1
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
2
|
Kung TFC, Kalisvaart ACJ, Suerte ACC, Jickling GC, van Landeghem FKH, Colbourne F. No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. Neurotox Res 2024; 42:44. [PMID: 39422850 PMCID: PMC11489293 DOI: 10.1007/s12640-024-00722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype with a high mortality rate (~ 40%). After ICH, the mass effect of the hematoma and edema contribute to raised intracranial pressure (ICP) and poor outcome. Endogenous compensatory mechanisms that blunt ICP elevations include redirection of venous blood and cerebrospinal fluid, along with brain tissue compliance (e.g., decreased cell volume, increased cell density); however, these limited reserves can be exhausted after severe stroke, resulting in decompensated ICP that requires careful clinical management. Management strategies can include administration of hypertonic saline (HTS), an osmotic agent that putatively attenuates edema, and thereby ICP elevations. Evidence regarding the efficacy of HTS treatment following ICH remains limited. In this study, adult male rats were given a collagenase-induced striatal ICH and a bolus of either 3% HTS or 0.9% saline vehicle at 2- and 14-hours post-stroke onset. Neurological deficits, edema, ipsilateral cell volume and density (in areas S1 and CA1), and contralateral CA1 ultrastructural morphology were assessed 24 h post-ICH. Animals had large bleeds (median 108.2 µL), extensive edema (median 83.9% brain water content in ipsilateral striatum), and evident behavioural deficits (median 5.4 neurological deficit scale score). However, HTS did not affect edema (p ≥ 0.4797), behaviour (p = 0.6479), cell volume (p ≥ 0.1079), or cell density (p ≥ 0.0983). Qualitative ultrastructural assessment of contralateral area CA1 suggested that HTS administration was associated with paradoxical cellular swelling in ICH animals. Overall, there was no benefit with administering 3% HTS after ICH.
Collapse
Affiliation(s)
- Tiffany F C Kung
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Glen C Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Frank K H van Landeghem
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, AB, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Jia P, Peng Q, Fan X, Zhang Y, Xu H, Li J, Sonita H, Liu S, Le A, Hu Q, Zhao T, Zhang S, Wang J, Zille M, Jiang C, Chen X, Wang J. Immune-mediated disruption of the blood-brain barrier after intracerebral hemorrhage: Insights and potential therapeutic targets. CNS Neurosci Ther 2024; 30:e14853. [PMID: 39034473 PMCID: PMC11260770 DOI: 10.1111/cns.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
AIMS Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response. DISCUSSION A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH. However, the precise immunological influence of BBB disruption has yet to be richly ascertained, especially at various stages of ICH. CONCLUSION This review summarizes the changes in different cell types and molecular components of the BBB associated with immune-inflammatory responses during ICH. Furthermore, it highlights promising immunoregulatory therapies to protect the integrity of the BBB after ICH. By offering a comprehensive understanding of the mechanisms behind BBB damage linked to cellular and molecular immunoinflammatory responses after ICH, this article aimed to accelerate the identification of potential therapeutic targets and expedite further translational research.
Collapse
Affiliation(s)
- Peijun Jia
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qinfeng Peng
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yumeng Zhang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Hanxiao Xu
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jiaxin Li
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Houn Sonita
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Simon Liu
- David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Anh Le
- George Washington School of Medicine and Health SciencesWashingtonDCUSA
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouHenanChina
| | - Ting Zhao
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shijie Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Marietta Zille
- Division of Pharmacology and Toxicology, Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuemei Chen
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
4
|
Yang R, Li J, Zhao L, Zhang M, Qin Y, Tong X, Wang S, Yang F, Jiang G. Edaravone dexborneol regulates γ-aminobutyric acid transaminase in rats with acute intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2024; 33:107738. [PMID: 38701940 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVES Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Rui Yang
- North Sichuan Medical College, Nanchong, Sichuan, China; Department of Neurology, Xichang People's Hospital, Xichang, Sichuan, China
| | - Jia Li
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Li Zhao
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Zhang
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yaya Qin
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoqiong Tong
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shenglin Wang
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fanhui Yang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College; North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
5
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Kalisvaart ACJ, Abrahart AH, Coney AT, Gu S, Colbourne F. Intracranial Pressure Dysfunction Following Severe Intracerebral Hemorrhage in Middle-Aged Rats. Transl Stroke Res 2023; 14:970-986. [PMID: 36367666 PMCID: PMC10640482 DOI: 10.1007/s12975-022-01102-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Rising intracranial pressure (ICP) aggravates secondary injury and heightens risk of death following intracerebral hemorrhage (ICH). Long-recognized compensatory mechanisms that lower ICP include reduced cerebrospinal fluid and venous blood volumes. Recently, we identified another compensatory mechanism in severe stroke, a decrease in cerebral parenchymal volume via widespread reductions in cell volume and extracellular space (tissue compliance). Here, we examined how age affects tissue compliance and ICP dynamics after severe ICH in rats (collagenase model). A planned comparison to historical young animal data revealed that aged SHAMs (no stroke) had significant cerebral atrophy (9% reduction, p ≤ 0.05), ventricular enlargement (9% increase, p ≤ 0.05), and smaller CA1 neuron volumes (21%, p ≤ 0.05). After ICH in aged animals, contralateral striatal neuron density and CA1 astrocyte density significantly increased (12% for neurons, 7% for astrocytes, p ≤ 0.05 vs. aged SHAMs). Unlike young animals, other regions in aged animals did not display significantly reduced cell soma volume despite a few trends. Nonetheless, overall contralateral hemisphere volume was 10% smaller in aged ICH animals compared to aged SHAMs (p ≤ 0.05). This age-dependent pattern of tissue compliance is not due to absent ICH-associated mass effect (83.2 mm3 avg. bleed volume) as aged ICH animals had significantly elevated mean and peak ICP (p ≤ 0.01), occurrence of ICP spiking events, as well as bilateral evidence of edema (e.g., 3% in injured brain, p ≤ 0.05 vs. aged SHAMs). Therefore, intracranial compliance reserve changes with age; after ICH, these and other age-related changes may cause greater fluctuation from baseline, increasing the chance of adverse outcomes like mortality.
Collapse
Affiliation(s)
| | - Ashley H Abrahart
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Alyvia T Coney
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Sherry Gu
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Hang Z, Zhou L, Xing C, Wen Y, Du H. The blood-brain barrier, a key bridge to treat neurodegenerative diseases. Ageing Res Rev 2023; 91:102070. [PMID: 37704051 DOI: 10.1016/j.arr.2023.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
As a highly selective and semi-permeable barrier that separates the circulating blood from the brain and central nervous system (CNS), the blood-brain barrier (BBB) plays a critical role in the onset and treatment of neurodegenerative diseases (NDs). To delay or reverse the NDs progression, the dysfunction of BBB should be improved to protect the brain from harmful substances. Simultaneously, a highly efficient drug delivery across the BBB is indispensable. Here, we summarized several methods to improve BBB dysfunction in NDs, including knocking out risk geneAPOE4, regulating circadian rhythms, restoring the gut microenvironment, and activating the Wnt/β-catenin signaling pathway. Then we discussed the advances in BBB penetration techniques, such as transient BBB opening, carrier-mediated drug delivery, and nasal administration, which facilitates drug delivery across the BBB. Furthermore, various in vivo and in vitro BBB models and research methods related to NDs are reviewed. Based on the current research progress, the treatment of NDs in the long term should prioritize the integrity of the BBB. However, a treatment approach that combines precise control of transient BBB permeability and non-invasive targeted BBB drug delivery holds profound significance in improving treatment effectiveness, safety, and clinical feasibility during drug therapy. This review involves the cross application of biology, materials science, imaging, engineering and other disciplines in the field of BBB, aiming to provide multi-dimensional research directions and clinical ideas for the treating NDs.
