1
|
Sengking J, Mahakkanukrauh P. The underlying mechanism of calcium toxicity-induced autophagic cell death and lysosomal degradation in early stage of cerebral ischemia. Anat Cell Biol 2024; 57:155-162. [PMID: 38680098 PMCID: PMC11184419 DOI: 10.5115/acb.24.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
Cerebral ischemia is the important cause of worldwide disability and mortality, that is one of the obstruction of blood vessels supplying to the brain. In early stage, glutamate excitotoxicity and high level of intracellular calcium (Ca2+) are the major processes which can promote many downstream signaling involving in neuronal death and brain tissue damaging. Moreover, autophagy, the reusing of damaged cell organelles, is affected in early ischemia. Under ischemic conditions, autophagy plays an important role to maintain energy of the brain and its function. In the other hand, over intracellular Ca2+ accumulation triggers excessive autophagic process and lysosomal degradation leading to autophagic process impairment which finally induce neuronal death. This article reviews the association between intracellular Ca2+ and autophagic process in acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence in Osteology Research and Training Center (ORTC), Chaing Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Sun C, Cao N, Wang Q, Liu N, Yang T, Li S, Pan L, Yao J, Zhang L, Liu M, Zhang G, Xiao X, Liu C. Icaritin induces resolution of inflammation by targeting cathepsin B to prevents mice from ischemia-reperfusion injury. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
Berg AL, Rowson-Hodel A, Wheeler MR, Hu M, Free SR, Carraway KL. Engaging the Lysosome and Lysosome-Dependent Cell Death in Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-lysosome] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Das J, Mahammad FS, Krishnamurthy RG. An integrated chemo-informatics and in vitro experimental approach repurposes acarbose as a post-ischemic neuro-protectant. 3 Biotech 2022; 12:71. [PMID: 35223357 PMCID: PMC8847516 DOI: 10.1007/s13205-022-03130-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/23/2022] [Indexed: 11/26/2022] Open
Abstract
The increasing prevalence of ischemic stroke combined with limited therapeutic options highlights the compelling need for continued research into the development of future neuro-therapeutics. Death-Associated Protein Kinase 1 (DAPK1) and p53 protein-protein interaction serve as a signaling point for the convergence of apoptosis and necrosis in cerebral ischemia. In this study, we used an integrated chemo-informatics and in vitro experimental drug repurposing strategy to screen potential small-molecule inhibitors of DAPK1-p53 interaction from the United States of America Food and Drug Administration (FDA) approved drug database exhibiting post-ischemic neuroprotective and neuro-regenerative efficacy and mechanisms. The computational docking and molecular dynamics simulation of FDA-approved drugs followed by an in vitro experimental validation identified acarbose, an anti-diabetic medication and caloric restriction mimetic as a potential inhibitor of DAPK1-p53 interaction. The evaluation of post-ischemic neuroprotective and regenerative efficacy and mechanisms of action for acarbose was carried out using a set of experimental methods, including cell viability, proliferation and differentiation assays, fluorescence staining, and gene expression analysis. Post-ischemic administration of acarbose conferred significant neuroprotection against ischemia-reperfusion injury in vitro. The reduced fluorescence emission in cells stained with pS20 supported the potential of acarbose in inhibiting the DAPK1-p53 interaction. Acarbose prevented mitochondrial and lysosomal dysfunction, and favorably modulated gene expression related to cell survival, inflammation, and regeneration. BrdU staining and neurite outgrowth assay showed a significant increase in cell proliferation and differentiation in acarbose-treated group. This is the first study known to provide mechanistic insight into the post-ischemic neuroprotective and neuro-regenerative potential of acarbose. Our results provide a strong basis for preclinical studies to evaluate the safety and neuroprotective efficacy of acarbose against ischemic stroke. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03130-5.
