possible sites in which nucleotidic insertions happened in mitogenomes of pseudomyrmecine ants. Using a data mining/bioinformatics approach, the current work increased the number of complete mitochondrial genomes available for ants from 15 to 29, demonstrating the unique potential of public databases for mitogenomics studies. The wide applications of mitogenomes in research and presence of mitochondrial data in different public dataset types makes the "no budget mitogenomics" approach ideal for comprehensive molecular studies, especially for subsampled taxa.
Collapse
Affiliation(s)
- Gabriel A. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco Prosdocimi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Tilak MK, Botero-Castro F, Galtier N, Nabholz B. Illumina Library Preparation for Sequencing the GC-Rich Fraction of Heterogeneous Genomic DNA. Genome Biol Evol 2018; 10:616-622. [PMID: 29385572 PMCID: PMC5808798 DOI: 10.1093/gbe/evy022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
Standard Illumina libraries are biased toward sequences of intermediate GC-content. This results in an underrepresentation of GC-rich regions in sequencing projects of genomes with heterogeneous base composition, such as mammals and birds. We developed a simple, cost-effective protocol to enrich sheared genomic DNA in its GC-rich fraction by subtracting AT-rich DNA. This was achieved by heating DNA up to 90 °C before applying Illumina library preparation. We tested the new approach on chicken DNA and found that heated DNA increased average coverage in the GC-richest chromosomes by a factor up to six. Using a Taq polymerase supposedly appropriate for PCR amplification of GC-rich sequences had a much weaker effect. Our protocol should greatly facilitate sequencing and resequencing of the GC-richest regions of heterogeneous genomes, in combination with standard short-read and long-read technologies.
Collapse
Affiliation(s)
- Marie-Ka Tilak
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Fidel Botero-Castro
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Benoit Nabholz
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| |
Collapse
|
14
|
Botero-Castro F, Tilak MK, Justy F, Catzeflis F, Delsuc F, Douzery EJP. In Cold Blood: Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats Mitochondrial Genomes. Genome Biol Evol 2018; 10:2218-2239. [PMID: 29931241 PMCID: PMC6127110 DOI: 10.1093/gbe/evy120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial genomes of animals have long been considered to evolve under the action of purifying selection. Nevertheless, there is increasing evidence that they can also undergo episodes of positive selection in response to shifts in physiological or environmental demands. Vampire bats experienced such a shift, as they are the only mammals feeding exclusively on blood and possessing anatomical adaptations to deal with the associated physiological requirements (e.g., ingestion of high amounts of liquid water and iron). We sequenced eight new chiropteran mitogenomes including two species of vampire bats, five representatives of other lineages of phyllostomids and one close outgroup. Conducting detailed comparative mitogenomic analyses, we found evidence for accelerated evolutionary rates at the nucleotide and amino acid levels in vampires. Moreover, the mitogenomes of vampire bats are characterized by an increased cytosine (C) content mirrored by a decrease in thymine (T) compared with other chiropterans. Proteins encoded by the vampire bat mitogenomes also exhibit a significant increase in threonine (Thr) and slight reductions in frequency of the hydrophobic residues isoleucine (Ile), valine (Val), methionine (Met), and phenylalanine (Phe). We show that these peculiar substitution patterns can be explained by the co-occurrence of both neutral (mutational bias) and adaptive (positive selection) processes. We propose that vampire bat mitogenomes may have been impacted by selection on mitochondrial proteins to accommodate the metabolism and nutritional qualities of blood meals.
Collapse
Affiliation(s)
- Fidel Botero-Castro
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - François Catzeflis
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
15
|
Tougard C, Justy F, Guinand B, Douzery EJP, Berrebi P. Salmo macrostigma (Teleostei, Salmonidae): Nothing more than a brown trout (S. trutta) lineage? JOURNAL OF FISH BIOLOGY 2018; 93:302-310. [PMID: 29992566 DOI: 10.1111/jfb.13751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
We examined specimens of the macrostigma trout Salmo macrostigma, which refers to big black spots on the flanks, to assess whether it is an example of taxonomic inflation within the brown trout Salmo trutta complex. Using new specimens, publicly available data and a mitogenomic protocol to amplify the control and cytochrome b regions of the mitochondrial genome from degraded museum samples, including one syntype specimen, the present study shows that the macrostigma trout is not a valid species. Our results suggest the occurrence of a distinct evolutionary lineage of S. trutta in North Africa and Sicily. The name of the North African lineage is proposed for this lineage, which was found to be sister to the Atlantic lineage of brown trout, S. trutta.
