1
|
Zhou S, Zhao W, Hu J, Mao C, Zhou M. Application of Nanotechnology in Thrombus Therapy. Adv Healthc Mater 2023; 12:e2202578. [PMID: 36507827 DOI: 10.1002/adhm.202202578] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 12/14/2022]
Abstract
A thrombus is a blood clot that forms in the lumen of an artery or vein, restricting blood flow and causing clinical symptoms. Thrombosis is associated with many life-threatening cardiovascular diseases. However, current clinical therapeutic technologies still have many problems in targeting, enrichment, penetration, and safety to meet the thrombosis treatment needs. Therefore, researchers devote themselves to developing nanosystems loaded with antithrombotic drugs to address this paradox in recent years. Herein, the existing thrombosis treatment technologies are first reviewed; and then, their advantages and disadvantages are outlined based on a brief discussion of thrombosis's definition and formation mechanism. Furthermore, the need and application cases for introducing nanotechnology are discussed, focusing on thrombus-specific targeted ligand modification technology and microenvironment-triggered responsive drug release technology. Then, nanomaterials that can be used to design antithrombotic nanotherapeutic systems are summarized. Moreover, a variety of drug delivery technologies driven by nanomotors in thrombosis therapy is also introduced. Last of all, a prospective discussion on the future development of nanotechnology for thrombosis therapy is highlighted.
Collapse
Affiliation(s)
- Shuyin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
2
|
Faqihi F, Stoodley MA, McRobb LS. Externalization of Mitochondrial PDCE2 on Irradiated Endothelium as a Target for Radiation-Guided Drug Delivery and Precision Thrombosis of Pathological Vasculature. Int J Mol Sci 2022; 23:ijms23168908. [PMID: 36012169 PMCID: PMC9408815 DOI: 10.3390/ijms23168908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells are highly sensitive to ionizing radiation, and exposure leads to multiple adaptive changes. Remarkably, part of this response is the translocation of normally intracellular proteins to the cell surface. It is unclear whether this ectopic expression has a protective or deleterious function, but, regardless, these surface-exposed proteins may provide unique discriminatory targets for radiation-guided drug delivery to vascular malformations or tumor vasculature. We investigated the ability of an antibody–thrombin conjugate targeting mitochondrial PDCE2 (E2 subunit of pyruvate dehydrogenase) to induce precision thrombosis on irradiated endothelial cells in a parallel-plate flow system. Click-chemistry was used to create antibody–thrombin conjugates targeting PDCE2 as the vascular targeting agent (VTA). VTAs were injected into the parallel-plate flow system with whole human blood circulating over irradiated cells. The efficacy and specificity of fibrin-thrombus formation was assessed relative to non-irradiated controls. The PDCE2-targeting VTA dose-dependently increased thrombus formation: minimal thrombosis was induced in response to 5 Gy radiation; doses of 15 and 25 Gy induced significant thrombosis with equivalent efficacy. Negligible VTA binding or thrombosis was demonstrated in the absence of radiation or with non-targeted thrombin. PDCE2 represents a unique discriminatory target for radiation-guided drug delivery and precision thrombosis in pathological vasculature.