Collapse
Affiliation(s)
- Jyotirekha Das
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala 673601 India
| | - Fayaz Shaik Mahammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | |
Collapse
|
5
|
Yuan D, Hu K, Loke CM, Teramoto H, Liu C, Hu B. Interruption of endolysosomal trafficking leads to stroke brain injury. Exp Neurol 2021; 345:113827. [PMID: 34363809 PMCID: PMC8429234 DOI: 10.1016/j.expneurol.2021.113827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Dysfunction of the endolysosomal system can cause cell death. A key molecule for controlling the endolysosomal trafficking activities is the N-ethylmaleimide-sensitive factor (NSF) ATPase. This study investigates the cascades of NSF ATPase inactivation events, endolysosomal damage, cathepsin release, and neuronal death after focal brain ischemia. METHODS A total of 62 rats were used in this study. They were subjected to sham surgery or 2 h of focal brain ischemia followed by 1, 4, and 24 h of reperfusion. Confocal microscopy and Western blot analysis were utilized to analyze the levels, redistribution, and co-localization of key proteins of the Golgi apparatus, late endosomes, endolysosomes, and lysosomes. Light and electron microscopy were used to examine the histopathology, protein aggregation, and endolysosomal ultrastructures. RESULTS Two hours of focal brain ischemia in rats led to acute neuronal death at the striatal core in 4 h and a slower type of neuronal death in the neocortical area during 1-24 h reperfusion periods. Confocal microscopy showed that NSF immunoreactivity was irreversibly and selectively depleted from most, if not all, post-ischemic penumbral neurons. Western blot analysis further demonstrated that NSF depletion from brain sections was due to its deposition into dense inactive aggregates that could not be recognized by the NSF antibody. Commitantly, the Golgi apparatus was completely fragmented and cathepsin B (CTSB)-containing endolysosomal structures, as well as p62/SQSTM1- and EEA1-immunopositive structures were massively accumulated in the post-ischemic penumbral neurons. Ultimately, CTSB was released into the cytoplasm and extracellular space, causing stroke brain injury. CONCLUSION Stroke Inactivates NSF, resulting in disruption of the reforming of functional endolysosomal compartments, blockade of the endocytic and autophagic pathways, a large scale of CTSB release into the cytoplasm and extracellular space, and stroke brain injury in the rat model.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Anesthesiology, University of Maryland, Baltimore, MD, United States of America
| | - Kurt Hu
- Department of Medicine, Division of Pulmonary and Critical Care, Medical College of Wisconsin, United States of America
| | - Chun Mun Loke
- Veterans Affairs Maryland Health Center System, United States of America
| | - Hironori Teramoto
- Department of Anesthesiology, University of Maryland, Baltimore, MD, United States of America
| | - Chunli Liu
- Veterans Affairs Maryland Health Center System, United States of America
| | - Bingren Hu
- Department of Anesthesiology, University of Maryland, Baltimore, MD, United States of America; Veterans Affairs Maryland Health Center System, United States of America.
| |
Collapse
|
6
|
Identification of MicroRNAs as potential biomarkers for detecting ischemic stroke. Genes Genomics 2021; 44:9-17. [PMID: 33818699 DOI: 10.1007/s13258-021-01060-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/31/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Increasing epidemic of ischemic stroke (IS) makes it urgent to understand the pathogenesis and regulatory mechanism, previous studies have described microRNAs (miRNAs) is part of the brain's response to ischemia. OBJECTIVE The aim of this study was to screen potential biomarkers for the prediction and novel treatment of IS. METHODS Differentially expressed miRNAs were screened from three newly diagnosed IS patients and three controls by RNA sequencing technology. Furthermore, target prediction databases were then used to analysis the target genes of different expressed miRNAs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were used to identify the functions and the main biochemical and signal pathways of differentially expressed target genes. RESULTS Our results revealed that 27 miRNAs were differentially expressed in IS, among which, hsa-miR-659-5p was the most highly increased and was first found to be associated with IS. In addition, KEGG pathway analyses showed that differentially expressed miRNAs were mainly significantly enriched in lysosome pathway, cytokine-cytokine receptor interaction pathway, spliceosome pathway, base excision repair pathway. CONCLUSIONS miRNAs were involved in IS pathogenesis, and hsa-miR-659-5p, hsa-miR-151a-3p and hsa-miR-29c-5p as the three highest |log2FoldChange| regulation in this study, which may be the biomarkers of IS and need further study.
