1
|
Gluvic Z, Obradovic M, Manojlovic M, Vincenza Giglio R, Maria Patti A, Ciaccio M, Suri JS, Rizzo M, Isenovic ER. Impact of different hormones on the regulation of nitric oxide in diabetes. Mol Cell Endocrinol 2024; 592:112325. [PMID: 38968968 DOI: 10.1016/j.mce.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.
Collapse
Affiliation(s)
- Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mia Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Manfredi Rizzo
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Luque EM, Díaz-Luján CM, Paira DA, de Loredo N, Torres PJ, Cantarelli VI, Fretes R, Motrich RD, Martini AC. Ghrelin misbalance affects mice embryo implantation and pregnancy success by uterine immune dysregulation and nitrosative stress. Front Endocrinol (Lausanne) 2023; 14:1288779. [PMID: 38107518 PMCID: PMC10722256 DOI: 10.3389/fendo.2023.1288779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction In a previous study we found that ghrelin (Ghrl) misbalance during the peri-implantation period significantly impaired fetus development. In this study we aimed to evaluate the putative mechanisms underlying these effects, including embryo implantation success, uterine nitric oxide synthase (NOS) activity, nitric oxide synthesis and the inflammatory/immune uterine profile. Methods Ghrelin misbalance was induced by injecting 4nmol/animal/day of Ghrl (hyperghrelinemia) or 6nmol/animal/day of a Ghrl antagonist (Ant: (D-Lys3)GHRP-6) from day 3 to 8 of pregnancy. Control animals (C) were injected with de vehicle. Females were euthanized at pregnancy day 8 and their uteri excised in order to evaluate: the percentage of reabsorbed embryos (microscopically), eNOS, iNOS and nytrotirosine expression (by immunohistochemistry), nitrite synthesis (by Griess technique), VEGF, IL-10, IL-17, IL-6, MMP9 and GM-CSF expression (by qPCR) and leukocyte infiltration by flow cytometry (evaluating T cells, NK cells, granulocytes, dendritic cells and macrophages). Results Ant-treatment significantly increased the percentage of reabsorbed embryos and the uterine expression of eNOS, iNOS and nytrotirosine. (D-Lys3)GHRP-6-treatment increased also the expression of the inflammatory cytokines IL-6, IL-17 and MMP9, and decreased that of IL-10 (anti-inflammatory). Moreover, Ant-treatment increased also the NK cells population and that of CD11b+ dendritic cells; and decreased T cells percentages. Similarly, hyperghrelinemia showed a significant increase vs. C on eNOS, iNOS and nytrotirosineuterine expression and a decrease in T cells percentages. Conclusion Ghrl misbalance during the peri-implantation period induces pro-inflammatory changes and nitrosative stress in the gravid uterus, impairing significantly embryo implantation and/or development.
Collapse
Affiliation(s)
- Eugenia Mercedes Luque
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Cintia María Díaz-Luján
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniela Andrea Paira
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Nicolás de Loredo
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pedro Javier Torres
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Verónica Inés Cantarelli
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ricardo Fretes
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén Darío Motrich
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ana Carolina Martini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
3
|
Relationship between serum nitric oxide of patients with thyroid disorders and metabolic syndrome indices and nitrate concentration of water. Sci Rep 2023; 13:692. [PMID: 36639414 PMCID: PMC9839768 DOI: 10.1038/s41598-023-27560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
This case-control study aimed to assess the effect of drinking water nitrate on serum nitric oxide concentration and the risk of metabolic syndrome (MetS) in the population in the Middle East. The study included 50 control and 50 thyroid disorder cases who were referred to two medical centers in 2021. In this study, serum nitric oxide concentration, drinking water nitrate, and metabolic syndrome components were measured in the two groups. The results showed there was a statistically significant difference between serum NO in the case and control groups (p-value < 0.001). There was a positive correlation between the concentration of nitrate in drinking water and serum nitric oxide in the case and control groups; however, this relationship was not significant statistically. A statistically significant difference was found between serum nitric oxide and systolic blood pressure in the cases (p-value < 0.05), but there was no significant difference between MetS and nitric oxide. Therefore, we concluded that the relationship between nitric oxide and nitrate in consuming water should be determined in thyroid patients. In addition to their water consumption, it is better to study the nitrate of foods, especially vegetables.
