1
|
Puy L, Kuchcinski G, Leboullenger C, Auger F, Cordonnier C, Bérézowski V. Multimodal and serial MRI monitors brain peri-hematomal injury and repair mechanisms after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 2024:271678X241270198. [PMID: 39113403 PMCID: PMC11571976 DOI: 10.1177/0271678x241270198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 11/20/2024]
Abstract
The peri-hematomal area (PHA) emerges as a key but puzzling interface where edematous and neuroinflammatory events co-occur after intracerebral hemorrhage (ICH), while being considered either as deleterious or protective. We aimed at unraveling the pathogeny and natural history of PHA over time after experimental ICH. Male and female rats were longitudinally followed up to day 7 using multimodal brain MRI. MRI measures were compared to neuropathological and behavioural results. While the peak of PHA volume at day 3 was predictive for spontaneous locomotor deficit without sex-effect, its drop at day 7 fitted with locomotor recovery and hematoma resorption. The PHA highest water density was observed at onset despite microvascular hypoperfusion, taken over by blood-brain barrier (BBB) leakage at day 3. Water density dropped at day 7, when vascular integrity was normalized, and the highest number of reactive astrocytes, microglial cells, and siderophages found. This study shows that the PHA with edematous component is hematoma-driven at onset and BBB-driven at day 3, but this excess neuroinflammation enabled PHA volume reduction and significant hematoma resorption as soon as day 7. Therapeutic interventions should consider this pathogeny, and be monitored by multimodal MRI in preclinical ICH models.
Collapse
Affiliation(s)
- Laurent Puy
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Gregory Kuchcinski
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Clémence Leboullenger
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Florent Auger
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- UArtois, Lens, France
| |
Collapse
|
2
|
Gómez-de Frutos MC, Laso-García F, García-Suárez I, Piniella D, Otero-Ortega L, Alonso-López E, Pozo-Novoa J, Gallego-Ruiz R, Díaz-Gamero N, Fuentes B, Alonso de Leciñana M, Díez-Tejedor E, Ruiz-Ares G, Gutiérrez-Fernández M. The impact of experimental diabetes on intracerebral haemorrhage. A preclinical study. Biomed Pharmacother 2024; 176:116834. [PMID: 38815288 DOI: 10.1016/j.biopha.2024.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
Although diabetes mellitus negatively affects post-ischaemic stroke injury and recovery, its impact on intracerebral haemorrhage (ICH) remains uncertain. This study aimed to investigate the effect of experimental diabetes (ED) on ICH-induced injury and neurological impairment. Sprague-Dawley rats were induced with ED 2 weeks before ICH induction. Animals were randomly assigned to four groups: 1)Healthy; 2)ICH; 3)ED; 4)ED-ICH. ICH and ED-ICH groups showed similar functional assessment. The ED-ICH group exhibited significantly lower haemorrhage volume compared with the ICH group, except at 1 mo. The oedema/ICH volume ratio and cistern displacement ratio were significantly higher in the ED-ICH group. Vascular markers revealed greater expression of α-SMA in the ED groups (ED and ED-ICH) compared with ICH. Conversely, the ICH groups (ED-ICH and ICH) exhibited higher levels of VEGF compared to the healthy and ED groups. An assessment of myelin tract integrity showed an increase in fractional anisotropy in the ED and ED-ICH groups compared with ICH. The ED group showed higher cryomyelin expression than the ED-ICH and ICH groups. Additionally, the ED groups (ED and ED-ICH) displayed higher expression of MOG and Olig-2 than ICH. As for inflammation, MCP-1 levels were significantly lower in the ED-ICH groups compared with the ICH group. Notably, ED did not aggravate the neurological outcome; however, it results in greater ICH-related brain oedema, greater brain structure displacement and lower haemorrhage volume. ED influences the cerebral vascularisation with an increase in vascular thickness, limits the inflammatory response and attenuates the deleterious effect of ICH on white matter integrity.
Collapse
Affiliation(s)
- Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain; Faculty HM Hospitals of Health Sciences, Universidad Camilo José Cela, Villanueva de la Cañada, Madrid 28692, Spain
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Iván García-Suárez
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain; Department of Emergency Service, San Agustín University Hospital, Asturias, Spain
| | - Dolores Piniella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain; Faculty of Medicine, Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid 28691, Spain
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Javier Pozo-Novoa
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Rebeca Gallego-Ruiz
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Nerea Díaz-Gamero
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Blanca Fuentes
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Gerardo Ruiz-Ares
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain.