Collapse
|
7
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
9
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci U S A 2020; 117:4959-4970. [PMID: 32071228 DOI: 10.1073/pnas.1916427117] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apoptosis and necroptosis are two regulated cell death mechanisms; however, the interaction between these cell death pathways in vivo is unclear. Here we used cerebral ischemia/reperfusion as a model to investigate the interaction between apoptosis and necroptosis. We show that the activation of RIPK1 sequentially promotes necroptosis followed by apoptosis in a temporally specific manner. Cerebral ischemia/reperfusion insult rapidly activates necroptosis to promote cerebral hemorrhage and neuroinflammation. Ripk3 deficiency reduces cerebral hemorrhage and delays the onset of neural damage mediated by inflammation. Reduced cerebral perfusion resulting from arterial occlusion promotes the degradation of TAK1, a suppressor of RIPK1, and the transition from necroptosis to apoptosis. Conditional knockout of TAK1 in microglial/infiltrated macrophages and neuronal lineages sensitizes to ischemic infarction by promoting apoptosis. Taken together, our results demonstrate the critical role of necroptosis in mediating neurovascular damage and hypoperfusion-induced TAK1 loss, which subsequently promotes apoptosis and cerebral pathology in stroke and neurodegeneration.
Collapse
|
11
|
Cui L, Zhao LP, Ye JY, Yang L, Huang Y, Jiang XP, Zhang Q, Jia JZ, Zhang DX, Huang Y. The Lysosomal Membrane Protein Lamp2 Alleviates Lysosomal Cell Death by Promoting Autophagic Flux in Ischemic Cardiomyocytes. Front Cell Dev Biol 2020; 8:31. [PMID: 32117965 PMCID: PMC7019187 DOI: 10.3389/fcell.2020.00031] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Lysosomal membrane permeabilization (LMP) has recently been recognized as an important cell death pathway in various cell types. However, studies regarding the correlation between LMP and cardiomyocyte death are scarce. Lysosomal membrane-associated protein 2 (Lamp2) is an important component of lysosomal membranes and is involved in both autophagy and LMP. In the present study, we found that the protein content of Lamp2 gradually decreased in response to oxygen, glucose and serum deprivation (OGD) treatment in vitro. To further elucidate its role in ischemic cardiomyocytes, particularly with respect to autophagy and LMP, we infected cardiomyocytes with adenovirus carrying full-length Lamp2 to restore its protein level in cells. We found that OGD treatment resulted in the occurrence of LMP and a decline in the viability of cardiomyocytes, which were remarkably reversed by Lamp2 restoration. Exogenous expression of Lamp2 also significantly alleviated the autophagic flux blockade induced by OGD treatment by promoting the trafficking of cathepsin B (Cat B) and cathepsin D (Cat D). Through drug intervention and gene regulation to alleviate and exacerbate autophagic flux blockade respectively, we found that impaired autophagic flux in response to ischemic injury contributed to the occurrence of LMP in cardiomyocytes. In conclusion, our present data suggest that Lamp2 overexpression can improve autophagic flux blockade probably by promoting the trafficking of cathepsins and consequently conferring cardiomyocyte resistance against lysosomal cell death (LCD) that is induced by ischemic injury. These results may indicate a new therapeutic target for ischemic heart damage.
Collapse
Affiliation(s)
- Lin Cui
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li-Ping Zhao
- Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Jing-Ying Ye
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xu-Pin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie-Zhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong-Xia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
12
|
Qin Y, He Y, Zhu YM, Li M, Ni Y, Liu J, Zhang HL. CID1067700, a late endosome GTPase Rab7 receptor antagonist, attenuates brain atrophy, improves neurologic deficits and inhibits reactive astrogliosis in rat ischemic stroke. Acta Pharmacol Sin 2019; 40:724-736. [PMID: 30315251 PMCID: PMC6786391 DOI: 10.1038/s41401-018-0166-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests that Ras-related in brain 7 (Rab7), an endosome-localized small GTPase contributes to cerebral ischemic brain injury. In the present study, we investigated the role of Rab7 in ischemic stroke-induced formation of astrogliosis and glial scar. Rats were subjected to transient middle cerebral artery occlusion (tMCAO); the rats were injected with the Rab7 receptor antagonist CID1067700 (CID). Primary astrocytes were subjected to an oxygen and glucose deprivation and reoxygenation (OGD/Re) procedure; CID was added to the cell culture media. We found that Rab7 was significantly elevated over time in both the in vivo and in vitro astrocytic injury models, and administration of CID significantly down-regulated the glial scar markers such as glial fibillary acidic protein (GFAP), neurocan and phosphacan. Moreover, administration of CID significantly attenuated the brain atrophy and improved neurologic deficits in tMCAO rats, and protected astrocytes against OGD/Re-induced injury. Further, CID downregulated the protein levels of Lamp1 and active cathepsin B in astrocytes after OGD/Re or tMCAO injury; CID inhibited the co-localization of cathepsin B and Rab7, Lamp1 and Rab7; CID decreased OGD/Re-induced increase in lysosomal membrane permeability and blocked OGD/Re-induced release of cathepsin B from the lysosome into the cytoplasm in astrocytes. Taken together, these results suggest that Rab7 is involved in ischemic stroke-induced formation of astrogliosis and glial scar. CID administration attenuates brain atrophy and improves neurologic deficits and inhibits astrogliosis and glial scar formation after ischemic stroke via reducing the activation and release of cathepsin B from the lysosome into the cytoplasm.