Collapse
|
4
|
Serreli G, Deiana M. Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review. Antioxidants (Basel) 2023; 12:antiox12010147. [PMID: 36671009 PMCID: PMC9854440 DOI: 10.3390/antiox12010147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) plays several key roles in the functionality of an organism, and it is usually released in numerous organs and tissues. There are mainly three isoforms of the enzyme that produce NO starting from the metabolism of arginine, namely endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and neuronal nitric oxide synthase (nNOS). The expression and activity of these isoforms depends on the activation/deactivation of different signaling pathways at an intracellular level following different physiological and pathological stimuli. Compounds of natural origin such as polyphenols, which are obtainable through diet, have been widely studied in recent years in in vivo and in vitro investigations for their ability to induce or inhibit NO release, depending on the tissue. In this review, we aim to disclose the scientific evidence relating to the activity of the main dietary polyphenols in the modulation of the intracellular pathways involved in the expression and/or functionality of the NOS isoforms.
Collapse
|
5
|
Gluvic ZM, Obradovic MM, Sudar-Milovanovic EM, Zafirovic SS, Radak DJ, Essack MM, Bajic VB, Takashi G, Isenovic ER. Regulation of nitric oxide production in hypothyroidism. Biomed Pharmacother 2020; 124:109881. [PMID: 31986413 DOI: 10.1016/j.biopha.2020.109881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/25/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypothyroidism is a common endocrine disorder that predominantly occurs in females. It is associated with an increased risk of cardiovascular diseases (CVD), but the molecular mechanism is not known. Disturbance in lipid metabolism, the regulation of oxidative stress, and inflammation characterize the progression of subclinical hypothyroidism. The initiation and progression of endothelial dysfunction also exhibit these changes, which is the initial step in developing CVD. Animal and human studies highlight the critical role of nitric oxide (NO) as a reliable biomarker for cardiovascular risk in subclinical and clinical hypothyroidism. In this review, we summarize the recent literature findings associated with NO production by the thyroid hormones in both physiological and pathophysiological conditions. We also discuss the levothyroxine treatment effect on serum NO levels in hypothyroid patients.
Collapse
Affiliation(s)
- Zoran M Gluvic
- Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan M Obradovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | - Emina M Sudar-Milovanovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | - Sonja S Zafirovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | | | - Magbubah M Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia.
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia.
| | - Gojobori Takashi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Esma R Isenovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| |
Collapse
|
6
|
Trimethoxystilbene Reduces Nuclear Factor Kappa B, Interleukin-6, and Tumor Necrosis Factor- α Levels in Rats with Pulmonary Artery Hypertension. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1219848. [PMID: 31886168 PMCID: PMC6925919 DOI: 10.1155/2019/1219848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary artery hypertension is a refractory disease that severely affects cardiopulmonary function, mainly resulting in irreversible pulmonary vascular remodeling. Current surgical treatment of this disease is not very effective and drug treatment is targeted at relieving symptoms, improving the quality of life of patients, and preventing disease progression. The purpose of this present study was to reveal the regulatory effects of trimethoxystilbene on the serum levels of nuclear factor kappa B, interleukin-6, and tumor necrosis factor-α in a rat model of pulmonary artery hypertension and to explore the possible underlying mechanisms. Healthy Sprague Dawley rats were randomly assigned to experimental groups and treated with monocrotaline to establish the model, and we found a significant difference in the expression levels of nuclear factor kappa B, interleukin-6, and tumor necrosis factor-α between the experimental and control groups. These results suggest that trimethoxystilbene significantly reduced the inflammatory factor levels in pulmonary hypertensive rats, providing us with new potential strategies for elucidating the mechanisms of action of trimethoxystilbene in the treatment of pulmonary artery hypertension.