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
3
|
Chhatwal S, Antony H, Lamei S, Kovács-Öller T, Klettner AK, Zille M. A systematic review of the cell death mechanisms in retinal pigment epithelium cells and photoreceptors after subretinal hemorrhage - Implications for treatment options. Biomed Pharmacother 2023; 167:115572. [PMID: 37742603 DOI: 10.1016/j.biopha.2023.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
Humans rely on vision as their most important sense. This is accomplished by photoreceptors (PRs) in the retina that detect light but cannot function without the support and maintenance of the retinal pigment epithelium (RPE). In subretinal hemorrhage (SRH), blood accumulates between the neurosensory retina and the RPE or between the RPE and the choroid. Blood breakdown products subsequently damage PRs and the RPE and lead to poor vision and blindness. Hence, there is a high need for options to preserve the retina and visual functions. We conducted a systematic review of the literature in accordance with the PRISMA guidelines to identify the cell death mechanisms in RPE and PRs after SRH to deepen our understanding of the pathways involved. After screening 736 publications published until November 8, 2022, we identified 19 records that assessed cell death in PRs and/or RPE in experimental models of SRH. Among the different cell death mechanisms, apoptosis was the most widely investigated mechanism (11 records), followed by ferroptosis (4), whereas necroptosis, pyroptosis, and lysosome-dependent cell death were only assessed in one study each. We discuss different therapeutic options that were assessed in these studies, including the removal of the hematoma/iron chelation, cytoprotection, anti-inflammatory agents, and antioxidants. Further systematic investigations will be necessary to determine the exact cell death mechanisms after SRH with respect to different blood breakdown components, cell types, and time courses. This will form the basis for the development of novel treatment options for SRH.
Collapse
Affiliation(s)
- Sirjan Chhatwal
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Henrike Antony
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Saman Lamei
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria.
| |
Collapse
|
4
|
Sri S, Greenstein A, Granata A, Collcutt A, Jochems ACC, McColl BW, Castro BD, Webber C, Reyes CA, Hall C, Lawrence CB, Hawkes C, Pegasiou-Davies CM, Gibson C, Crawford CL, Smith C, Vivien D, McLean FH, Wiseman F, Brezzo G, Lalli G, Pritchard HAT, Markus HS, Bravo-Ferrer I, Taylor J, Leiper J, Berwick J, Gan J, Gallacher J, Moss J, Goense J, McMullan L, Work L, Evans L, Stringer MS, Ashford MLJ, Abulfadl M, Conlon N, Malhotra P, Bath P, Canter R, Brown R, Ince S, Anderle S, Young S, Quick S, Szymkowiak S, Hill S, Allan S, Wang T, Quinn T, Procter T, Farr TD, Zhao X, Yang Z, Hainsworth AH, Wardlaw JM. A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100189. [PMID: 37941765 PMCID: PMC10628644 DOI: 10.1016/j.cccb.2023.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.
Collapse
Affiliation(s)
- Sarmi Sri
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Adam Greenstein
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alex Collcutt
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Angela C C Jochems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Blanca Díaz Castro
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Caleb Webber
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Carmen Arteaga Reyes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Catherine Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Claire Gibson
- School of Psychology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Colin L Crawford
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM UMR-S U1237, , GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of clinical research, Caen-Normandie University Hospital, Caen, France
| | - Fiona H McLean
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Gaia Brezzo
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Giovanna Lalli
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hugh S Markus
- Stroke Research Group, Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Isabel Bravo-Ferrer
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Jade Taylor
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Jian Gan
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - John Gallacher
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Jonathan Moss
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Jozien Goense
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- School of Psychology and Neuroscience, University of Glasgow, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Lorraine Work
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow; Glasgow; UK
| | - Lowri Evans
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - MLJ Ashford
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Mohamed Abulfadl
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Nina Conlon
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Paresh Malhotra
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, UK
| | - Philip Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK; Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rebecca Canter
- Dementia Discovery Fund, SV Health Managers LLP, London, UK
| | - Rosalind Brown
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Selvi Ince
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Simon Young
- Dementias Platform UK, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Sophie Quick
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Stefan Szymkowiak
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Steve Hill
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tao Wang
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Terry Quinn
- College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Tessa Procter
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Tracy D Farr
- School of Life Sciences, Physiology, Pharmacology, and Neuroscience Division, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xiangjun Zhao
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Bone M, Malik M, Crilly S. Identifying applications of virtual reality to benefit the stroke translational pipeline. Brain Neurosci Adv 2023; 7:23982128231182506. [PMID: 37360628 PMCID: PMC10288399 DOI: 10.1177/23982128231182506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
As a leading cause of mortality and morbidity, stroke and its management have been studied extensively. Despite numerous pre-clinical studies identifying therapeutic targets, development of effective, specific pharmacotherapeutics remain limited. One significant limitation is a break in the translational pipeline - promising pre-clinical results have not always proven replicable in the clinic. Recent developments in virtual reality technology might help generate a better understanding of injury and recovery across the whole research pipeline in search of optimal stroke management. Here, we review the technologies that can be applied both clinically and pre-clinically to stroke research. We discuss how virtual reality technology is used to quantify clinical outcomes in other neurological conditions that have potential to be applied in stroke research. We also review current uses in stroke rehabilitation and suggest how immersive programmes would better facilitate the quantification of stroke injury severity and patient recovery comparable to pre-clinical study design. By generating continuous, standardised and quantifiable data from injury onset to rehabilitation, we propose that by paralleling pre-clinical outcomes, we can apply a better reverse-translational strategy and apply this understanding to animal studies. We hypothesise this combination of translational research strategies may improve the reliability of pre-clinical research outcomes and culminate in real-life translation of stroke management regimens and medications.