Collapse
Affiliation(s)
- Yuan Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yang He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Min Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yong Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Chen S, Zhou C, Yu H, Tao L, An Y, Zhang X, Wang Y, Wang Y, Xiao R. 27-Hydroxycholesterol Contributes to Lysosomal Membrane Permeabilization-Mediated Pyroptosis in Co-cultured SH-SY5Y Cells and C6 Cells. Front Mol Neurosci 2019; 12:14. [PMID: 30881285 PMCID: PMC6405519 DOI: 10.3389/fnmol.2019.00014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose: Emerging evidence suggests that 27-Hydroxycholesterol (27-OHC) causes neurodegenerative diseases through the induction of cytotoxicity and cholesterol metabolism disorder. The objective of this study is to determine the impacts of 27-OHC on lysosomal membrane permeabilization (LMP) and pyroptosis in neurons in the development of neural degenerative diseases. Methods: In this study, SH-SY5Y cells and C6 cells were co-cultured in vitro to investigate the influence of 27-OHC on the function of lysosome, LMP and pyroptosis related factors in neuron. Lyso Tracker Red (LTR) was used to detect the changes of lysosome pH, volume and number. Acridine orange (AO) staining was also used to detect the LMP in neurons. Then the morphological changes of cells were observed by a scanning electron microscope (SEM). The content of lysosome function associated proteins [including Cathepsin B (CTSB), Cathepsin D (CTSD), lysosomal-associated membraneprotein-1 (LAMP-1), LAMP-2] and the pyroptosis associated proteins [including nod-like recepto P3 (NLRP3), gasdermin D (GSDMD), caspase-1 and interleukin (IL)-1β] were detected through Western blot. Results: Results showed higher levels of lysosome function associated proteins, such as CTSB (p < 0.05), CTSD (p < 0.05), LAMP-1 (p < 0.01), LAMP-2; p < 0.01) in 27-OHC treated group than that in the control group. AO staining and LTR staining showed that 27-OHC induced lysosome dysfunction with LMP. Content of pyroptosis related factor proteins, such as GSDMD (p < 0.01), NLRP3 (p < 0.001), caspase-1 (p < 0.01) and IL-1β (p < 0.01) were increased in 27-OHC treated neurons. Additionally, CTSB was leaked through LMP into the cytosol and induced pyroptosis. Results from the present study also suggested that the CTSB is involved in activation of pyroptosis. Conclusion: Our data indicate that 27-OHC contributes to the pathogenesis of cell death by inducing LMP and pyroptosis in neurons.
Collapse
Affiliation(s)
- Si Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Lingwei Tao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yu An
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yushan Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog Lipid Res 2019; 74:18-30. [PMID: 30710597 DOI: 10.1016/j.plipres.2019.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Beyond guarding the cellular proteome the major stress inducible heat shock protein Hsp70 has been shown to interact with lipids. Non-cytosolic Hsp70 stabilizes membranes during stress challenges and, in pathophysiological states, facilitates endocytosis, counteracts apoptotic mechanisms, sustains survival pathways or represents a signal that can be recognized by the immune system. Disease-coupled lipid-associated functions of Hsp70 may be targeted via distinct subcellular localizations of Hsp70 itself or its specific interacting lipids. With a special focus on interacting lipids, here we discuss localization-dependent roles of the membrane-bound Hsp70 in the context of its therapeutic potential, particularly in cancer and neurodegenerative diseases.