Collapse
|
7
|
Aggarwal H, Kanuri BN, Dikshit M. Role of iNOS in Insulin Resistance and Endothelial Dysfunction. OXIDATIVE STRESS IN HEART DISEASES 2019:461-482. [DOI: 10.1007/978-981-13-8273-4_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Resanovic I, Gluvic Z, Zaric B, Sudar-Milovanovic E, Jovanovic A, Milacic D, Isakovic R, Isenovic ER. Early Effects of Hyperbaric Oxygen on Inducible Nitric Oxide Synthase Activity/Expression in Lymphocytes of Type 1 Diabetes Patients: A Prospective Pilot Study. Int J Endocrinol 2019; 2019:2328505. [PMID: 30755771 PMCID: PMC6348926 DOI: 10.1155/2019/2328505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 02/05/2023] Open
Abstract
This study aimed at examining the early effects of hyperbaric oxygen therapy (HBOT) on inducible nitric oxide synthase (iNOS) activity/expression in lymphocytes of type 1 diabetes mellitus (T1DM) patients. A group of 19 patients (mean age: 63 ± 2.1) with T1DM and with the peripheral arterial disease were included in this study. Patients were exposed to 10 sessions of HBOT in the duration of 1 h to 100% oxygen inhalation at 2.4 ATA. Blood samples were collected for the plasma C-reactive protein (CRP), plasma free fatty acid (FFA), serum nitrite/nitrate, and serum arginase activity measurements. Expression of iNOS and phosphorylation of p65 subunit of nuclear factor-κB (NFκB-p65), extracellular-regulated kinases 1/2 (ERK1/2), and protein kinase B (Akt) were examined in lymphocyte lysates by Western blot. After exposure to HBOT, plasma CRP and FFA were significantly decreased (p < 0.001). Protein expression of iNOS and serum nitrite/nitrate levels were decreased (p < 0.01), while serum arginase activity was increased (p < 0.05) versus before exposure to HBOT. Increased phosphorylation of NFκB-p65 at Ser536 (p < 0.05) and decreased level of NFκB-p65 protein (p < 0.001) in lymphocytes of T1DM patients were observed after HBOT. Decreased phosphorylation of ERK1/2 (p < 0.05) and Akt (p < 0.05) was detected after HBOT. Our results indicate that exposure to HBO decreased iNOS activity/expression via decreasing phosphorylation of ERK1/2 and Akt followed by decreased activity of NFκB.
Collapse
Affiliation(s)
- Ivana Resanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidarka Zaric
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Aleksandra Jovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Davorka Milacic
- Department of Hyperbaric Medicine, Zemun Clinical Hospital, Belgrade, Serbia
| | - Radmilo Isakovic
- Department of Hyperbaric Medicine, Zemun Clinical Hospital, Belgrade, Serbia
| | - Esma R. Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
9
|
Yu H, Xu M, Dong Y, Liu J, Li Y, Mao W, Wang J, Wang L. 1,25(OH) 2 D 3 attenuates pulmonary arterial hypertension via microRNA-204 mediated Tgfbr2/Smad signaling. Exp Cell Res 2018; 362:311-323. [DOI: 10.1016/j.yexcr.2017.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
|
10
|
Hao M, Li M, Li W. Galectin-3 inhibition ameliorates hypoxia-induced pulmonary artery hypertension. Mol Med Rep 2016; 15:160-168. [PMID: 27959409 PMCID: PMC5355711 DOI: 10.3892/mmr.2016.6020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 09/19/2016] [Indexed: 01/27/2023] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin, which is important in inflammation, fibrosis and heart failure. The present study aimed to investigate the role and mechanism of Gal-3 in hypoxia-induced pulmonary arterial hypertension (PAH). Male C57BL/6J and Gal-3−/− mice were exposed to hypoxia, then the right ventricular systolic pressure (RVSP) and Fulton's index were measured, and Gal-3 mRNA and protein expression in the pulmonary arteries was analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting. Compared with the control, hypoxia increased the mRNA and protein expression levels of Gal-3 in wild type murine pulmonary