Collapse
Affiliation(s)
- Matan Bone
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
| | - Maham Malik
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
| | - Siobhan Crilly
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Abstract
Intracerebral hemorrhage (ICH) is a severe clinical emergency caused by bleeding into brain parenchyma. Currently, there are no effective treatments to improve ICH outcomes. Developing new therapies for ICH relies on a thorough understanding of ICH pathophysiology and good in vitro models that enable mechanistic research. In this review, we summarized widely used in vitro ICH models and compared their advantages and disadvantages. Next, key questions that need to be answered in future research are discussed. We aim to provide a quick reference/summary of widely used in vitro ICH models and stimulate the development of new ICH models.
Collapse
Affiliation(s)
- Bilal Syed
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
7
|
Zhao X, Qiao D, Guan D, Wang K, Cui Y. Chrysophanol Ameliorates Hemin-Induced Oxidative Stress and Endoplasmic Reticulum Stress by Regulating MicroRNA-320-5p/Wnt3a Pathway in HT22 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9399658. [PMID: 35936221 PMCID: PMC9355772 DOI: 10.1155/2022/9399658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress, endoplasmic reticulum (ER) stress, and neuronal cell apoptosis have been considered as the main pathogenesis factors of brain injury after intracerebral hemorrhage (ICH). Chrysophanol (CHR) has been proved to have neuroprotective effects, but the role and underlying mechanisms of CHR in ICH remain unclear. HT22 cells were dealt with hemin to mimic an in vitro ICH model and then subjected to treatment with or without CHR. The cell viability, apoptosis, ER stress, and oxidative stress were evaluated by conducting the cell counting kit-8 (CCK-8), TdT-mediated dUTP nick end labeling (TUNEL) staining assays, western blot, and corresponding kit, respectively. Further, microRNA-sequencing, bioinformatic analysis, dual-luciferase reporter method, and rescue experiments were conducted to explore the molecular mechanisms of CHR alleviating hemin-induced ER in HT22 cell. Our data revealed that CHR increased cells viability, antiapoptosis, anti-ER stress, and antioxidative stress under conditions of hemin-induced HT22 cell injury. Mechanically, it was observed that Wnt3a was competitively sponged by miR-320-5p, and CHR activated β-catenin pathway by regulating miR-320-5p/Wnt3a molecular axis. Finally, results from the rescue experiment suggested that CHR inhibited hemin-induced cells apoptosis, ER stress, and oxidative stress through regulating the miR-320-5p/Wnt3a axis in HT22 cells. In conclusion, CHR prevented hemin-induced apoptosis, ER stress, and oxidative stress via inhibiting the miR-320-5p/Wnt3a/β-catenin pathway in HT22 cells. Our results certified that CHR could be served as a promising treatment for brain damage following ICH.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Pharmacy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Dongge Qiao
- Nursing Department, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Dongsheng Guan
- Department of Encephalopathy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Kun Wang
- Department of Pharmacy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Yinglin Cui
- Department of Encephalopathy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| |
Collapse
|
8
|
Crilly S, McMahon E, Kasher PR. Zebrafish for modeling stroke and their applicability for drug discovery and development. Expert Opin Drug Discov 2022; 17:559-568. [PMID: 35587689 DOI: 10.1080/17460441.2022.2072828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The global health burden of stroke is significant and few therapeutic treatment options currently exist for patients. Pre-clinical research relies heavily on rodent stroke models but the limitations associated with using these systems alone has meant translation of drug compounds to the clinic has not been greatly successful to date. Zebrafish disease modeling offers a potentially complementary platform for pre-clinical compound screening to aid the drug discovery process for translational stroke research. AREAS COVERED In this review, the authors introduce stroke and describe the issues associated with the current pre-clinical drug development pipeline and the advantages that zebrafish disease modeling can offer. Existing zebrafish models of ischemic and hemorrhagic stroke are reviewed. Examples of how zebrafish models have been utilized for drug discovery in other disease disciplines are also discussed. EXPERT OPINION Zebrafish disease modeling holds the capacity and potential to significantly enhance the stroke drug development pipeline. However, for this system to be more widely accepted and incorporated into translational stroke research, continued improvement of the existing zebrafish stroke models, as well as focussed collaboration between zebrafish and stroke researchers, is essential.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Emily McMahon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Shen H, Chen G. Letter to "AAV/BBB-Mediated Gene Transfer of CHIP Attenuates Brain Injury Following Experimental Intracerebral Hemorrhage". Transl Stroke Res 2022; 13:213. [PMID: 34734356 DOI: 10.1007/s12975-021-00964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