Collapse
|
3
|
Shaligram SS, Zhang R, Zhu W, Ma L, Luo M, Li Q, Weiss M, Arnold T, Santander N, Liang R, do Prado L, Tang C, Pan F, Oh SP, Pan P, Su H. Bone Marrow-Derived Alk1 Mutant Endothelial Cells and Clonally Expanded Somatic Alk1 Mutant Endothelial Cells Contribute to the Development of Brain Arteriovenous Malformations in Mice. Transl Stroke Res 2021; 13:494-504. [PMID: 34674144 PMCID: PMC9021325 DOI: 10.1007/s12975-021-00955-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that deletion of activin receptor-like kinase 1 (Alk1) or endoglin in a fraction of endothelial cells (ECs) induces brain arteriovenous malformations (bAVMs) in adult mice upon angiogenic stimulation. Here, we addressed three related questions: (1) could Alk1- mutant bone marrow (BM)-derived ECs (BMDECs) cause bAVMs? (2) is Alk1- ECs clonally expended during bAVM development? and (3) is the number of mutant ECs correlates to bAVM severity? For the first question, we transplanted BM from PdgfbiCreER;Alk12f/2f mice (EC-specific tamoxifen-inducible Cre with Alk1-floxed alleles) into wild-type mice, and then induced bAVMs by intra-brain injection of an adeno-associated viral vector expressing vascular endothelial growth factor and intra-peritoneal injection of tamoxifen. For the second question, clonal expansion was analyzed using PdgfbiCreER;Alk12f/2f;confetti+/- mice. For the third question, we titrated tamoxifen to limit Alk1 deletion and compared the severity of bAVM in mice treated with low and high tamoxifen doses. We found that wild-type mice with PdgfbiCreER;Alk12f/2f BM developed bAVMs upon VEGF stimulation and Alk1 gene deletion in BMDECs. We also observed clusters of ECs expressing the same confetti color within bAVMs and significant proliferation of Alk1- ECs at early stage of bAVM development, suggesting that Alk1- ECs clonally expanded by local proliferation. Tamoxifen dose titration revealed a direct correlation between the number of Alk1- ECs and the burden of dysplastic vessels in bAVMs. These results provide novel insights for the understanding of the mechanism by which a small fraction of Alk1 or endoglin mutant ECs contribute to development of bAVMs.
Collapse
Affiliation(s)
- Sonali S Shaligram
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Rui Zhang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Li Ma
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Man Luo
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Qiang Li
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Miriam Weiss
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Thomas Arnold
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Nicolas Santander
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rich Liang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Leandro do Prado
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Chaoliang Tang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Felix Pan
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - S Paul Oh
- Barrow Aneurysm & AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Peipei Pan
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA. .,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
Faqihi F, Stoodley MA, McRobb LS. The Evolution of Safe and Effective Coaguligands for Vascular Targeting and Precision Thrombosis of Solid Tumors and Vascular Malformations. Biomedicines 2021; 9:biomedicines9070776. [PMID: 34356840 PMCID: PMC8301394 DOI: 10.3390/biomedicines9070776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In cardiovascular and cerebrovascular biology, control of thrombosis and the coagulation cascade in ischemic stroke, myocardial infarction, and other coagulopathies is the focus of significant research around the world. Ischemic stroke remains one of the largest causes of death and disability in developed countries. Preventing thrombosis and protecting vessel patency is the primary goal. However, utilization of the body’s natural coagulation cascades as an approach for targeted destruction of abnormal, disease-associated vessels and tissues has been increasing over the last 30 years. This vascular targeting approach, often termed “vascular infarction”, describes the deliberate, targeted delivery of a thrombogenic effector to diseased blood vessels with the aim to induce localized activation of the coagulation cascade and stable thrombus formation, leading to vessel occlusion and ablation. As systemic delivery of pro-thrombotic agents may cause consternation amongst traditional stroke researchers, proponents of the approach must suitably establish both efficacy and safety to take this field forward. In this review, we describe the evolution of this field and, with a focus on thrombogenic effectors, summarize the current literature with respect to emerging trends in “coaguligand” development, in targeted tumor vessel destruction, and in expansion of the approach to the treatment of brain vascular malformations.