Collapse
Affiliation(s)
- Zhongci Hang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
8
|
Yang D, Wang X, Zhang X, Zhu H, Sun S, Mane R, Zhao X, Zhou J. Temporal Evolution of Perihematomal Blood-Brain Barrier Compromise and Edema Growth After Intracerebral Hemorrhage. Clin Neuroradiol 2023; 33:813-824. [PMID: 37185668 PMCID: PMC10449681 DOI: 10.1007/s00062-023-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/23/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE The aim of this study was to investigate the temporal evolution of perihematomal blood-brain barrier (BBB) compromise and edema growth and to determine the role of BBB compromise in edema growth. METHODS Spontaneous intracerebral hemorrhage patients who underwent computed tomography perfusion (CTP) were divided into five groups according to the time interval from symptom onset to CTP examination. Permeability-surface area product (PS) maps were generated using CTP source images. Ipsilateral and contralateral mean PS values were computed in the perihematomal and contralateral mirror regions. The relative PS (rPS) value was calculated as a ratio of ipsilateral to contralateral PS value. Hematoma and perihematomal edema volume were determined on non-contrast CT images. RESULTS In the total of 101 intracerebral hemorrhage patients, the ipsilateral mean PS value was significantly higher than that in contralateral region (z = -8.284, p < 0.001). The perihematomal BBB permeability showed a course of dynamic changes including an increase in the hyperacute and acute phases, a decrease in the early subacute phase and a second increase in the late subacute phase and chronic phase. Perihematomal edema increased gradually until the late subacute phase and then slightly increased. There was a relationship between rPS value and edema volume (β = 0.254, p = 0.006). CONCLUSION The perihematomal BBB permeability is dynamic changes, and edema growth is gradually increased in patients following intracerebral hemorrhage. BBB compromise plays an essential role in edema growth. The quantitative assessment of BBB compromise may provide valuable information in therapeutic interventions of intracerebral hemorrhage patients.
Collapse
Affiliation(s)
- Dan Yang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Xin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Huachen Zhu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Shengjun Sun
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ravikiran Mane
- China National Clinical Research Center-Hanalytics Artificial Intelligence Research Centre for Neurological Disorders, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| |
Collapse
|
9
|
Zhang Y, Liu Y, Zhang X, Yong VW, Xue M. Omarigliptin Protects the Integrity of the Blood-Brain Barrier After Intracerebral Hemorrhage in Mice. J Inflamm Res 2023; 16:2535-2548. [PMID: 37342770 PMCID: PMC10278948 DOI: 10.2147/jir.s411017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023] Open
Abstract
Purpose Intracerebral hemorrhage (ICH) is a fatal disease without effective treatment. The damage of the blood-brain barrier (BBB) is a key cause of brain edema and herniation after ICH. Omarigliptin (also known as MK3102) is a potent antidiabetic that inhibits dipeptidyl peptidase (DPP4); the latter has the ability to bind and degrade matrix metalloproteinases (MMPs). The present study aims to investigate the protective effects of omarigliptin against the destruction of BBB following ICH in mice. Methods and Materials Collagenase VII was used to induce ICH in C57BL/6 mice. MK3102 (7 mg/kg/day) was administered after ICH. The modified neurological severity scores (mNSS) were carried out to assess neurological functions. Nissl staining was applied to evaluate neuronal loss. Brain water content, Evans blue extravasation, Western blots, immunohistochemistry and immunofluorescence were used to study the protective effects of BBB with MK3102 at 3 days after ICH. Results MK3102 reduced DPP4 expression and decreased hematoma formation and neurobehavioral deficits of ICH mice. This was correspondent with lowered activation of microglia/macrophages and infiltration of neutrophils after ICH. Importantly, MK3102 protected the integrity of the BBB after ICH, associated with decreased expression of MMP-9, and preservation of the tight junction proteins ZO-1 and Occludin on endothelial cells through putative degradation of MMP-9, and inhibition of the expression of CX43 on astrocytes. Conclusion Omarigliptin protects the integrity of the BBB in mice after ICH injury.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
10
|
Dzhauari S, Basalova N, Primak A, Balabanyan V, Efimenko A, Skryabina M, Popov V, Velichko A, Bozov K, Akopyan Z, Malkov P, Stambolsky D, Tkachuk V, Karagyaur M. The Secretome of Mesenchymal Stromal Cells in Treating Intracerebral Hemorrhage: The First Step to Bedside. Pharmaceutics 2023; 15:1608. [PMID: 37376058 DOI: 10.3390/pharmaceutics15061608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Intracerebral hemorrhage is an unmet medical need that often leads to the disability and death of a patient. The lack of effective treatments for intracerebral hemorrhage makes it necessary to look for them. Previously, in our proof-of-concept study (Karagyaur M et al. Pharmaceutics, 2021), we have shown that the secretome of multipotent mesenchymal stromal cells (MSC) provides neuroprotection of the brain in a model of intracerebral hemorrhage in rats. Here, we have conducted a systematic study of the therapeutic potential of the MSC secretome in the model of hemorrhagic stroke and provided answers to the questions that need to be addressed in order to translate the secretome-based drug into clinical practice: routes and multiplicity of administration, optimal dose and door-to-treatment time. We have found that MSC secretome reveals prominent neuroprotective activity when administered intranasally or intravenously within 1-3 h after hemorrhage modeling, even in aged rats, and its multiple injections (even within 48 h) are able to reduce the delayed negative effects of hemorrhagic stroke. To our knowledge, this study provides the first systematic investigation of the therapeutic activity of a biomedical MSC-based cell-free drug in intracerebral hemorrhage and is an integral part of its preclinical studies.
Collapse
Affiliation(s)
- Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vadim Balabanyan
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Arkadiy Velichko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Zhanna Akopyan
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Pavel Malkov
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Dmitry Stambolsky
- Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| |
Collapse
|
11
|
Guo M, Ge X, Wang C, Yin Z, Jia Z, Hu T, Li M, Wang D, Han Z, Wang L, Xiong X, Chen F, Lei P. Intranasal Delivery of Gene-Edited Microglial Exosomes Improves Neurological Outcomes after Intracerebral Hemorrhage by Regulating Neuroinflammation. Brain Sci 2023; 13:brainsci13040639. [PMID: 37190604 DOI: 10.3390/brainsci13040639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells. They have also been regarded as a promising therapeutic tool in translational medicine, with low immunogenicity, high penetration through the blood-brain barrier, and ease of modification. In our previous research, we have found that exogenous administration of miRNA-124-overexpressed microglial exosomes (Exo-124) are effective in improving post-injury cognitive impairment. From this, we evaluated the potential therapeutic effects of miRNA-124-enriched microglial exosomes on the ICH mice in the present study. We found that the gene-edited exosomes could attenuate neuro-deficits and brain edema, improve blood-brain barrier integrity, and reduce neural cell death. Moreover, the protective effect of Exo-124 was abolished in mice depleted of Gr-1+ myeloid cells. It suggested that the exosomes exerted their functions by limiting the infiltration of leukocyte into the brain, thus controlling neuroinflammation following the onset of ICH. In conclusion, our findings provided a promising therapeutic strategy for improving neuroinflammation in ICH. It also opens a new avenue for intranasal delivery of exosome therapy using miRNA-edited microglial exosomes.
Collapse
Affiliation(s)
- Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zexi Jia
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianpeng Hu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dong Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoli Han
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiangyang Xiong
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
12
|
Li M, Wang S, Zhang C, Chi C, Liu R, Wang T, Fu F. Escin alleviates stress-induced intestinal dysfunction to protect brain injury by regulating the gut-brain axis in ischemic stroke rats. Int Immunopharmacol 2023; 115:109659. [PMID: 36608442 DOI: 10.1016/j.intimp.2022.109659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Hyperactivity of HPA axis results in intestinal dysfunction, which may play a role in brain injury caused by ischemic stroke (IS). Escin shows a neuroprotective effect but it may not penetrate blood brain barrier (BBB). Previous work in our laboratory showed that escin ameliorated intestinal injury in animals. The aim of this study is to investigate whether escin attenuates brain injury by improving intestinal dysfunction in middle cerebral artery occlusion (MCAO) rats, to mimic IS. MCAO rats and lipopolysaccharides (LPS)-induced Caco-2 cells were used to evaluate the effects of escin in vivo and in vitro. The results showed that escin could not penetrate BBB but reduced brain infarct volume, improved neurological function, inhibited neuroinflammation, ameliorated intestinal dysfunction and tissue integrity by increasing the expression of the tight junction protein in vivo and in vitro. Escin reduced the increased corticosterone and endotoxin level in blood of MCAO rats, regulated GR/p38 MAPK/NF-κB signaling pathway in ileal tissue and LPS/TLR4/NF-κB signaling pathway in ischemic brain tissue. These findings suggest that escin could attenuate ischemic brain injury by improving intestinal dysfunction, and it may be a promising way to protect brain injury by protecting intestine, instead of targeting the brain directly after IS.