Collapse
|
15
|
Zuo X, Hou Q, Jin J, Chen X, Zhan L, Tang Y, Shi Z, Sun W, Xu E. Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats. Front Aging Neurosci 2018; 10:125. [PMID: 29867438 PMCID: PMC5954112 DOI: 10.3389/fnagi.2018.00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/13/2018] [Indexed: 11/27/2022] Open
Abstract
Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley (SD) rats and cathepsin (Cath) B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN) after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA-074Me) would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA) or pseudorabies virus (PRV) 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Xialin Zuo
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qinghua Hou
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jizi Jin
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yanyan Tang
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zhe Shi
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
16
|
Zhu YM, Gao X, Ni Y, Li W, Kent TA, Qiao SG, Wang C, Xu XX, Zhang HL. Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation after ischemia-reperfusion brain injury. Neuroscience 2017; 356:125-141. [PMID: 28501505 DOI: 10.1016/j.neuroscience.2017.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023]
Abstract
Cerebral ischemia leads to astrocyte's activation and glial scar formation. Glial scar can inhibit axonal regeneration during the recovery phase. It has demonstrated that sevoflurane has neuroprotective effects against ischemic stroke, but its effects on ischemia-induced formation of astrogliosis and glial scar are unknown. This study was designed to investigate the effect of sevoflurane postconditioning on astrogliosis and glial scar formation in ischemic stroke model both in vivo and in vitro. The results showed that 2.5% of sevoflurane postconditioning could significantly reduce infarction volume and improve neurologic deficits. And it could also decrease the expression of the glial scar marker glial fibrillary acidic protein (GFAP), neurocan and phosphacan in the peri-infarct region and markedly reduce the thickness of glial scar after ischemia/reperfusion (I/R). Consistent with the in vivo data, in the oxygen and glucose deprivation/reoxygenation (OGD/Re) model, sevoflurane postconditioning could protect astrocyte against OGD/Re-induced injury, decrease the expression of GFAP, neurocan and phosphacan. Further studies demonstrated that sevoflurane postconditioning could down-regulate the expression of Lamp1 and active cathepsin B, and block I/R or OGD/Re-induced release of cathepsin B from the lysosomes into cytoplasm. In order to confirm whether inhibition of cathepsin B could attenuate the formation of glial scar, we used cathepsin B inhibitor CA-074Me as a positive control. The results showed that inhibition of cathepsin B could decrease the expression of GFAP, neurocan and phosphacan. Taken together, sevoflurane postconditioning can attenuate astrogliosis and glial scar formation after ischemic stroke, associating with inhibition of the activation and release of lysosomal cathepsin B.
Collapse
Affiliation(s)
- Yong-Ming Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Xue Gao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Yong Ni
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Wei Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Thomas A Kent
- Stroke Outcomes Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, United States; and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston 77030, TX, United States
| | - Shi-Gang Qiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital; and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, PR China
| | - Chen Wang
- Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital; and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, PR China
| | - Xiao-Xuan Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M. Secondary Release of Exosomes From Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery After Stroke in Rats Treated With Exosomes Harvested From MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells. Cell Transplant 2016; 26:243-257. [PMID: 27677799 DOI: 10.3727/096368916x693031] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b-), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b- significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of neurite-promoting exosomes from astrocytes.
Collapse
|
18
|
Liu J, Yang L, Tian H, Ma Q. Cathepsin D is involved in the oxygen and glucose deprivation/reperfusion-induced apoptosis of astrocytes. Int J Mol Med 2016; 38:1257-63. [PMID: 27573911 DOI: 10.3892/ijmm.2016.2709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/12/2016] [Indexed: 01/18/2023] Open
Abstract
The lysosome and its associated protein cathe-psin D (Cat D) play critical roles in the pathological process of secondary damage following ischemia/reperfusion (I/R) injury. However, the roles of Cat D in I/R-exposed astrocytesremain unclear. In this study, we determined the roles of Cat D in the oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis of astrocytes as well as the underlying mechanisms. We found that OGD/R markedly increased cell apoptosis and the production of inflammatory cytokines, namely IL-6, tumor necrosis factor (TNF)-α and FasL in a reperfusion time‑dependent manner and their elevation peaked at 24 h after reperfusion. Moreover, the cytosolic Cat D level and Cat D activity was significantly upregulated in response to OGD/R exposure. Furthermore, OGD/R exposure gradually disrupted the innate acidic conditions of the lysosome. Exogenous TNF-α and FasL administration elevated cytosolic Cat D levels and cell apoptosis whereas TNFR1 and Fas inhibition significantly reversed these effects induced by OGD/R. Cat D overexpression enhanced cell apoptosis and the levels of apoptogenic proteins, including Bax and caspase-3, whereas Cat D siRNA transfection had an inhibitory effect on cell apoptosis and the expression of proapoptotic proteins. In addition, we observed that Cat D upregulation disrupted mitochondrial membrane potential and induced the production of reactive oxygen species. In conclusion, OGD/R injury induced the production of TNF-α, IL-6 and FasL which promoted lysosomal dysfunction and Cat D leakage into the cytoplasm. This eventually resulted in caspase‑dependent apoptosis, mitochondrial membrane potential loss and oxidative stress in astrocytes.