Collapse
|
6
|
Faqihi F, Stoodley MA, McRobb LS. Endothelial surface translocation of mitochondrial PDCE2 involves the non-canonical secretory autophagy pathway: Putative molecular target for radiation-guided drug delivery. Exp Cell Res 2021; 405:112688. [PMID: 34097858 DOI: 10.1016/j.yexcr.2021.112688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Radiation has been proposed as a priming agent to induce discriminatory luminal biomarkers for vascular targeting and drug delivery in disorders such as brain arteriovenous malformations and cancers. We previously observed ectopic expression of intracellular proteins such as mitochondrial PDCE2 on irradiated endothelium in animal models. In this study we examined the mechanism of PDCE2 trafficking in human endothelial cells to better understand its suitability as a vascular target. Ionizing radiation induced PDCE2 surface localization in association with accumulation of autophagosome markers (L3CB and p62) indicative of late-stage inhibition of autophagic flux. This effect was abolished in the presence of Rapamycin, an autophagy-inducer, but replicated in the presence of Bafilomycin A, an autophagy blocker. PDCE2 co-localized with lysosomal markers of the canonical degradative autophagy pathway in response to radiation but also with recycling endosomes and SNARE proteins responsible for autophagosome-plasma membrane fusion. These findings demonstrate that radiation-induced blockade of autophagic flux stimulates redirection of intracellular molecules such as PDCE2 to the cell surface via a non-canonical secretory autophagy pathway. Intracellular membrane proteins trafficked in this way could provide a unique pool of radiation biomarkers for therapeutic drug delivery.
Collapse
Affiliation(s)
- F Faqihi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - M A Stoodley
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - L S McRobb
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Allen BD, Acharya MM, Montay-Gruel P, Jorge PG, Bailat C, Petit B, Vozenin MC, Limoli C. Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiat Res 2021; 194:625-635. [PMID: 33348373 DOI: 10.1667/rade-20-00060.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/01/2020] [Indexed: 01/12/2023]
Abstract
Persistent vasculature abnormalities contribute to an altered CNS microenvironment that further compromises the integrity of the blood-brain barrier and exposes the brain to a host of neurotoxic conditions. Standard radiation therapy at conventional (CONV) dose rate elicits short-term damage to the blood-brain barrier by disrupting supportive cells, vasculature volume and tight junction proteins. While current clinical applications of cranial radiotherapy use dose fractionation to reduce normal tissue damage, these treatments still cause significant complications. While dose escalation enhances treatment of radiation-resistant tumors, methods to subvert normal tissue damage are clearly needed. In this regard, we have recently developed a new modality of irradiation based on the use of ultra-high-dose-rate FLASH that does not induce the classical pathogenic patterns caused by CONV irradiation. In previous work, we optimized the physical parameters required to minimize normal brain toxicity (i.e., FLASH, instantaneous intra-pulse dose rate, 6.9 · 106 Gy/s, at a mean dose rate of 2,500 Gy/s), which we then used in the current study to determine the effect of FLASH on the integrity of the vasculature and the blood-brain barrier. Both early (24 h, one week) and late (one month) timepoints postirradiation were investigated using C57Bl/6J female mice exposed to whole-brain irradiation delivered in single doses of 25 Gy and 10 Gy, respectively, using CONV (0.09 Gy/s) or FLASH (>106 Gy/s). While the majority of changes found one day postirradiation were minimal, FLASH was found to reduce levels of apoptosis in the neurogenic regions of the brain at this time. At one week and one month postirradiation, CONV was found to induce vascular dilation, a well described sign of vascular alteration, while FLASH minimized these effects. These results were positively correlated with and temporally coincident to changes in the immunostaining of the vasodilator eNOS colocalized to the vasculature, suggestive of possible dysregulation in blood flow at these latter times. Overall expression of the tight junction proteins, occludin and claudin-5, which was significantly reduced after CONV irradiation, remained unchanged in the FLASH-irradiated brains at one and four weeks postirradiation. Our data further confirm that, compared to isodoses of CONV irradiation known to elicit detrimental effects, FLASH does not damage the normal vasculature. These data now provide the first evidence that FLASH preserves microvasculature integrity in the brain, which may prove beneficial to cognition while allowing for better tumor control in the clinic.
Collapse
Affiliation(s)
- Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrik Goncalves Jorge
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Institute of Radiation Physics/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Benoît Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| |
Collapse
|