Collapse
Affiliation(s)
- Min Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Chenglin Chi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
13
|
Ding Z, Zhong Z, Wang J, Zhang R, Shao J, Li Y, Wu G, Tu H, Yuan W, Sun H, Wang Q. Inhibition of Dectin-1 Alleviates Neuroinflammatory Injury by Attenuating NLRP3 Inflammasome-Mediated Pyroptosis After Intracerebral Hemorrhage in Mice: Preliminary Study Results. J Inflamm Res 2022; 15:5917-5933. [PMID: 36274828 PMCID: PMC9579968 DOI: 10.2147/jir.s384020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Neuroinflammation plays an important role following intracerebral hemorrhage (ICH). NLRP3 inflammasome-mediated pyroptosis contributes to the mechanism of neuroinflammation. It has been reported that dendritic cell-associated C-type lectin-1 (Dectin-1) activation triggers inflammation in neurological diseases. However, the role of Dectin-1 on NLRP3 inflammasome-mediated pyroptosis after ICH remains unclear. Here, we aimed to explore the effect of Dectin-1 on NLRP3 inflammasome-mediated pyroptosis and neuroinflammation after ICH. METHODS Adult male C57BL/6 mice were used to establish the ICH model. Laminarin, an inhibitor of Dectin-1, was administered for intervention. Expression of Dectin-1 was evaluated by Western blot and immunofluorescence. Brain water content and neurobehavioral function were tested to assess brain edema and neurological performance. Western blot was conducted to evaluate the level of GSDMD-N. ELISA kits were used to measure the levels of IL-1β and IL-18. qRT-PCR and Western blot were performed to evaluate the expressions of NLRP3 inflammasome, IL-1β, and IL-18. RESULTS The expression of Dectin-1 increased following ICH, and Dectin-1 was expressed on microglia. In addition, inhibition of Dectin-1 by laminarin decreased brain edema and neurological impairment after ICH. Moreover, inhibition of Dectin-1 decreased the expression of pyroptosis-related protein, GSDMD-N, and inflammatory cytokines (IL-1β and IL-18). Mechanistically, Dectin-1 blockade inhibits NLRP3 inflammasome activation, thereby alleviating neuroinflammatory injury by attenuating NLRP3 inflammasome-mediated pyroptosis both in vivo and in vitro. CONCLUSION Our study indicates that the inhibition of Dectin-1 alleviates neuroinflammation by attenuating NLRP3 inflammasome-mediated pyroptosis after ICH.
Collapse
Affiliation(s)
- Zhiquan Ding
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhenzhong Zhong
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jun Wang
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Run Zhang
- Neurosurgery Center, Department of Neuro-oncological Surgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jinlian Shao
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yulong Li
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Guiwei Wu
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Huiru Tu
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wen Yuan
- Laboratory Animal Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Haitao Sun
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qinghua Wang
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Correspondence: Qinghua Wang; Haitao Sun, Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China, Email ;
| |
Collapse
|
14
|
Molecular, Pathological, Clinical, and Therapeutic Aspects of Perihematomal Edema in Different Stages of Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3948921. [PMID: 36164392 PMCID: PMC9509250 DOI: 10.1155/2022/3948921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023]
Abstract
Acute intracerebral hemorrhage (ICH) is a devastating type of stroke worldwide. Neuronal destruction involved in the brain damage process caused by ICH includes a primary injury formed by the mass effect of the hematoma and a secondary injury induced by the degradation products of a blood clot. Additionally, factors in the coagulation cascade and complement activation process also contribute to secondary brain injury by promoting the disruption of the blood-brain barrier and neuronal cell degeneration by enhancing the inflammatory response, oxidative stress, etc. Although treatment options for direct damage are limited, various strategies have been proposed to treat secondary injury post-ICH. Perihematomal edema (PHE) is a potential surrogate marker for secondary injury and may contribute to poor outcomes after ICH. Therefore, it is essential to investigate the underlying pathological mechanism, evolution, and potential therapeutic strategies to treat PHE. Here, we review the pathophysiology and imaging characteristics of PHE at different stages after acute ICH. As illustrated in preclinical and clinical studies, we discussed the merits and limitations of varying PHE quantification protocols, including absolute PHE volume, relative PHE volume, and extension distance calculated with images and other techniques. Importantly, this review summarizes the factors that affect PHE by focusing on traditional variables, the cerebral venous drainage system, and the brain lymphatic drainage system. Finally, to facilitate translational research, we analyze why the relationship between PHE and the functional outcome of ICH is currently controversial. We also emphasize promising therapeutic approaches that modulate multiple targets to alleviate PHE and promote neurologic recovery after acute ICH.
Collapse
|
15
|
Chen S, Li L, Peng C, Bian C, Ocak PE, Zhang JH, Yang Y, Zhou D, Chen G, Luo Y. Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxid Redox Signal 2022; 37:115-134. [PMID: 35383484 DOI: 10.1089/ars.2021.0072] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Blood-brain barrier (BBB) disruption is a major pathological change after intracerebral hemorrhage (ICH) and is both the cause and result of oxidative stress and of the immune response post-ICH. These processes contribute to ICH-induced brain injury. Recent Advances: After the breakdown of cerebral vessels, blood components, including erythrocytes and their metabolites, thrombin, and fibrinogen, can access the cerebral parenchyma through the compromised BBB, triggering oxidative stress and inflammatory cascades. These aggravate BBB disruption and contribute to further infiltration of blood components, resulting in a vicious cycle that exacerbates brain edema and neurological injury after ICH. Experimental and clinical studies have highlighted the role of BBB disruption in ICH-induced brain injury. Critical Issues: In this review, we focus on the strategies to protect the BBB in ICH. Specifically, we summarize the evidence and the underlying mechanisms, including the ICH-induced process of oxidative stress and inflammatory response, and we highlight the potential therapeutic targets to protect BBB integrity after ICH. Future Directions: Future studies should probe the mechanism of ferroptosis as well as oxidative stress-inflammation coupling in BBB disruption after ICH and investigate the effects of antioxidants and immunomodulatory agents in more ICH clinical trials. Antioxid. Redox Signal. 37, 115-134.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Peng
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pinar Eser Ocak
- Department of Neurosurgery, Uludag University School of Medicine, Bursa, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
16
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
17
|
Momordica charantia-derived extracellular vesicles-like nanovesicles inhibited glioma proliferation, migration, and invasion by regulating the PI3K/AKT signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Navarro-Oviedo M, Marta-Enguita J, Roncal C, Rodriguez JA, Zandio B, Lecumberri R, Hermida J, Oyarzabal J, Pineda-Lucena A, Paramo JA, Muñoz R, Orbe J. CM-352 EFFICACY IN A MOUSE MODEL OF ANTICOAGULANT-ASSOCIATED INTRACRANIAL HAEMORRHAGE. Thromb Haemost 2022; 122:1314-1325. [PMID: 35114692 PMCID: PMC9393087 DOI: 10.1055/a-1759-9962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Intracranial haemorrhage (ICH) is one of the major devastating complications of anticoagulation. Matrix metalloproteinases (MMPs) inhibition has been proposed as a novel pharmacological approach for ICH treatment. OBJECTIVES We evaluated the effects of CM-352 (MMPs-fibrinolysis inhibitor) in an experimental ICH model associated with oral anticoagulants as compared with clinically used prothrombin concentrate complex (PCC). METHODS ICH was induced by collagenase injection into the striatum of WT (C57BL/6J) anticoagulated mice (warfarin or rivaroxaban) and Mmp10 -/- mice. Hematoma volume and neurological deficits were measured 24h later by diaminobenzidine staining and different behavioural test. Circulating plasminogen activator inhibitor-1 (PAI-1) activity and interleukin-6 (IL-6) were measured in plasma samples and local inflammation was assessed by neutrophil infiltration. Finally, fibrinolytic effects of MMP-10 and rivaroxaban were evaluated by thromboelastometry and thrombin-activatable fibrinolysis inhibitor (TAFI) activation assays. RESULTS Only PCC reduced haemorrhage volume and improved functional outcome in warfarin-ICH, but both, PCC and CM-352 treatments, diminished haemorrhage volume (46%, p<0.01 and 64%, p<0.001, respectively) and ameliorated functional outcome in rivaroxaban-ICH. We further demonstrated that CM-352, but not PCC decreased neutrophil infiltration in the haemorrhage area at 24h. The effect of CM-352 could be related to MMP-10 inhibition since Mmp10-/- mice showed lower haemorrhage volume, better neurological score, reduced IL-6 levels and neutrophil infiltration, and increased PAI-1 after experimental ICH. Finally, we found that CM-352 reduced MMP-10 and rivaroxaban-related fibrinolytic effects in thromboelastometry and TAFI activation. CONCLUSIONS CM-352 treatment, by diminishing MMPs and rivaroxaban-associated fibrinolytic effects, might be a novel antihaemorrhagic strategy for rivaroxaban-associated ICH.