Collapse
Affiliation(s)
- Jianlin Liu
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Yang
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hongyan Tian
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qiang Ma
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
19
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Ueda H, Halder SK, Matsunaga H, Sasaki K, Maeda S. Neuroprotective impact of prothymosin alpha-derived hexapeptide against retinal ischemia-reperfusion. Neuroscience 2016; 318:206-18. [PMID: 26779836 DOI: 10.1016/j.neuroscience.2016.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 01/13/2023]
Abstract
Prothymosin alpha (ProTα) has robustness roles against brain and retinal ischemia or serum-starvation stress. In the ProTα sequence, the active core 30-amino acid peptide/P30 (a.a.49-78) is necessary for the original neuroprotective actions against ischemia. Moreover, the 9-amino acid peptide sequence/P9 (a.a.52-60) in P30 still shows neuroprotective activity against brain and retinal ischemia, though P9 is less potent than P30. As the previous structure-activity relationship study for ProTα may not be enough, the possibility still exists that any sequence smaller than P9 retains potent neuroprotective activity. When different P9- and P30-related peptides were intravitreally injected 24h after retinal ischemia in mice, the 6-amino acid peptide/P6 (NEVDEE, a.a.51-56) showed potent protective effects against ischemia-induced retinal functional deficits, which are equipotent to the level of P30 peptide in electroretinography (ERG) and histological damage in Hematoxylin and Eosin (HE) staining. Further studies using ERG and HE staining suggested that intravitreal or intravenous (i.v.) injection with modified P6 peptide/P6Q (NEVDQE) potently inhibited retinal ischemia-induced functional and histological damage. In an immunohistochemical analysis, the ischemia-induced loss of retinal ganglion, bipolar, amacrine and photoreceptor cells were inhibited by a systemic administration with P6Q peptide 24h after the ischemic stress. In addition, systemic post-treatment with P6Q peptide significantly inhibited retinal ischemia-induced microglia and astrocyte activation in terms of increased ionized calcium-binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) intensity, respectively, as well as their morphological changes, increased number and migration. Thus, this study demonstrates the therapeutic significance of modified P6 peptide P6Q (NEVDQE) derived from 6-amino acid peptide (P6) in ProTα against ischemic damage.
Collapse
Affiliation(s)
- H Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.