10
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Crilly S, Parry-Jones A, Wang X, Selley JN, Cook J, Tapia VS, Anderson CS, Allan SM, Kasher PR. Zebrafish drug screening identifies candidate therapies for neuroprotection after spontaneous intracerebral haemorrhage. Dis Model Mech 2022; 15:274873. [PMID: 35098999 PMCID: PMC8990924 DOI: 10.1242/dmm.049227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the global health burden, treatment of spontaneous intracerebral haemorrhage (ICH) is largely supportive and translation of specific medical therapies has not been successful. Zebrafish larvae offer a unique platform for drug screening to rapidly identify neuroprotective compounds following ICH. We applied the Spectrum Library compounds to zebrafish larvae acutely after ICH to screen for decreased brain cell death and identified 150 successful drugs. Candidates were then evaluated for possible indications with other cardiovascular diseases. Six compounds were identified including two angiotensin converting enzyme inhibitors (ACE-I). Ramipril and quinapril were further assessed to confirm a significant 55% reduction in brain cell death. Proteomic analysis revealed potential mechanisms of neuroprotection. Using the INTERACT2 clinical trial dataset, we demonstrate a significant reduction in the adjusted odds of an unfavourable shift in the modified Rankin Scale at 90 days for patients receiving an ACE-I after ICH (vs. no ACE-I; odds ratio 0.80; 95% confidence interval 0.68-0.95; P=0.009). The zebrafish larval model of spontaneous ICH can be used as a reliable drug screening platform, and has identified therapeutics which may offer neuroprotection.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| | - Adrian Parry-Jones
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Manchester Centre for Clinical Neurosciences, Salford Royal, NHS Foundation Trust, Manchester Academic Health Science Centre; Stott Lane, Salford, M6 8HD, UK
| | - Xia Wang
- The George Institute for Global Health; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Julian N Selley
- The Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL, UK
| | - James Cook
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| | - Victor S Tapia
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| | - Craig S Anderson
- The George Institute for Global Health; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| |
Collapse
|
12
|
Ren R, Lu Q, Sherchan P, Fang Y, Lenahan C, Tang L, Huang Y, Liu R, Zhang JH, Zhang J, Tang J. Inhibition of Aryl Hydrocarbon Receptor Attenuates Hyperglycemia-Induced Hematoma Expansion in an Intracerebral Hemorrhage Mouse Model. J Am Heart Assoc 2021; 10:e022701. [PMID: 34622690 PMCID: PMC8751882 DOI: 10.1161/jaha.121.022701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background Hyperglycemia is associated with greater hematoma expansion (HE) and worse clinical prognosis after intracerebral hemorrhage (ICH). However, the clinical benefits of intensive glucose normalization remain controversial, and there are no approved therapies for reducing HE. The aryl hydrocarbon receptor (AHR) has been shown to participate in hyperglycemia‐induced blood–brain barrier (BBB) dysfunction and brain injury after stroke. Herein, we investigated the role of AHR in hyperglycemia‐induced HE in a male mouse model of ICH. Methods and Results CD1 mice (n=387) were used in this study. Mice were subjected to ICH by collagenase injection. Fifty percent dextrose was injected intraperitoneally 3 hours after ICH. AHR knockout clustered regularly interspaced short palindromic repeat was administered intracerebroventricularly to evaluate the role of AHR after ICH. A selective AHR inhibitor, 6,2′,4′‐trimethoxyflavone, was administered intraperitoneally 2 hours or 6 hours after ICH for outcome study. To evaluate the effect of AHR on HE, 3‐methylcholanthrene, an AHR agonist, was injected intraperitoneally 2 hours after ICH. The results showed hyperglycemic ICH upregulated AHR accompanied by greater HE. AHR inhibition provided neurological benefits by restricting HE and preserving BBB function after hyperglycemic ICH. In vivo knockdown of AHR further limited HE and enhanced the BBB integrity. Hyperglycemia directly activated AHR as a physiological stimulus in vivo. The thrombospondin‐1/transforming growth factor‐β/vascular endothelial growth factor axis partly participated in AHR signaling after ICH, which inhibited the expressions of BBB‐related proteins, ZO‐1 and Claudin‐5. Conclusions AHR may serve as a potential therapeutic target to attenuate hyperglycemia‐induced hematoma expansion and to preserve the BBB in patients with ICH.