Collapse
Affiliation(s)
- Manuel Navarro-Oviedo
- Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Juan Marta-Enguita
- Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain.,Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A Rodriguez
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Beatriz Zandio
- Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Ramón Lecumberri
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Hematology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose Hermida
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, PAmplona, Spain
| | - Julen Oyarzabal
- Small Molecules Platform, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Antonio Pineda-Lucena
- Small Molecules Platform, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Jose A Paramo
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain.,Hematology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roberto Muñoz
- Red de Investigación Cooperativa de Enfermedades Vasculares Cerebrales (INVICTUS PLUS), Madrid, Spain.,Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Josune Orbe
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| |
Collapse
|
19
|
Kobeissy F, Mallah K, Zibara K, Dakroub F, Dalloul Z, Nasser M, Nasrallah L, Mallah Z, El-Achkar GA, Ramadan N, Mohamed W, Mondello S, Hamade E, Habib A. The effect of clopidogrel and aspirin on the severity of traumatic brain injury in a rat model. Neurochem Int 2022; 154:105301. [PMID: 35121011 DOI: 10.1016/j.neuint.2022.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Traumatic Brain Injury (TBI) is one of the leading causes of death and disability worldwide. Aspirin (ASA) and clopidogrel (CLOP) are antiplatelet agents that inhibit platelet aggregation. They are implicated in worsening the intracerebral haemorrhage (ICH) risk post-TBI. However, antiplatelet drugs may also exert a neuroprotective effect post-injury. We determined the impact of aspirin and clopidogrel treatment, alone or in combination, on ICH and brain damage in an experimental rat TBI model. We assessed changes in platelet aggregation and measured serum thromboxane by enzyme immune assay. We also explored a panel of brain damage and apoptosis biomarkers by immunoblotting. Rats were treated with aspirin and/or clopidogrel for 48 h prior to TBI and sacrificed 48 h post-injury. In rats treated with antiplatelet agents prior to TBI, platelet aggregation was completely inhibited, and serum thromboxane was significantly decreased, compared to the TBI group without treatment. TBI increases UCHL-1 and GFAP, but decreases hexokinase expression compared to the non-injured controls. All groups treated with antiplatelet drugs prior to TBI had decreased UCH-L1 and GFAP serum levels compared to the TBI untreated group. Furthermore, the ASA and CLOP single treatments increased the hexokinase serum levels. We confirmed that αII-spectrin cleavage increased post-TBI, with the highest cleavage detected in CLOP-treated rats. Aspirin and/or clopidogrel treatment prior to TBI is a double-edged sword that exerts a dual effect post-injury. On one hand, ASA and CLOP single treatments increase the post-TBI ICH risk, with a further detrimental effect from the ASA + CLOP treatment. On the other hand, ASA and/or CLOP treatments are neuroprotective and result in a favourable profile of TBI injury markers. The ICH risk and the neuroprotection benefits from antiplatelet therapy should be weighed against each other to ameliorate the management of TBI patients.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Khalil Mallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC, 29425, USA
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Fatima Dakroub
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Molecular Biology and Cancer Immunology Laboratory, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Zeinab Dalloul
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Nasser
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Molecular Biology and Cancer Immunology Laboratory, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Mallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Molecular Biology and Cancer Immunology Laboratory, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, AlMinufya, Egypt; Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | | | - Eva Hamade
- Molecular Biology and Cancer Immunology Laboratory, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon; Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Aida Habib
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
20
|
Mehmood Siddiqui E, Mehan S, Upadhayay S, Khan A, Halawi M, Ahmed Halawi A, Alsaffar RM. Neuroprotective efficacy of 4-Hydroxyisoleucine in experimentally induced intracerebral hemorrhage. Saudi J Biol Sci 2021; 28:6417-6431. [PMID: 34764759 PMCID: PMC8568986 DOI: 10.1016/j.sjbs.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe form of brain injury, which is a major cause of mortality in humans. Hydrocephalus and cerebral hematoma lead to severe neurological deficits. A single autologous blood (ALB) injection in rats' brains induces hemorrhage and other conditions that regularly interfere with the standard treatment of several cellular and molecular pathways. Several studies have found that IGF-1/GLP-1 decreases the production of inflammatory markers in peripheral tissues, while some have found that they also have pro-inflammatory functions. Since these receptors are down-regulated in hemorrhagic situations, we looked into the potential neuroprotective effect of 4-hydroxyisoleucine (4-HI); 50 mg/kg and 100 mg/kg, an active compound Trigonellafoenum-graecum, on post-hemorrhagic deficits in rats. Long-term oral administration of 4-HI for 35 days has improved behavioral and neurochemical deficits and severe pathological changes and improved cellular and molecular markers, apoptotic markers in the ALB-induced ICH experimental model. Furthermore, the findings revealed that 4-HI also improved the levels of other neurotransmitters (Ach, DOPA, GABA, glutamate); inflammatory cytokines (TNF-alpha, IL-1β, IL-17), and oxidative stress markers (MDA, nitrite, LDH, AchE, SOD, CAT, GPx, GSH) in the brain when evaluated after Day 35. There is no proven treatment available for the prevention of post-brain hemorrhage and neurochemical malfunction; available therapy is only for symptomatic relief of the patient. Thus, 4-HI could be a potential clinical approach for treating post-brain haemorrhage and neurochemical changes caused by neurological damage. Furthermore, 4-HI may be linked to other standard therapeutic therapies utilized in ICH as a potential pharmacological intervention.