| | - S K Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - H Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - K Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - S Maeda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
21
|
Xu Y, Wang J, Song X, Wei R, He F, Peng G, Luo B. Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull 2016; 120:97-105. [PMID: 26562519 DOI: 10.1016/j.brainresbull.2015.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
Many studies have demonstrated the key role of lysosomes in ischemic cell death in the brain and have led to the "lysosomocentric" hypothesis. In this hypothesis, the release of cathepsin-B due to a change of lysosomal membrane permeabilization (LMP) or rupture is critical, and this can be prevented by its inhibitors CA074 and CA074-me. However, the role of CA074-me in neuronal death and its effect on the change of lysosomal membrane integrity after global cerebral ischemia/reperfusion (I/R) injury is not clear, so we investigated this here. Rat hippocampal CA1 neuronal death was evaluated after 20-min global cerebral I/R injury. CA074-me (1 μg, 10 μg) were given intracerebroventricularly 1h before ischemia or 1h post reperfusion. The changes of heat shock protein 70 (Hsp70), cathepsin-B, lysosomal-associated membrane protein 1 (LAMP-1), receptor-interacting protein 3 (RIP3), and the change of lysosomal pH were evaluated respectively. Hippocampal CA1 neuronal programmed necrosis induced by global cerebral I/R injury was prevented by CA074-me both pre-treatment and post-treatment. Diffuse cytoplasmic cathepsin-B and LAMP-1 immunostaining synchronized with the pyknotic nuclear changes 2 days post reperfusion, and a rise of lysosomal pH with the leakage of DND-153, a dye of lysosomes, after oxygen-glucose deprivation (OGD) was detected. Both of these changes demonstrated the rupture of lysosomal membrane and the leakage of cathepsin-B, and this was strongly inhibited by CA074-me pre-treatment. The overexpression and nuclear translocation of RIP3 and the reduction of NAD(+) level after I/R injury were also inhibited, while the upregulation of Hsp70 was strengthened by CA074-me pre-treatment. Delayed fulminant leakage of cathepsin-B due to lysosomal rupture is a critical harmful factor in neuronal programmed necrosis induced by 20-min global I/R injury. In addition to being an inhibitor of cathepsin-B, CA074-me may have an indirect neuroprotective effect by maintaining lysosomal membrane integrity and protecting against lysosomal rupture.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Jingye Wang
- Department of Neurology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Xinghui Song
- Core Facilities, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ruili Wei
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Guoping Peng
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Benyan Luo
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
22
|
Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci 2015; 1371:30-44. [DOI: 10.1111/nyas.12966] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Serrano-Puebla
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| |
Collapse
|
23
|
Tao J, Liu W, Shang G, Zheng Y, Huang J, Lin R, Chen L. MiR-207/352 regulate lysosomal-associated membrane proteins and enzymes following ischemic stroke. Neuroscience 2015; 305:1-14. [PMID: 26232047 DOI: 10.1016/j.neuroscience.2015.07.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 11/16/2022]
Abstract
The role of microRNAs (miRNAs) in lysosome-mediated neuronal death and survival following ischemic stroke remains unknown. Herein, using miRNA and mRNA gene expression profiling microarrays, we identified the differentially expressed 24 miRNAs and 494 genes in the cortical peri-infarct area, respectively. Integrating the miRNA targets and mRNA expression profiles, we found 47 genes of miRNA targets, including lysosomal-associated membrane protein 2 (LAMP2), Hexb, Bcl2, etc. MiR-207 and miR-352 were mainly downregulated after ischemic stroke, followed by a slight return to baseline during post-middle cerebral artery occlusion (MCAO) 1d to 7d. Furthermore, the luciferase reporter assay demonstrated that LAMP2 and Hexb were the direct targets of miR-207 and miR-352, respectively. After lateral ventricle injection with miR-207 agonist mimics, the neurological deficit scores and infarct volumes were attenuated, and the structure of mitochondria ridges was improved. In addition, miR-207 mimics could reduce the number of cellular lysosome and autophagosome, whereas increase the number of autophagic vacuoles, indicating miR-207 might affect the latter part of lysosomal-autophagy pathway and mitochondria-induced apoptosis. These results suggested that miR-207 and miR-352 were involved in lysosomal pathway for mediating ischemic injury and spontaneous recovery. MiR-207 mimics as potential target drugs could protect against autophagic cell death after ischemic stroke.
Collapse
Affiliation(s)
- J Tao
- College of Rehabilitation Medicine & TCM Rehabilitation Research Center Of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - W Liu
- College of Rehabilitation Medicine & TCM Rehabilitation Research Center Of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - G Shang
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Y Zheng
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - J Huang
- Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - R Lin
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - L Chen
- College of Rehabilitation Medicine & TCM Rehabilitation Research Center Of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China.