Collapse
Affiliation(s)
| | - Fabienne Justy
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| | - Bruno Guinand
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| | | | - Patrick Berrebi
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| |
Collapse
|
16
|
Fabre PH, Tilak MK, Denys C, Gaubert P, Nicolas V, Douzery EJP, Marivaux L. Flightless scaly-tailed squirrels never learned how to fly: A reappraisal of Anomaluridae phylogeny. ZOOL SCR 2018. [DOI: 10.1111/zsc.12286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pierre-Henri Fabre
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
- National Museum of Natural History; Smithsonian Institution; Washington DC USA
| | - Marie-Ka Tilak
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
| | - Christiane Denys
- Institut de Systématique, Évolution, Biodiversité; ISYEB - UMR 7205, CNRS, MNHN, UPMC, EPHE; Muséum National d’Histoire Naturelle; Sorbonne Universités; Paris France
| | - Philippe Gaubert
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
- Laboratoire Evolution et Diversité Biologique (EDB) - UPS-CNRS- IRD; Université Paul Sabatier; Toulouse France
| | - Violaine Nicolas
- Institut de Systématique, Évolution, Biodiversité; ISYEB - UMR 7205, CNRS, MNHN, UPMC, EPHE; Muséum National d’Histoire Naturelle; Sorbonne Universités; Paris France
| | - Emmanuel J. P. Douzery
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
| | - Laurent Marivaux
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
| |
Collapse
|
17
|
Emmons LH, Fabre PH. A Review of thePattonomys/ToromysClade (Rodentia: Echimyidae), with Descriptions of a NewToromysSpecies and a New Genus. AMERICAN MUSEUM NOVITATES 2018. [DOI: 10.1206/3894.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Louise H. Emmons
- Division of Mammals, National Museum of Natural History, Smithsonian Institution; and Department of Mammalogy, American Museum of Natural History
| | - Pierre-henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS), Université Montpellier II
| |
Collapse
|
18
|
Gaubert P, Antunes A, Meng H, Miao L, Peigné S, Justy F, Njiokou F, Dufour S, Danquah E, Alahakoon J, Verheyen E, Stanley WT, O’Brien SJ, Johnson WE, Luo SJ. The Complete Phylogeny of Pangolins: Scaling Up Resources for the Molecular Tracing of the Most Trafficked Mammals on Earth. J Hered 2017; 109:347-359. [DOI: 10.1093/jhered/esx097] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Philippe Gaubert
- Institut des Sciences de l’Evolution de Montpellier (ISEM)—UM-CNRS-IRD-EPHE, Université, France
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Hao Meng
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, China
| | - Lin Miao
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, China
| | - Stéphane Peigné
- Centre de recherche sur la paléobiodiversité et les paléoenvironnements (CR2P)—UMR 7207 MNHN/CNRS/UPMC, Muséum national d’Histoire naturelle—CP38, France
| | - Fabienne Justy
- Institut des Sciences de l’Evolution de Montpellier (ISEM)—UM-CNRS-IRD-EPHE, Université, France
| | - Flobert Njiokou
- Laboratoire de Parasitologie et Ecologie, Université de Yaoundé I, Faculté des Sciences, Cameroon
| | | | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Ghana
| | | | - Erik Verheyen
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Belgium
- Evolutionary Ecology Group, University of Antwerp, Belgium
| | | | - Stephen J O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia
- Oceanographic Center, Dania Beach, FL
- Nova Southeastern University, Ft Lauderdale, FL
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA
| | - Shu-Jin Luo
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, China
| |
Collapse
|
19
|
Camacho-Sanchez M, Leonard JA, Fitriana Y, Tilak MK, Fabre PH. The generic status of Rattus annandalei (Bonhote, 1903) (Rodentia, Murinae) and its evolutionary implications. J Mammal 2017. [DOI: 10.1093/jmammal/gyx081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Nunez JCB, Oleksiak MF. A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes. PLoS One 2016; 11:e0160958. [PMID: 27505419 PMCID: PMC4978415 DOI: 10.1371/journal.pone.0160958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4–5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms.