Collapse
Affiliation(s)
- Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Rana M Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O.Box-173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
21
|
Baker TS, Durbin J, Troiani Z, Ascanio-Cortez L, Baron R, Costa A, Rincon F, Colbourne F, Lyden P, Mayer SA, Kellner CP. Therapeutic hypothermia for intracerebral hemorrhage: Systematic review and meta-analysis of the experimental and clinical literature. Int J Stroke 2021; 17:506-516. [PMID: 34427479 DOI: 10.1177/17474930211044870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intracerebral hemorrhage remains the deadliest form of stroke worldwide, inducing neuronal death through a wide variety of pathways. Therapeutic hypothermia is a robust and well-studied neuroprotectant widely used across a variety of specialties. AIMS This review summarizes results from preclinical and clinical studies to highlight the overall effectiveness of therapeutic hypothermia to improve long-term intracerebral hemorrhage outcomes while also elucidating optimal protocol regimens to maximize therapeutic effect. SUMMARY OF REVIEW A systematic review was conducted across three databases to identify trials investigating the use of therapeutic hypothermia to treat intracerebral hemorrhage. A random-effects meta-analysis was conducted on preclinical studies, looking at neurobehavioral outcomes, blood brain barrier breakdown, cerebral edema, hematoma volume, and tissue loss. Several mixed-methods meta-regression models were also performed to adjust for variance and variations in hypothermia induction procedures. Twwenty-one preclinical studies and five human studies were identified. The meta-analysis of preclinical studies demonstrated a significant benefit in behavioral scores (ES = -0.43, p = 0.02), cerebral edema (ES = 1.32, p = 0.0001), and blood brain barrier (ES = 2.73, p ≤ 0.00001). Therapeutic hypothermia was not found to significantly affect hematoma expansion (ES = -0.24, p = 0.12) or tissue loss (ES = 0.06, p = 0.68). Clinical study outcome reporting was heterogeneous; however, there was recurring evidence of therapeutic hypothermia-induced edema reduction. CONCLUSIONS The combined preclinical evidence demonstrates that therapeutic hypothermia reduced multiple cell death mechanisms initiated by intracerebral hemorrhage; yet, there is no definitive evidence in clinical studies. The cooling strategies employed in both preclinical and clinical studies were highly diverse, and focused refinement of cooling protocols should be developed in future preclinical studies. The current data for therapeutic hypothermia in intracerebral hemorrhage remains questionable despite the highly promising indications in preclinical studies. Definitive randomized controlled studies are still required to answer this therapeutic question.
Collapse
Affiliation(s)
- Turner S Baker
- Sinai BioDesign, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Durbin
- Sinai BioDesign, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary Troiani
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis Ascanio-Cortez
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Baron
- Sinai BioDesign, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony Costa
- Sinai BioDesign, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred Rincon
- Department of Neurology, Thomas Jefferson University, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | - Patrick Lyden
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, California, USA
| | - Stephan A Mayer
- Departments of Neurology and Neurosurgery, 8137New York Medical College, Westchester Medical Center Health Network, New York, NY, USA
| | - Christopher P Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Fu G, Du S, Huang T, Cao M, Feng X, Wu S, Albik S, Bekker A, Tao YX. FTO (Fat-Mass and Obesity-Associated Protein) Participates in Hemorrhage-Induced Thalamic Pain by Stabilizing Toll-Like Receptor 4 Expression in Thalamic Neurons. Stroke 2021; 52:2393-2403. [PMID: 34102854 DOI: 10.1161/strokeaha.121.034173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ganglan Fu
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.,Now with Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China (G.F., M.C.)
| | - Shibin Du
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Tianfeng Huang
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Minghui Cao
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.,Now with Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China (G.F., M.C.)
| | - Xiaozhou Feng
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Shaogen Wu
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Sfian Albik
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Alex Bekker
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Yuan-Xiang Tao
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.,Department of Physiology, Pharmacology and Neuroscience (Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.,Department of Cell Biology and Molecular Medicine (Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| |
Collapse
|
23
|
Kung TFC, Wilkinson CM, Dirks CA, Jickling GC, Colbourne F. Glibenclamide does not improve outcome following severe collagenase-induced intracerebral hemorrhage in rats. PLoS One 2021; 16:e0252584. [PMID: 34081746 PMCID: PMC8174736 DOI: 10.1371/journal.pone.0252584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating insult with few effective treatments. Edema and raised intracranial pressure contribute to poor outcome after ICH. Glibenclamide blocks the sulfonylurea 1 transient receptor potential melastatin 4 (Sur1-Trpm4) channel implicated in edema formation. While glibenclamide has been found to improve outcome and reduce mortality in animal models of severe ischemic stroke, in ICH the effects are less clear. In our previous study, we found no benefit after a moderate-sized bleed, while others have reported benefit. Here we tested the hypothesis that glibenclamide may only be effective in severe ICH, where edema is an important contributor to outcome. Glibenclamide (10 μg/kg loading dose, 200 ng/h continuous infusion) was administered 2 hours post-ICH induced by collagenase injection into the striatum of adult rats. A survival period of 24 hours was maintained for experiments 1-3, and 72 hours for experiment 4. Glibenclamide did not affect hematoma volume (~81 μL) or other safety endpoints (e.g., glucose levels), suggesting the drug is safe. However, glibenclamide did not lessen striatal edema (~83% brain water content), ionic dyshomeostasis (Na+, K+), or functional impairment (e.g., neurological deficits (median = 10 out of 14), etc.) at 24 hours. It also did not affect edema at 72 h (~86% brain water content), or overall mortality rates (25% and 29.4% overall in vehicle vs. glibenclamide-treated severe strokes). Furthermore, glibenclamide appears to worsen cytotoxic edema in the peri-hematoma region (cell bodies were 46% larger at 24 h, p = 0.0017), but no effect on cell volume or density was noted elsewhere. Overall, these findings refute our hypothesis, as glibenclamide produced no favorable effects following severe ICH.
Collapse
Affiliation(s)
- Tiffany F. C. Kung
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christine A. Dirks
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Glen C. Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Neurology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Wu L, Hu Y, Jiang L, Liang N, Liu P, Hong H, Yang S, Chen W. Zhuyu Annao decoction promotes angiogenesis in mice with cerebral hemorrhage by inhibiting the activity of PHD3. Hum Exp Toxicol 2021; 40:1867-1879. [PMID: 33896237 DOI: 10.1177/09603271211008523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some traditional Chinese decoctions, such as Zhuyu Annao, exert favorable therapeutic effects on acute cerebral hemorrhage, hemorrhagic stroke, and other neurological diseases, but the underlying mechanism remains unclear. This study aimed to determine whether Zhuyu Annao decoction (ZYAND) protects the injured brain by promoting angiogenesis following intracerebral hemorrhage (ICH) and elucidate its specific mechanism. The effect of ZYAND on the nervous system of mice after ICH was explored through behavioral experiments, such as the Morris water maze and Rotarod tests, and its effects on oxidative stress were explored by detecting several oxidative stress markers, including malondialdehyde, nitric oxide, glutathione peroxidase, and superoxide dismutase. Real-time quantitative RT-PCR and WB were used to detect the effects of ZYAND on the levels of prolyl hydroxylase domain 3 (PHD3), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) in the brain tissues of mice. The effect of ZYAND on the NF-κB signaling pathway was detected using a luciferase reporter gene. A human umbilical cord vascular endothelial cell angiogenesis experiment was performed to determine whether ZYAND promotes angiogenesis. The Morris water maze test and other behavioral experiments verified that ZYAND improved the neurobehavior of mice after ICH. ZYAND activated the PHD3/HIF-1α signaling pathway, inhibiting the oxidative damage caused by ICH. In angiogenesis experiments, it was found that ZYAND promoted VEGF-induced angiogenesis by upregulating the expression of HIF-1α, and NF-κB signaling regulated the expression of HIF-1α by inhibiting PHD3. ZYAND exerts a reparative effect on brain tissue damaged after ICH through the NF-κB/ PHD3/HIF-1α/VEGF signaling axis.
Collapse
Affiliation(s)
- L Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, China.,Scientific Laboratorial Centre Guangxi University of Chinese Medicine, China.,Both authors contributed equally to this work and should be considered as equal first coauthors
| | - Y Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, China.,Both authors contributed equally to this work and should be considered as equal first coauthors
| | - L Jiang
- Graduate College of Guangxi University of Traditional Chinese Medicine, China
| | - N Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, China
| | - P Liu
- Department of Cardiovascular Disease, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - H Hong
- Graduate College of Guangxi University of Traditional Chinese Medicine, China
| | - S Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, China
| | - W Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, China
| |
Collapse
|
25
|
Kawoos U, Abutarboush R, Gu M, Chen Y, Statz JK, Goodrich SY, Ahlers ST. Blast-induced temporal alterations in blood-brain barrier properties in a rodent model. Sci Rep 2021; 11:5906. [PMID: 33723300 PMCID: PMC7971015 DOI: 10.1038/s41598-021-84730-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
The consequences of blast-induced traumatic brain injury (bTBI) on the blood–brain barrier (BBB) and components of the neurovascular unit are an area of active research. In this study we assessed the time course of BBB integrity in anesthetized rats exposed to a single blast overpressure of 130 kPa (18.9 PSI). BBB permeability was measured in vivo via intravital microscopy by imaging extravasation of fluorescently labeled tracers (40 kDa and 70 kDa molecular weight) through the pial microvasculature into brain parenchyma at 2–3 h, 1, 3, 14, or 28 days after the blast exposure. BBB structural changes were assessed by immunostaining and molecular assays. At 2–3 h and 1 day after blast exposure, significant increases in the extravasation of the 40 kDa but not the 70 kDa tracers were observed, along with differential reductions in the expression of tight junction proteins (occludin, claudin-5, zona occluden-1) and increase in the levels of the astrocytic water channel protein, AQP-4, and matrix metalloprotease, MMP-9. Nearly all of these measures were normalized by day 3 and maintained up to 28 days post exposure. These data demonstrate that blast-induced changes in BBB permeability are closely coupled to structural and functional components of the BBB.