arteries. Gal-3 deletion reduced the hypoxia-induced upregulation of RVSP and Fulton's index. Furthermore, human pulmonary arterial endothelial cells (HPAECs) and human pulmonary arterial smooth muscle cells (HPASMCs) were stimulated by hypoxia in vitro, and Gal-3 expression was inhibited by small interfering RNA. The inflammatory response of HPAECs, and the proliferation and cell cycle distribution of HPASMCs was also analyzed. Gal-3 inhibition alleviated the hypoxia-induced inflammatory response in HPAECs, including tumor necrosis factor-α and interleukin-1 secretion, expression of intercellular adhesion molecule-1 and adhesion of THP-1 monocytes. Gal-3 inhibition also reduced hypoxia-induced proliferation of HPASMCs, partially by reducing cyclin D1 expression and increasing p27 expression. Furthermore, Gal-3 inhibition suppressed HPASMC switching from a ‘contractile’ to a ‘synthetic’ phenotype. In conclusion, Gal-3 serves a fundamental role in hypoxia-induced PAH, and inhibition of Gal-3 may represent a novel therapeutic target for the treatment of hypoxia-induced PAH.
Collapse
Affiliation(s)
- Mingwen Hao
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Miaomiao Li
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wenjun Li
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
11
|
Chu Y, XiangLi X, Niu H, Wang H, Jia P, Gong W, Wu D, Qin W, Xing C. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia. Mol Cell Biochem 2016; 412:91-9. [PMID: 26608181 DOI: 10.1007/s11010-015-2611-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
Hypoxia-induced pulmonary arterial hypertension (HPAH) is a refractory disease characterized by increased proliferation of pulmonary vascular smooth cells and progressive pulmonary vascular remodeling. The level of nitric oxide (NO), a potential therapeutic vasodilator, is low in PAH patients. L-arginine can be converted to either beneficial NO by nitric oxide synthases or to harmful urea by arginase. In the present study, we aimed to investigate whether an arginase inhibitor, S-(2-boronoethyl)-L-cysteine ameliorates HPAH in vivo and vitro. In a HPAH mouse model, we assessed right ventricle systolic pressure (RVSP) by an invasive method, and found that RSVP was elevated under hypoxia, but was attenuated upon arginase inhibition. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions, and their proliferative capacity was determined by cell counting and flow cytometry. The levels of cyclin D1, p27, p-Akt, and p-ERK were detected by RT-PCR or Western blot analysis. Compared to hypoxia group, arginase inhibitor inhibited HPASMCs proliferation and reduced the levels of cyclin D1, p-Akt, p-ERK, while increasing p27 level. Moreover, in mouse models, compared to control group, hypoxia increased cyclin D1 expression but reduced p27 expression, while arginase inhibitor reversed the effects of hypoxia. Taken together, these results suggest that arginase plays an important role in increased proliferation of HPASMCs induced by hypoxia and it is a potential therapeutic target for the treatment of pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- YanBiao Chu
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - XiaoYing XiangLi
- Department of Surgery, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - Hu Niu
- Department of General Surgery, The Fourth People's Hospital of Ji'nan, The Second Affiliated Hospital of Tai Shan Medical College, Ji'nan, 250031, China
| | - HongChao Wang
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - PingDong Jia
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - WenBin Gong
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - DaWei Wu
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - WeiDong Qin
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - ChunYan Xing
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China.