| |
Collapse
|
24
|
Wei R, Wang J, Xu Y, Yin B, He F, Du Y, Peng G, Luo B. Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience 2015; 301:168-77. [PMID: 26047730 DOI: 10.1016/j.neuroscience.2015.05.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/14/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Probenecid has been used for decades to treat gout, and recent studies have revealed it is also a specific inhibitor of the pannexin-1 channel. It has been reported that the pannexin-1 channel is involved in ischemic injury. Here, we investigated the neuroprotective effect and the possible mechanisms of action of probenecid in global cerebral ischemia/reperfusion (I/R) injury in rats. Twenty minutes of transient global cerebral I/R injury was induced using the four-vessel occlusion (4-VO) method in male Sprague-Dawley rats. Different doses of probenecid were administered intravenously, intraperitoneally, or by gavage before or after reperfusion. Probenecid via all three routes protected against CA1 neuronal death when given before reperfusion. This protective effect continued when probenecid was given at 2h after reperfusion, but not at 6h. Interestingly, the protective effect regained if probenecid was given continuously for 7days after reperfusion. The release of cathepsin B and overexpression of calpain-1 after reperfusion were inhibited, while the upregulation of Hsp70 was strengthened by probenecid pre-treatment. Furthermore, the activation and proliferation of microglia and astrocytes after I/R injury were suppressed by continuous given for 7days, but only partly by a single dose at 6h of reperfusion. Thus, our data indicate that probenecid protects against transient global cerebral I/R injury probably by inhibiting calpain-cathepsin pathway and the inflammatory reaction.
Collapse
Affiliation(s)
- R Wei
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - J Wang
- Department of Neurology, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Y Xu
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - B Yin
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430000, China
| | - F He
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Y Du
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - G Peng
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - B Luo
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
25
|
Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ 2014; 22:476-87. [PMID: 25501597 DOI: 10.1038/cdd.2014.203] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/13/2023] Open
Abstract
Retinitis pigmentosa is a group of hereditary retinal dystrophies that normally result in photoreceptor cell death and vision loss both in animal models and in affected patients. The rd10 mouse, which carries a missense mutation in the Pde6b gene, has been used to characterize the underlying pathophysiology and develop therapies for this devastating and incurable disease. Here we show that increased photoreceptor cell death in the rd10 mouse retina is associated with calcium overload and calpain activation, both of which are observed before the appearance of signs of cell degeneration. These changes are accompanied by an increase in the activity of the lysosomal protease cathepsin B in the cytoplasm of photoreceptor cells, and a reduced colocalization of cathepsin B with lysosomal markers, suggesting that lysosomal membrane permeabilization occurs before the peak of cell death. Moreover, expression of the autophagosomal marker LC3-II (lipidated form of LC3) is reduced and autophagy flux is blocked in rd10 retinas before the onset of photoreceptor cell death. Interestingly, we found that cell death is increased by the induction of autophagy with rapamycin and inhibited by calpain and cathepsin inhibitors, both ex vivo and in vivo. Taken together, these data suggest that calpain-mediated lysosomal membrane permeabilization underlies the lysosomal dysfunction and downregulation of autophagy associated with photoreceptor cell death.
Collapse
|
26
|
Repnik U, Hafner Česen M, Turk B. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 2014; 19 Pt A:49-57. [PMID: 24984038 DOI: 10.1016/j.mito.2014.06.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
Late endocytic compartments include late endosomes, lysosomes and hybrid organelles. In the acidic lumen, cargo material derived from endocytosed and phagocytosed extracellular material and autophagy-derived intracellular material is degraded. In the event of lysosomal membrane permeabilization (LMP), the function of endo/lysosomal compartment is affected and the luminal contents are released into the cytosol to various extents. LMP can be a result of osmotic lysis or direct membranolytic activity of the compounds that accumulate in the lumen of endo/lysosomes. In addition to several synthetic compounds, such as dipeptide methyl esters and lysosomotropic detergents, endogenous agents that can cause LMP include ROS and lipid metabolites such as sphingosine and phosphatidic acid. Depending on the cell type and the dose, LMP can initiate the lysosomal apoptotic pathway, pyroptosis or necrosis. LMP can also amplify cell death signaling that was initiated outside the endocytic compartment, and hamper cell recovery via autophagy. However, mechanisms that connect LMP with cell death signaling are poorly understood, with the exception of the proteolytic activation of Bid by aspartic cathepsin D and cysteine cathepsins. Determination of LMP in a cell model system is methodologically challenging. Even more difficult is to prove that LMP is the primary event leading to cell death. Nevertheless, LMP may prove to be a valuable approach in therapy, either as a trigger of cell death or as a mechanism of therapeutic drug release in the case of delivery systems that target the endocytic pathway.
Collapse
Affiliation(s)
- Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Maruša Hafner Česen
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKeBiP, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|