Collapse
Affiliation(s)
- Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA.
| | - Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| |
Collapse
|
26
|
Sun Q, Xu X, Wang T, Xu Z, Lu X, Li X, Chen G. Neurovascular Units and Neural-Glia Networks in Intracerebral Hemorrhage: from Mechanisms to Translation. Transl Stroke Res 2021; 12:447-460. [PMID: 33629275 DOI: 10.1007/s12975-021-00897-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH), the most lethal type of stroke, often leads to poor outcomes in the clinic. Due to the complex mechanisms and cell-cell crosstalk during ICH, the neurovascular unit (NVU) was proposed to serve as a promising therapeutic target for ICH research. This review aims to summarize the development of pathophysiological shifts in the NVU and neural-glia networks after ICH. In addition, potential targets for ICH therapy are discussed in this review. Beyond cerebral blood flow, the NVU also plays an important role in protecting neurons, maintaining central nervous system (CNS) homeostasis, coordinating neuronal activity among supporting cells, forming and maintaining the blood-brain barrier (BBB), and regulating neuroimmune responses. During ICH, NVU dysfunction is induced, along with neuronal cell death, microglia and astrocyte activation, endothelial cell (EC) and tight junction (TJ) protein damage, and BBB disruption. In addition, it has been shown that certain targets and candidates can improve ICH-induced secondary brain injury based on an NVU and neural-glia framework. Moreover, therapeutic approaches and strategies for ICH are discussed.
Collapse
Affiliation(s)
- Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiaocheng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
27
|
He Q, Li Z, Li T, Zhang Z, Zhao J. ATP Stimulation Promotes Functional Recovery after Intracerebral Haemorrhage by Increasing the mBDNF/proBDNF Ratio. Neuroscience 2021; 459:104-117. [PMID: 33421569 DOI: 10.1016/j.neuroscience.2020.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), including mature BDNF (mBDNF) and precursor BDNF (proBDNF), plays a pivotal role in neuronal survival, synaptic plasticity and neurogenesis. However, the functional effect of the mBDNF/proBDNF ratio in haemorrhagic stroke remains unclear. ATP is a known mediator of BDNF production in neurons and glia. Therefore, we hypothesized that ATP could facilitate BDNF production, increase the mBDNF/proBDNF ratio and thereby alleviate cerebral haemorrhage-induced injury. In this experiment, a model of intracerebral haemorrhage (ICH) was produced by injecting 50 μL autologous blood into the right corpus striatum in healthy male rats. ATP was injected to promote BDNF production and increase the mBDNF/proBDNF ratio. After ATP pretreatment, P2X4R-shRNA and SB203580 were used to inhibit P2X4R and p38-MAPK, respectively. We provide direct evidence that ATP administration was successful in promoting mBDNF expression and increasing the mBDNF/proBDNF ratio after ICH injury. Additionally, ATP stimulation could significantly improve cerebral neurological function and alleviate neuronal damage. Furthermore, ATP injection was able to upregulate the expression of P2X4R and p-p38-MAPK. Moreover, both P2X4R-shRNA and SB203580 could effectively abolish the effect of ATP injection on the levels of P2X4R and p-p38-MAPK and the mBDNF/proBDNF ratio. Together, these findings show that ATP stimulation contributes to functional recovery after cerebral haemorrhage and that neuroprotection induced by ATP administration in ICH rats is accompanied by a strong increase in the mBDNF/proBDNF ratio. Here, we also show a significant role of P2X4R-p38-MAPK signalling in the ATP-induced increase in the mBDNF/proBDNF ratio in ICH.
Collapse
Affiliation(s)
- Qi He
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhenyu Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Tiegang Li
- Institute of Materia Medica, Peking Union Medical College Hospital, Peking, People's Republic of China
| | - Zhiqian Zhang
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
28
|
Ding YX, Eerduna GW, Duan SJ, Li T, Liu RX, Zhang LM, Wang T, Fu FH. Escin ameliorates the impairments of neurological function and blood brain barrier by inhibiting systemic inflammation in intracerebral hemorrhagic mice. Exp Neurol 2020; 337:113554. [PMID: 33309746 DOI: 10.1016/j.expneurol.2020.113554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
This study aims to investigate whether escin ameliorates the impairments of neurological function by ameliorating systemic inflammation instead of targeting the brain directly in intracerebral hemorrhage (ICH) mice. It showed that escin did not cross the blood brain barrier (BBB). Compared with the ICH group, the Garcia test scores in the escin groups were significantly increased. Brain water contents and Evans blue extravasation of the right basal ganglia in the ICH group were augmented, and significantly reduced by escin. Escin abated the increases of monocyte counts and serum IL-1β levels induced by ICH. IL-1β administration reversed the effect of escin on Garcia test scores, the brain water contents, and the Evans blue extravasation. Escin ameliorated the increasing levels of RhoA, ROCK1, nuclear NF-κB and the decreasing expression of IκBα, cytosolic NF-κB, occludin, claudin-5 in the ICH group. IL-1β administration blocked not only escin-mediated increases of IκBα, cytosolic NF-κB, occludin, and claudin-5, but also escin-caused decreases of RhoA, ROCK1, and nuclear NF-κB. The results indicate that escin improves neurological outcomes and the BBB function in ICH mice, which is associated with attenuating ICH-induced peripheral system inflammation, and therefore, inhibiting IL-1β/RhoA/NF-κB signaling pathway in BBB, at least in part. These findings suggest that it may be useful to ameliorate brain injury by inhibiting systemic inflammation instead of aiming to target the brain directly after ICH.
Collapse
Affiliation(s)
- Yu-Xin Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Gao-Wa Eerduna
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, PR China
| | - Si-Jin Duan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ting Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Rong-Xia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Lei-Ming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| | - Feng-Hua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
29
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
30
|
Valproate Sodium Protects Blood Brain Barrier Integrity in Intracerebral Hemorrhage Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8884320. [PMID: 33224434 PMCID: PMC7676278 DOI: 10.1155/2020/8884320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023]
Abstract
Valproate sodium (VPA) is a traditional antiepileptic drug with a neuroprotective role in cerebrovascular disease. After intracerebral hemorrhage (ICH), mechanical compression by hematoma, neuroinflammation, oxidative stress, and cytotoxicity of hematoma lysates caused the destruction of the blood brain barrier (BBB). Targeting BBB is a major therapeutic method for patients with ICH. The purpose of the present study was to explore the role of VPA in preserving BBB integrity in the ICH model and investigate the underlying molecular mechanisms. One hundred and thirty-six adult male CD1 mice were randomly divided into five groups in the study. Mice subjected to ICH were administered intraperitoneally with VPA at 3, 24, and 48 h post-ICH, respectively. Neurobehavioral assessments, BBB permeability, Evans blue fluorescence, hematoma volume, and protein expression were evaluated. The administration of VPA reduced BBB permeability and improved the neurobehavior significantly post-ICH. VPA administration significantly decreased the expression of phosphorylated nuclear factor-kappa B (p-NFκB), matrix metalloproteinases 9 (MMP9), tumor necrosis factorα (TNFα), and interleukin-6 (IL-6), while it enhanced the expression of claudin 5 and occludin in the brain. In conclusion, VPA administration maintained the integrity of BBB after experimental ICH, thus reducing brain edema and improving the neurological outcomes. Therefore, VPA administration might be a new therapeutic method to protect BBB integrity for patients with ICH.