| |
Collapse
|
12
|
Abstract
This study investigated the effect of ghrelin on oxidative stress in septic rat lung tissue. Male Sprague-Dawley rats were divided into sham-operation, sepsis, and ghrelin groups. Sepsis was induced by cecal ligation and puncture. Ghrelin was administered intraperitoneally at 3 and 15 h post-operation. Bronchoalveolar lavage was performed to collect alveolar macrophages (AMs). Inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) expression in alveolar macrophages and iNOS protein levels were measured by reverse transcription PCR (RT-PCR) and Western blot. Pulmonary pathology was analyzed and nitrotyrosine expression was examined by immunohistochemistry. Plasma superoxide dismutase (SOD) and lung wet/dry weight were measured. In the sepsis group, iNOS mRNA expression in AMs was 1.33 ± 0.05, 1.44 ± 0.08, and 1.57 ± 0.11 at 6, 12, and 20 h post-surgery, respectively, and were higher compared with the sham-operation group (p<0.05). No increase was observed at longer time points. iNOS mRNA expression in the sepsis group was lower compared with the ghrelin group (2.27 ± 0.37) (p<0.05) at 20 h post-surgery. iNOS protein levels in the ghrelin group (0.87 ± 0.03, p<0.05) were lower than in the sepsis group at 20 h. Ghrelin group pathological scores were lower than in the sepsis group (p<0.05). Plasma SOD was slightly non-significantly decreased in the ghrelin group. No difference was observed in lung wet/dry weight ratios between sepsis and ghrelin groups. iNOS mRNA expression in AMs was elevated between 6 and 20 h after cecal ligation and puncture (CLP), but did not progress. Ghrelin attenuated pulmonary iNOS protein expression and tended to increase plasma SOD activity. Ghrelin suppressed pulmonary nitrosative stress in septic rats, but did not improve lung wet/dry weight ratios.
Collapse
|
13
|
Jiang W, Sun B, Song X, Zheng Y, Wang L, Wang T, Liu S. Arginase inhibition protects against hypoxia‑induced pulmonary arterial hypertension. Mol Med Rep 2015; 12:4743-4749. [PMID: 26126810 DOI: 10.3892/mmr.2015.3994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 05/19/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the role of arginase (Arg) in pulmonary arterial hypertension (PAH). In vitro, human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions with, or without, the Arg inhibitor, S‑(2‑boronoethyl)‑l‑cysteine (BEC), for 48 h, following which the proliferation of the HPASMCs was determined using MTT and cell counting assays. For the in vivo investigation, 30 male rats were randomly divided into the following three groups (n=10 per group): i) control group, ii) PAH group and iii) BEC group, in which the right ventricle systolic pressure (RVSP) of the rats was assessed. The levels of cyclin D1, cyclin‑dependent kinase (CDK)4 and p27 were measured in vitro and in vivo. The phosphorylation levels of Akt and extracellular‑related kinase (ERK) were also measured in HPASMCs. In vitro, compared with the hypoxia group, Arg inhibition reduced HPASMC proliferation and reduced the expression levels of cyclin D1, CDK4, phosphorylated (p‑)Akt and p‑ERK. By contrast, Arg inhibition increased the expression of p27. In vivo, compared with the control group, the expression levels of cyclin D1 and CDK4 were reduced in the PAH group, however, the expression of p27 and the RVSP increased. In the BEC group, the opposite effects were observed. Therefore, it was suggested that Arg inhibition may reduce the RVSP of PAH rats and reduce HPASMC proliferation by decreasing the expression levels of cyclin D1 and CDK4, increasing the expression of p27, and partly reducing the phosphorylation of Akt and ERK.