Collapse
Affiliation(s)
- Joaquin C. B. Nunez
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, Miami, Florida, United States of America
| | - Marjorie F. Oleksiak
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
21
|
Jarman SN, Polanowski AM, Faux CE, Robbins J, De Paoli-Iseppi R, Bravington M, Deagle BE. Molecular biomarkers for chronological age in animal ecology. Mol Ecol 2016; 24:4826-47. [PMID: 26308242 DOI: 10.1111/mec.13357] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/08/2015] [Accepted: 08/21/2015] [Indexed: 01/07/2023]
Abstract
The chronological age of an individual animal predicts many of its biological characteristics, and these in turn influence population-level ecological processes. Animal age information can therefore be valuable in ecological research, but many species have no external features that allow age to be reliably determined. Molecular age biomarkers provide a potential solution to this problem. Research in this area of molecular ecology has so far focused on a limited range of age biomarkers. The most commonly tested molecular age biomarker is change in average telomere length, which predicts age well in a small number of species and tissues, but performs poorly in many other situations. Epigenetic regulation of gene expression has recently been shown to cause age-related modifications to DNA and to cause changes in abundance of several RNA types throughout animal lifespans. Age biomarkers based on these epigenetic changes, and other new DNA-based assays, have already been applied to model organisms, humans and a limited number of wild animals. There is clear potential to apply these marker types more widely in ecological studies. For many species, these new approaches will produce age estimates where this was previously impractical. They will also enable age information to be gathered in cross-sectional studies and expand the range of demographic characteristics that can be quantified with molecular methods. We describe the range of molecular age biomarkers that have been investigated to date and suggest approaches for developing the newer marker types as age assays in nonmodel animal species.
Collapse
Affiliation(s)
- Simon N Jarman
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia
| | - Andrea M Polanowski
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia
| | - Cassandra E Faux
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia
| | - Jooke Robbins
- Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA, 02657, USA
| | - Ricardo De Paoli-Iseppi
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia.,Institute of Marine and Antarctic Studies, University of Tasmania, Castray Esplanade, Hobart, Tas., 7000, Australia
| | - Mark Bravington
- Marine Laboratory, Commonwealth Scientific and Industrial Research Organisation, Castray Esplanade, Hobart, Tas., 7000, Australia
| | - Bruce E Deagle
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia
| |
Collapse
|
22
|
Briscoe AG, Hopkins KP, Waeschenbach A. High-Throughput Sequencing of Complete Mitochondrial Genomes. Methods Mol Biol 2016; 1452:45-64. [PMID: 27460369 DOI: 10.1007/978-1-4939-3774-5_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing has revolutionized mitogenomics, turning a cottage industry into a high throughput process. This chapter outlines methodologies used to sequence, assemble, and annotate mitogenomes of non-model organisms using Illumina sequencing technology, utilizing either long-range PCR amplicons or gDNA as starting template. Instructions are given on how to extract DNA, conduct long-range PCR amplifications, generate short Sanger barcode tag sequences, prepare equimolar sample pools, construct and assess quality library preparations, assemble Illumina reads using either seeded reference mapping or de novo assembly, and annotate mitogenomes in the absence of an automated pipeline. Notes and recommendations, derived from our own experience, are given throughout this chapter.