Collapse
|
31
|
Tracking elemental changes in an ischemic stroke model with X-ray fluorescence imaging. Sci Rep 2020; 10:17868. [PMID: 33082455 PMCID: PMC7575585 DOI: 10.1038/s41598-020-74698-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a leading cause of long-term disability in adults and a leading cause of death in developed nations. The cascade of cellular events and signalling that occur after cerebral ischemia are complex, however, analyzing global element markers of metabolic state affords the means to monitor stroke severity, status of injury, and recovery. These markers provide a multi-parameter method for assessing changes through the post-stroke time course. We employ synchrotron-based elemental mapping to follow elemental changes in the brain at 1 h, 1-, 2-, and 3-days, and at 1-, 2-, 3-, and 4-weeks post-stroke in a photothrombotic stroke model in mice. Our analysis reveals a highly consistent metabolic penumbra that can be readily identified based on the level of dysregulated potassium and other key elements. Maps of elemental distributions are also useful to demarcate events in the cellular response to the inflammatory cascade, including ion dysregulation, recruitment of cells to the lesion, and glial scar formation.
Collapse
|
32
|
Huang T, Fu G, Gao J, Zhang Y, Cai W, Wu S, Jia S, Xia S, Bachmann T, Bekker A, Tao YX. Fgr contributes to hemorrhage-induced thalamic pain by activating NF-κB/ERK1/2 pathways. JCI Insight 2020; 5:139987. [PMID: 33055425 PMCID: PMC7605540 DOI: 10.1172/jci.insight.139987] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Thalamic pain, a type of central poststroke pain, frequently occurs following ischemia/hemorrhage in the thalamus. Current treatment of this disorder is often ineffective, at least in part due to largely unknown mechanisms that underlie thalamic pain genesis. Here, we report that hemorrhage caused by microinjection of type IV collagenase or autologous whole blood into unilateral ventral posterior lateral nucleus and ventral posterior medial nucleus of the thalamus increased the expression of Fgr, a member of the Src family nonreceptor tyrosine kinases, at both mRNA and protein levels in thalamic microglia. Pharmacological inhibition or genetic knockdown of thalamic Fgr attenuated the hemorrhage-induced thalamic injury on the ipsilateral side and the development and maintenance of mechanical, heat, and cold pain hypersensitivities on the contralateral side. Mechanistically, the increased Fgr participated in hemorrhage-induced microglial activation and subsequent production of TNF-α likely through activation of both NF-κB and ERK1/2 pathways in thalamic microglia. Our findings suggest that Fgr is a key player in thalamic pain and a potential target for the therapeutic management of this disorder.
Collapse
Affiliation(s)
| | | | - Ju Gao
- Department of Anesthesiology
| | | | | | | | | | | | | | | | - Yuan-Xiang Tao
- Department of Anesthesiology
- Department of Pharmacology, Physiology & Neuroscience; and
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
33
|
Pan P, Xu L, Zhang H, Liu Y, Lu X, Chen G, Tang H, Wu J. A Review of Hematoma Components Clearance Mechanism After Subarachnoid Hemorrhage. Front Neurosci 2020; 14:685. [PMID: 32733194 PMCID: PMC7358443 DOI: 10.3389/fnins.2020.00685] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a complicated clinical syndrome, which is caused by several kinds of cerebrovascular disorders, with high morbidity, disability and mortality rate. In recent years, several studies have shown that early brain injury (EBI) is an important factor leading to the poor prognosis of SAH. A major cause of EBI has been attributed that hematoma components invade into the brain parenchyma, resulting in neuronal cell death. Therefore, the clearance of hematoma components is essential in the clinical outcome of patients after SAH. Here, in the review, we provide a summary of the current known hematoma components clearance mechanisms and simultaneously propose a new hypothesis for hematoma components clearance.
Collapse
Affiliation(s)
- Pengjie Pan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Xu
- Intensive Care Unit of Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongrong Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaocheng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Liddle LJ, Prokop BJ, Dirks CA, Demchuk A, Almekhlafi M, Colbourne F. Infusion of Cold Saline into the Carotid Artery Does Not Affect Outcome After Intrastriatal Hemorrhage. Ther Hypothermia Temp Manag 2020; 10:171-178. [PMID: 32456561 PMCID: PMC7482714 DOI: 10.1089/ther.2020.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Localized brain hypothermia (HYPO) can be achieved by infusing cold saline into the carotid artery of animals and patients. Studies suggest that HYPO improves behavioral and histological outcomes in focal ischemia models. Given that ischemic stroke and intracerebral hemorrhage (ICH) share pathophysiological overlap, we tested whether cold saline infusion is safe and neuroprotective when given during collagenase-induced ICH. Eighty-five adult male Sprague-Dawley rats were used. Experiment 1 investigated brain and body temperature changes associated with a cold saline infusion paradigm that was scaled from patients according to brain weight and blood volume (3 mL/20-minute infusion). Experiment 2 determined whether HYPO aggravated bleeding volume. Experiment 3 investigated if cerebral edema or elemental concentrations were altered by HYPO. We also collected core body temperature and activity data through telemetry. Experiment 4 investigated whether behavioral outcomes (e.g., skilled reaching) and tissue loss were influenced by HYPO. Our HYPO protocol decreased the ipsilateral striatal temperature by ∼0.20°C (p < 0.001), with no other effects. HYPO did not affect hematoma volume (p = 0.64), cerebral edema (p = 0.34), or elemental concentrations (p = 0.49) at 24 hours post-ICH. Although ICH caused persistent behavioral impairments, HYPO did not improve behavioral outcomes (measured by a neurological deficit scale, cylinder, and the staircase test; p > 0.05 for all). Brain tissue loss was not different between groups on day 28 post-ICH (p = 0.90). Although cold saline infusion appears to be safe in the acute post-ICH period, there was no evidence that this therapy improved outcome. However, our treatment protocol was relatively mild and additional interventions might help improve efficacy. Finally, our findings may also speak to the safety of this cooling approach in focal ischemia where hemorrhagic transformation is a risk; future studies on this issue are needed.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Canada
| | | | | | | | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
35
|
Li Y, Zhu ZY, Lu BW, Huang TT, Zhang YM, Zhou NY, Xuan W, Chen ZA, Wen DX, Yu WF, Li PY. Rosiglitazone ameliorates tissue plasminogen activator-induced brain hemorrhage after stroke. CNS Neurosci Ther 2019; 25:1343-1352. [PMID: 31756041 PMCID: PMC6887660 DOI: 10.1111/cns.13260] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Delayed thrombolytic therapy with recombinant tissue plasminogen activator (tPA) may exacerbate blood‐brain barrier (BBB) breakdown after ischemic stroke and lead to catastrophic hemorrhagic transformation (HT). Rosiglitazone(RSG), a widely used antidiabetic drug that activates peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), has been shown to protect against cerebral ischemia through promoting poststroke microglial polarization toward the beneficial anti‐inflammatory phenotype. However, whether RSG can alleviate HT after delayed tPA treatment remains unknown. In this study, we sort to examine the role of RSG on tPA‐induced HT after stroke. Methods and results We used the murine suture middle cerebral artery occlusion (MCAO) models of stroke followed by delayed administration of tPA (10 mg/kg, 2 hours after suture occlusion) to investigate the therapeutic potential of RSG against tPA‐induced HT. When RSG(6 mg/kg) was intraperitoneally administered 1 hour before MCAO in tPA‐treated MCAO mice, HT in the ischemic territory was significantly attenuated 1 day after stroke. In the tPA‐treated MCAO mice, we found RSG significantly mitigated BBB disruption and hemorrhage development compared to tPA‐alone‐treated stroke mice. Using flow cytometry and immunostaining, we confirmed that the expression of CD206 was significantly upregulated while the expression of iNOS was down‐regulated in microglia of the RSG‐treated mice. We further found that the expression of Arg‐1 was also upregulated in those tPA and RSG‐treated stroke mice and the protection against tPA‐induced HT and BBB disruption in these mice were abolished in the presence of PPAR‐γ antagonist GW9662 (4 mg/kg, 1 hour before dMCAO through intraperitoneal injection). Conclusions RSG treatment protects against BBB damage and ameliorates HT in delayed tPA‐treated stroke mice by activating PPAR‐γ and favoring microglial polarization toward anti‐inflammatory phenotype.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing-Wei Lu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue-Man Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Na-Ying Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Da-Xiang Wen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
36
|
Le CS, Hao XD, Li JW, Zhong JW, Lin HR, Zhou YT, Travis ZD, Tong LS, Gao F. CD200Fc Improves Neurological Function by Protecting the Blood-brain Barrier after Intracerebral Hemorrhage. Cell Transplant 2019; 28:1321-1328. [PMID: 31208229 PMCID: PMC6767889 DOI: 10.1177/0963689719857655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
CD200 is widely distributed in the central nervous system and plays an essential role in
the immune response in neurological diseases. However, little is currently known about the
effects of CD200 signaling on the blood–brain barrier (BBB) function after intracerebral
hemorrhage (ICH). In this study, the role of CD200 during ICH in an autologous blood
induced mouse ICH model was investigated. Following ICH, critical protein expression, BBB
permeability, and neurological function were measured with or without CD200Fc
administration. Our results showed that both the expression of CD200 and CD200R1 decreased
after ICH and administration of CD200Fc attenuated BBB leakage and improved neurological
functions. In conclusion, our work demonstrated that CD200Fc might be a potential
treatment option for ICH by protecting the BBB and improving functional outcomes.