Collapse
Affiliation(s)
- Wenjin Jiang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Bolin Sun
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xuepeng Song
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Yanbo Zheng
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Ligang Wang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Tao Wang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Sheng Liu
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
14
|
Dobutovic B, Sudar E, Tepavcevic S, Djordjevic J, Djordjevic A, Radojcic M, Isenovic ER. Effects of ghrelin on protein expression of antioxidative enzymes and iNOS in the rat liver. Arch Med Sci 2014; 10:806-16. [PMID: 25276168 PMCID: PMC4175782 DOI: 10.5114/aoms.2014.44872] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/14/2013] [Accepted: 02/24/2013] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION We investigated the effects of ghrelin on protein expression of the liver antioxidant enzymes superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), nuclear factor κB (NFκB) and inducible nitric oxide synthase (iNOS). Furthermore, we aimed to investigate whether extracellular regulated protein kinase (ERK1/2) and protein kinase B (Akt) are involved in ghrelin-regulated liver antioxidant enzymes and iNOS protein expression. MATERIAL AND METHODS Male Wistar rats were treated with ghrelin (0.3 nmol/5 µl) injected into the lateral cerebral ventricle every 24 h for 5 days, and 2 h after the last treatment the animals were sacrificed and the liver excised. The Western blot method was used to determine expression of antioxidant enzymes, iNOS, phosphorylation of Akt, ERK1/2 and nuclear factor κB (NFκB) subunits 50 and 65. RESULTS There was significantly higher protein expression of CuZnSOD (p < 0.001), MnSOD (p < 0.001), CAT (p < 0.001), GPx, (p < 0.001), and GR (p < 0.01) in the liver isolated from ghrelin-treated animals compared with control animals. In contrast, ghrelin significantly (p < 0.01) reduced protein expression of iNOS. In addition, phosphorylation of NFκB subunits p65 and p50 was significantly (p < 0.001 for p65; p < 0.05 for p50) reduced by ghrelin when compared with controls. Phosphorylation of ERK1/2 and of Akt was significantly higher in ghrelin-treated than in control animals (p < 0.05 for ERK1/2; p < 0.01 for Akt). CONCLUSIONS The results show that activation of Akt and ERK1/2 is involved in ghrelin-mediated regulation of protein expression of antioxidant enzymes and iNOS in the rat liver.
Collapse
Affiliation(s)
- Branislava Dobutovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Marija Radojcic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Esma R. Isenovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Luque EM, Torres PJ, de Loredo N, Vincenti LM, Stutz G, Santillán ME, Ruiz RD, de Cuneo MF, Martini AC. Role of ghrelin in fertilization, early embryo development, and implantation periods. Reproduction 2014; 148:159-67. [PMID: 24821833 DOI: 10.1530/rep-14-0129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to clarify the physiological role of ghrelin in gestation, we evaluated the effects of administration of exogenous ghrelin (2 or 4 nmol/animal per day) or its antagonist (6 nmol/animal per day of (d-Lys3)GHRP6) on fertilization, early embryo development, and implantation periods in mice. Three experiments were performed, treating female mice with ghrelin or its antagonist: i) starting from 1 week before copulation to 12 h after copulation, mice were killed at day 18 of gestation; ii) since ovulation induction until 80 h later, when we retrieved the embryos from oviducts/uterus, and iii) starting from days 3 to 7 of gestation (peri-implantation), mice were killed at day 18. In experiments 1 and 3, the antagonist and/or the highest dose of ghrelin significantly increased the percentage of atrophied fetuses and that of females exhibiting this finding or a higher amount of corpora lutea compared with fetuses (nCL/nF) (experiment 3: higher nCL/nF-atrophied fetuses: ghrelin 4, 71.4-71.4% and antagonist, 75.0-62.5% vs ghrelin 2, 46.2-15.4% and control, 10-0.0%; n=7-13 females/group; P<0.01). In experiment 2, the antagonist diminished the fertilization rate, and both, ghrelin and the antagonist, delayed embryo development (blastocysts: ghrelin 2, 62.5%; ghrelin 4, 50.6%; and antagonist, 61.0% vs control 78.4%; n=82-102 embryos/treatment; P<0.0001). In experiment 3, additionally, ghrelin (4 nmol/day) and the antagonist significantly diminished the weight gain of fetuses and dams during pregnancy. Our results indicate that not only hyperghrelinemia but also the inhibition of the endogenous ghrelin effects exerts negative effects on the fertilization, implantation, and embryo/fetal development periods, supporting the hypothesis that ghrelin (in 'adequate' concentrations) has a physiological role in early gestational events.