Collapse
Affiliation(s)
- Reng Ren
- Department of Neurosurgery The Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang China.,Department of Neurointensive Care Unit The Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang China.,Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| | - Qin Lu
- Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| | - Yuanjian Fang
- Department of Neurosurgery The Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang China.,Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| | - Lihui Tang
- Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| | - Yi Huang
- Department of Neurosurgery The Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang China.,Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| | - Rui Liu
- Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| | - John H Zhang
- Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA.,Department of Neurosurgery Loma Linda University School of Medicine Loma Linda CA.,Department of Anesthesiology Loma Linda University School of Medicine Loma Linda CA
| | - Jianmin Zhang
- Department of Neurosurgery The Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang China
| | - Jiping Tang
- Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA
| |
Collapse
|
13
|
Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2021; 18:44. [PMID: 34565396 PMCID: PMC8474841 DOI: 10.1186/s12987-021-00278-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Destruction of blood-brain barrier (BBB) is one of the main mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Frizzled-7 is a key protein expressed on the surface of endothelial cells that controls vascular permeability through the Wnt-canonical pathway involving WNT1-inducible signaling pathway protein 1 (WISPI). This study aimed to investigate the role of Frizzled-7 signaling in BBB preservation after ICH in mice. METHODS Adult CD1 mice were subjected to sham surgery or collagenase-induced ICH. Frizzled-7 activation or knockdown was performed by administration of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) by intracerebroventricular injection at 48 h before ICH induction. WISP1 activation or WISP1 knockdown was performed to evaluate the underlying signaling pathway. Post-ICH assessments included neurobehavior, brain edema, BBB permeability, hemoglobin level, western blot and immunofluorescence. RESULTS The brain expressions of Frizzled-7 and WISP1 significantly increased post-ICH. Frizzled-7 was expressed in endothelial cells, astrocytes, and neurons after ICH. Activation of Frizzled-7 significantly improved neurological function, reduced brain water content and attenuated BBB permeability to large molecular weight substances after ICH. Whereas, knockdown of Frizzled-7 worsened neurological function and brain edema after ICH. Activation of Frizzled-7 significantly increased the expressions of Dvl, β-Catenin, WISP1, VE-Cadherin, Claudin-5, ZO-1 and reduced the expression of phospho-β-Catenin. WISP1 knockdown abolished the effects of Frizzled-7 activation on the expressions of VE-Cadherin, Claudin-5 and ZO-1 at 24 h after ICH. CONCLUSIONS Frizzled-7 activation potentially attenuated BBB permeability and improved neurological deficits after ICH through Dvl/β-Catenin/WISP1 pathway. Frizzled-7 may be a potential target for the development of ICH therapeutic drugs.