Collapse
Affiliation(s)
- Chen-Sheng Le
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,All the authors contributed equally to this article
| | - Xiao-di Hao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,All the authors contributed equally to this article
| | - Jia-Wen Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Wei Zhong
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao-Ran Lin
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Ting Zhou
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zachary D Travis
- Loma Linda University, School of Medicine, Earth and Biological Sciences, Loma Linda, CA, USA
| | - Lu-Sha Tong
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,All the authors contributed equally to this article
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,All the authors contributed equally to this article
| |
Collapse
|
37
|
Glibenclamide, a Sur1-Trpm4 antagonist, does not improve outcome after collagenase-induced intracerebral hemorrhage. PLoS One 2019; 14:e0215952. [PMID: 31042750 PMCID: PMC6494051 DOI: 10.1371/journal.pone.0215952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
The sulfonylurea 1 transient receptor potential melastatin 4 (Sur1-Trpm4) receptor is selectively expressed after intracerebral hemorrhage (ICH). This upregulation contributes to increases in intracellular sodium. Water follows sodium through aquaporin channels, leading to cytotoxic edema. Even after edema is thought to have resolved, ionic dyshomeostasis persists, as does blood-brain barrier (BBB) damage. Glibenclamide, a hypoglycemic agent that inhibits Sur1-Trpm4, has been shown to reduce BBB damage and edema following infusion of autologous blood into the brain (ICH) as well as after other brain injuries. In order to further assess efficacy, we used the collagenase ICH model in rats to test whether glibenclamide reduces edema, attenuates ion dyshomeostasis, improves BBB damage, and reduces lesion volume. We tested a widely-used glibenclamide dose shown effective in other studies (10 μg/kg loading dose followed by 200 ng/hr for up to 7 days). Early initiation of glibenclamide did not significantly impact edema (72 hours), BBB permeability (72 hours), or lesion volume after ICH (28 days). Recovery from neurological impairments was also not improved by glibenclamide. These results suggest that glibenclamide will not improve outcome in ICH. However, the treatment appeared to be safe as there was no effect on bleeding or other physiological variables.
Collapse
|
38
|
Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D, Liu F, Zhang JH, Xia Y, Tang J. The MC 4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 2019; 176:1341-1356. [PMID: 30811584 DOI: 10.1111/bph.14639] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/07/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Inflammasome-mediated pyroptosis is an important neuronal cell death mechanism. Previous studies reported that activation of melanocortin MC4 receptor exerted neuroprotection in several neurological diseases. Here, we have investigated the role of MC4 receptor activation with RO27-3225 in suppressing neuronal pyroptosis after experimental intracerebral haemorrhage (ICH) and the underlying mechanism. EXPERIMENTAL APPROACH One hundred and sixty-nine male CD1 mice were used. ICH was induced by injection of bacterial collagenase into the right-side basal ganglia. RO27-3225, a selective agonist of MC4 receptor, was injected intraperitoneally at 1 hr after ICH. To elucidate the underlying mechanism, we used the specific MC4 receptor antagonist HS024 and NQDI-1, a specific inhibitor of the apoptosis signalling-regulating kinase 1 (ASK1). Neurological tests, Western blot, Fluoro-Jade C, TUNEL, and immunofluorescence staining were conducted. KEY RESULTS Expression of MC4 receptor and the NOD-like receptor family, pyrin domain containing 1 (NLRP1) inflammasome in brain were increased after ICH. RO27-3225 treatment decreased neuronal pyroptosis and neurobehavioural deficits at 24 and 72 hr after ICH. RO27-3225 reduced the expression of p-ASK1, p-JNK, p-p38 MAPK, NLRP1 inflammasome, cleaved caspase-1, and IL-1β after ICH. HS024 pretreatment prevented the effects of RO27-3225. Similar to RO27-3225, NQDI-1 alone improved neurological functions and down-regulated ASK1/JNK/p38MAPK expression after ICH. CONCLUSIONS AND IMPLICATIONS RO27-3225 suppressed NLRP1-dependent neuronal pyroptosis and improved neurological function, possibly mediated by activation of MC4 receptor and inhibition of ASK1/JNK/p38 MAPK signalling pathways, after experimental ICH in mice. The MC4 receptor may be a promising therapeutic target for the management of ICH.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China.,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yuchun Zuo
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Huang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengtao Yu
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Jianhua Peng
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junyi Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Lianhua Zhao
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Doycheva
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - John H Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Jiping Tang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
39
|
Umlauf BJ, Shusta EV. Exploiting BBB disruption for the delivery of nanocarriers to the diseased CNS. Curr Opin Biotechnol 2019; 60:146-152. [PMID: 30849699 DOI: 10.1016/j.copbio.2019.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin J Umlauf
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, United States
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, United States.
| |
Collapse
|
40
|
Wilkinson CM, Fedor BA, Aziz JR, Nadeau CA, Brar PS, Clark JJA, Colbourne F. Failure of bumetanide to improve outcome after intracerebral hemorrhage in rat. PLoS One 2019; 14:e0210660. [PMID: 30629699 PMCID: PMC6328169 DOI: 10.1371/journal.pone.0210660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/28/2018] [Indexed: 11/19/2022] Open
Abstract
After intracerebral hemorrhage (ICH), brain edema commonly occurs and can cause death. Along with edema, there are significant alterations in the concentrations of key ions such as sodium, potassium, and chloride, which are essential to brain function. NKCC1, a cation-chloride cotransporter, is upregulated after brain damage, such as traumatic injury and ischemic stroke. NKCC1 brings sodium and chloride into the cell, possibly worsening ion dyshomeostasis. Bumetanide, a specific NKCC1 antagonist, blocks the transport of chloride into cells, and thus should attenuate the increases in chloride, which should lessen brain edema and improve neuronal functioning post-ICH, as with other injuries. We used the collagenase model of ICH to test whether bumetanide treatment for three days (vs. vehicle) would improve outcome. We gave bumetanide beginning at two hours or seven days post-ICH and measured behavioural outcome, edema, and brain ion content after treatment. There was some evidence for a minor reduction in edema after early dosing, but this did not improve behaviour or lessen injury. Contrary to our hypothesis, bumetanide did not normalize ion concentrations after late dosing. Bumetanide did not improve behavioural outcome or affect lesion volume. After ICH, bumetanide is safe to use in rats but does not improve functional outcome in the majority of animals.
Collapse
Affiliation(s)
| | - Brittany A. Fedor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmine R. Aziz
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Colby A. Nadeau
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Paul S. Brar
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia J. A. Clark
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|