Collapse
Affiliation(s)
- Eugenia Mercedes Luque
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Pedro Javier Torres
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Nicolás de Loredo
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Laura María Vincenti
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Graciela Stutz
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - María Emilia Santillán
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Rubén Daniel Ruiz
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Marta Fiol de Cuneo
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Ana Carolina Martini
- Facultad de Ciencias MédicasInstituto de Fisiología, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| |
Collapse
|
16
|
Mourmoura E, Vial G, Laillet B, Rigaudière JP, Hininger-Favier I, Dubouchaud H, Morio B, Demaison L. Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetol 2013; 12:49. [PMID: 23530768 PMCID: PMC3620680 DOI: 10.1186/1475-2840-12-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/12/2022] Open
Abstract
Background There has been accumulating evidence associating diabetes mellitus and cardiovascular dysfunctions. However, most of the studies are focused on the late stages of diabetes and on the function of large arteries. This study aimed at characterizing the effects of the early phase of diabetes mellitus on the cardiac and vascular function with focus on the intact coronary microvasculature and the oxidative stress involved. Materials and methods Zucker diabetic fatty rats and their lean littermates fed with standard diet A04 (Safe) were studied at the 11th week of age. Biochemical parameters such as glucose, insulin and triglycerides levels as well as their oxidative stress status were measured. Their hearts were perfused ex vivo according to Langendorff and their cardiac activity and coronary microvascular reactivity were evaluated. Results Zucker fatty rats already exhibited a diabetic state at this age as demonstrated by the elevated levels of plasma glucose, insulin, glycated hemoglobin and triglycerides. The ex vivo perfusion of their hearts revealed a decreased cardiac mechanical function and coronary flow. This was accompanied by an increase in the overall oxidative stress of the organs. However, estimation of the active form of endothelial nitric oxide synthase and coronary reactivity indicated a preserved function of the coronary microvessels at this phase of the disease. Diabetes affected also the cardiac membrane phospholipid fatty acid composition by increasing the arachidonic acid and n-3 polyunsaturated fatty acids levels. Conclusions The presence of diabetes, even at its beginning, significantly increased the overall oxidative stress of the organs resulting to decreased cardiac mechanical activity ex vivo. However, adaptations were adopted at this early phase of the disease regarding the preserved coronary microvascular reactivity and the associated cardiac phospholipid composition in order to provide a certain protection to the heart.
Collapse
Affiliation(s)
- Evangelia Mourmoura
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Université Joseph Fourier, BP 53, Grenoble cedex 09 F-38041, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Grey CL, Chang JP. Nitric oxide signaling in ghrelin-induced LH release from goldfish pituitary cells. Gen Comp Endocrinol 2013; 183:7-13. [PMID: 23262272 DOI: 10.1016/j.ygcen.2012.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
Among its many known functions, ghrelin has been proposed to participate in the regulation of reproduction; however, its effect on pituitary LH release is controversial, especially in mammals. In the goldfish, ghrelin directly stimulates pituitary LH release via increased entry of calcium through voltage sensitive channels and activation of protein kinase C. Nitric oxide (NO) is an important signaling molecule in many physiological systems including hormone regulation at the level of the pituitary. Goldfish pituitary cells and extracts have previously been reported to express immunoreactivity for inducible and neuronal NO synthase (iNOS and nNOS). In this study, we determined if NO is involved in goldfish ghrelin (gGRLN(19))-induced LH release from primary cultures of dispersed goldfish pituitary cells in column perifusion. Treatment with the NO scavenger PTIO significantly decreased gGRLN(19)-induced LH release and co-treatment with the NO donor SNP and gGRLN(19) did not induce an additive increase in LH release, suggesting that NO is critical to gGRLN(19) stimulation of LH release in goldfish pituitary cells. Further work examined the involvement of the NOS using the NOS isoform-selective inhibitors 1400W, 7-Ni, and AGH. While 1400W (selective for iNOS) and AGH (selective for iNOS and nNOS) abolished gGRLN(19)-induced LH release from goldfish pituitary cells, 7-Ni (selective for nNOS and endothelial NOS) had no significant effect on this stimulation. Our results indicate, for the first time in a teleost species, that gGRLN(19)-induced LH release from pituitary cells is NO-dependent and likely involves iNOS, adding to the understanding of GRLN intracellular signaling in general and specifically to the regulation of LH release from the pituitary.