Collapse
|
14
|
Deng R, Wang W, Xu X, Ding J, Wang J, Yang S, Li H, Shen H, Li X, Chen G. Loss of MIC60 Aggravates Neuronal Death by Inducing Mitochondrial Dysfunction in a Rat Model of Intracerebral Hemorrhage. Mol Neurobiol 2021; 58:4999-5013. [PMID: 34232477 DOI: 10.1007/s12035-021-02468-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial damage has been reported to be a critical factor for secondary brain injury (SBI) induced by intracerebral hemorrhage (ICH). MIC60 is a key element of the mitochondrial contact site and cristae junction organizing system (MICOS), which takes a principal part in maintaining mitochondrial structure and function. The role of MIC60 and its underlying mechanisms in ICH-induced SBI are not clear, which will be investigated in this present study. To establish and emulate ICH model in vivo and in vitro, autologous blood was injected into the right basal ganglia of Sprague-Dawley (SD) rats; and primary-cultured cortical neurons were treated by oxygen hemoglobin (OxyHb). First, after ICH induction, mitochondria were damaged and exhibited mitochondrial crista-structure remodeling, and MIC60 protein levels were reduced. Furthermore, MIC60 overexpression reduced ICH-induced neuronal death both in vivo and in vitro. In addition, MIC60 upregulation reduced ICH-induced cerebral edema, neurobehavioral impairment, and cognitive dysfunction; by contrast, MIC60 knockdown had the opposite effect. Additionally, in primary-cultured neurons, MIC60 overexpression could reverse ICH-induced neuronal cell death and apoptosis, mitochondrial membrane potential collapse, and decrease of mitophagy, indicating that MIC60 overexpression can maintain the integrity of mitochondrial structures. Moreover, loss of MIC60 is after ICH-induced reduction in PINK1 levels and mislocalization of Parkin in primary-cultured neurons. Taken together, our findings suggest that MIC60 plays an important role in ICH-induced SBI and may represent a promising target for ICH therapy.
Collapse
Affiliation(s)
- Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.,Department of Neurosurgery, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Wenjie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Jiahe Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Siyuan Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
15
|
Sun Q, Xu X, Wang T, Xu Z, Lu X, Li X, Chen G. Neurovascular Units and Neural-Glia Networks in Intracerebral Hemorrhage: from Mechanisms to Translation. Transl Stroke Res 2021; 12:447-460. [PMID: 33629275 DOI: 10.1007/s12975-021-00897-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH), the most lethal type of stroke, often leads to poor outcomes in the clinic. Due to the complex mechanisms and cell-cell crosstalk during ICH, the neurovascular unit (NVU) was proposed to serve as a promising therapeutic target for ICH research. This review aims to summarize the development of pathophysiological shifts in the NVU and neural-glia networks after ICH. In addition, potential targets for ICH therapy are discussed in this review. Beyond cerebral blood flow, the NVU also plays an important role in protecting neurons, maintaining central nervous system (CNS) homeostasis, coordinating neuronal activity among supporting cells, forming and maintaining the blood-brain barrier (BBB), and regulating neuroimmune responses. During ICH, NVU dysfunction is induced, along with neuronal cell death, microglia and astrocyte activation, endothelial cell (EC) and tight junction (TJ) protein damage, and BBB disruption. In addition, it has been shown that certain targets and candidates can improve ICH-induced secondary brain injury based on an NVU and neural-glia framework. Moreover, therapeutic approaches and strategies for ICH are discussed.
Collapse
Affiliation(s)
- Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiaocheng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
16
|
Crilly S, Withers SE, Allan SM, Parry-Jones AR, Kasher PR. Revisiting promising preclinical intracerebral hemorrhage studies to highlight repurposable drugs for translation. Int J Stroke 2021; 16:123-136. [PMID: 33183165 PMCID: PMC7859586 DOI: 10.1177/1747493020972240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022]
Abstract
Intracerebral hemorrhage is a devastating global health burden with limited treatment options and is responsible for 49% of 6.5 million annual stroke-related deaths comparable to ischemic stroke. Despite the impact of intracerebral hemorrhage, there are currently no effective treatments and so weaknesses in the translational pipeline must be addressed. There have been many preclinical studies in intracerebral hemorrhage models with positive outcomes for potential therapies in vivo, but beyond advancing the understanding of intracerebral hemorrhage pathology, there has been no translation toward successful clinical application. Multidisciplinary preclinical research, use of multiple models, and validation in human tissue are essential for effective translation. Repurposing of therapeutics for intracerebral hemorrhage may be the most promising strategy to help relieve the global health burden of intracerebral hemorrhage. Here, we have reviewed the existing literature to highlight repurposable drugs with successful outcomes in preclinical models of intracerebral hemorrhage that have realistic potential for development into the clinic for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Sarah E Withers
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Adrian R Parry-Jones
- Division of Cardiovascular Sciences,
Lydia Becker Institute of Immunology and Inflammation, School of Medical Sciences,
Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre,
The University of Manchester, Manchester, UK
- Manchester Centre for Clinical
Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health
Science Centre, Salford, UK
| | - Paul R Kasher
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|