Collapse
Affiliation(s)
- Andrew George Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Kevin Peter Hopkins
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Andrea Waeschenbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
23
|
Richter S, Schwarz F, Hering L, Böggemann M, Bleidorn C. The Utility of Genome Skimming for Phylogenomic Analyses as Demonstrated for Glycerid Relationships (Annelida, Glyceridae). Genome Biol Evol 2015; 7:3443-62. [PMID: 26590213 PMCID: PMC4700955 DOI: 10.1093/gbe/evv224] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glyceridae (Annelida) are a group of venomous annelids distributed worldwide from intertidal to abyssal depths. To trace the evolutionary history and complexity of glycerid venom cocktails, a solid backbone phylogeny of this group is essential. We therefore aimed to reconstruct the phylogenetic relationships of these annelids using Illumina sequencing technology. We constructed whole-genome shotgun libraries for 19 glycerid specimens and 1 outgroup species (Glycinde armigera). The chosen target genes comprise 13 mitochondrial proteins, 2 ribosomal mitochondrial genes, and 4 nuclear loci (18SrRNA, 28SrRNA, ITS1, and ITS2). Based on partitioned maximum likelihood as well as Bayesian analyses of the resulting supermatrix, we were finally able to resolve a robust glycerid phylogeny and identified three clades comprising the majority of taxa. Furthermore, we detected group II introns inside the cox1 gene of two analyzed glycerid specimens, with two different insertions in one of these species. Moreover, we generated reduced data sets comprising 10 million, 4 million, and 1 million reads from the original data sets to test the influence of the sequencing depth on assembling complete mitochondrial genomes from low coverage genome data. We estimated the coverage of mitochondrial genome sequences in each data set size by mapping the filtered Illumina reads against the respective mitochondrial contigs. By comparing the contig coverage calculated in all data set sizes, we got a hint for the scalability of our genome skimming approach. This allows estimating more precisely the number of reads that are at least necessary to reconstruct complete mitochondrial genomes in Glyceridae and probably non-model organisms in general.
Collapse
Affiliation(s)
- Sandy Richter
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany
| | - Francine Schwarz
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany
| | - Lars Hering
- Animal Evolution & Development, Institute of Biology, University of Leipzig, Germany Department of Zoology, Institute of Biology, University of Kassel, Germany
| | | | - Christoph Bleidorn
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Gibb GC, Condamine FL, Kuch M, Enk J, Moraes-Barros N, Superina M, Poinar HN, Delsuc F. Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans. Mol Biol Evol 2015; 33:621-42. [PMID: 26556496 PMCID: PMC4760074 DOI: 10.1093/molbev/msv250] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the first major placental clade to be fully sequenced at the species level for mitogenomes. The resulting data set allowed the reconstruction of a robust phylogenetic framework and timescale that are consistent with previous studies conducted at the genus level using nuclear genes. Incorporating the full species diversity of extant xenarthrans points to a number of inconsistencies in xenarthran systematics and species definition. We propose to split armadillos into two distinct families Dasypodidae (dasypodines) and Chlamyphoridae (euphractines, chlamyphorines, and tolypeutines) to better reflect their ancient divergence, estimated around 42 Ma. Species delimitation within long-nosed armadillos (genus Dasypus) appeared more complex than anticipated, with the discovery of a divergent lineage in French Guiana. Diversification analyses showed Xenarthra to be an ancient clade with a constant diversification rate through time with a species turnover driven by high but constant extinction. We also detected a significant negative correlation between speciation rate and past temperature fluctuations with an increase in speciation rate corresponding to the general cooling observed during the last 15 My. Biogeographic reconstructions identified the tropical rainforest biome of Amazonia and the Guiana Shield as the cradle of xenarthran evolutionary history with subsequent dispersions into more open and dry habitats.
Collapse
Affiliation(s)
- Gillian C Gibb
- Institut des Sciences de l'Evolution, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Fabien L Condamine
- Institut des Sciences de l'Evolution, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden Department of Biological Sciences, University of Alberta, Edmonton, AL, Canada
| | - Melanie Kuch
- McMaster Ancient DNA Centre, Department of Anthropology and Biology, McMaster University, Hamilton, ON, Canada
| | - Jacob Enk
- McMaster Ancient DNA Centre, Department of Anthropology and Biology, McMaster University, Hamilton, ON, Canada
| | - Nadia Moraes-Barros
- Cibio/Inbio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal Laboratório de Biologia Evolutiva e Conservação de Vertebrados (Labec), Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariella Superina
- Laboratorio de Endocrinología de la Fauna Silvestre, IMBECU, CCT CONICET Mendoza, Mendoza, Argentina
| | - Hendrik N Poinar
- McMaster Ancient DNA Centre, Department of Anthropology and Biology, McMaster University, Hamilton, ON, Canada
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|