Collapse
Affiliation(s)
- Caleb L Grey
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
18
|
Paspala I, Katsiki N, Kapoukranidou D, Mikhailidis DP, Tsiligiroglou-Fachantidou A. The role of psychobiological and neuroendocrine mechanisms in appetite regulation and obesity. Open Cardiovasc Med J 2012; 6:147-55. [PMID: 23346258 PMCID: PMC3549543 DOI: 10.2174/1874192401206010147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/01/2012] [Indexed: 12/19/2022] Open
Abstract
Obesity is a multifactorial disease. Among its causes are physical inactivity and overeating. In addition, other factors may play an important role in the development of overweight/obesity. For example, certain hormones including leptin, insulin and ghrelin, may influence appetite and consequently body weight. Obesity frequently co-exists with metabolic disorders including dyslipidemia, hypertension and insulin resistance, thus constituting the metabolic syndrome which is characterized by increased cardiovascular risk. Lack of comprehensive knowledge on obesity-related issues makes both prevention and treatment difficult. This review considers the psychobiological and neuroendocrine mechanisms of appetite and food intake. Whether these factors, in terms of obesity prevention and treatment, will prove to be relevant in clinical practice (including reducing the cardiovas-cular risk associated with obesity) remains to be established.
Collapse
Affiliation(s)
- Ioanna Paspala
- Laboratory of Hygiene & Sports Nutrition, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
19
|
Grey CL, Chang JP. Ghrelin-induced growth hormone release from goldfish pituitary cells is nitric oxide dependent. Gen Comp Endocrinol 2012; 179:152-8. [PMID: 22935824 DOI: 10.1016/j.ygcen.2012.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/31/2012] [Accepted: 08/10/2012] [Indexed: 01/25/2023]
Abstract
Ghrelin (GRLN) is an important neuroendocrine regulator of growth hormone (GH) release in vertebrates. Previous studies show goldfish (g)GRLN(19)-induced GH from the goldfish pituitary involves voltage sensitive Ca(2+) channels, increases in intracellular Ca(2+) and the PKC signalling pathway. We set out to examine the role of the nitric oxide (NO) pathway in gGLRN(19)-induced GH release from primary cultures of goldfish pituitary cells using pharmacological regulators in cell column perifusion systems. The NO scavenger PTIO abolished gGRLN(19)-induced GH release and co-treatment with the NO donor SNP and GRLN did not produce additive GH release responses. Nitric oxide synthase (NOS) inhibitors 1400 W and 7-Ni abolished GRLN-induced GH release while treatment with another NOS inhibitor, AGH, had no significant effect. Taken together, these results demonstrate that the NOS/NO is an integral component of gGRLN(19)-induced signalling within the goldfish pituitary cells, and given the relative specificity of AGH for inducible NOS and endothelial NOS isoforms, suggests that neuronal NOS is the likely NOS isoform utilized in goldfish somatotropes by this physiological regulator.
Collapse
Affiliation(s)
- Caleb L Grey
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
20
|
Stevanovic D, Starcevic V, Vilimanovich U, Nesic D, Vucicevic L, Misirkic M, Janjetovic K, Savic E, Popadic D, Sudar E, Micic D, Sumarac-Dumanovic M, Trajkovic V. Immunomodulatory actions of central ghrelin in diet-induced energy imbalance. Brain Behav Immun 2012; 26:150-8. [PMID: 21925262 DOI: 10.1016/j.bbi.2011.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/15/2011] [Accepted: 08/31/2011] [Indexed: 11/19/2022] Open
Abstract
We investigated the effects of centrally administered orexigenic hormone ghrelin on energy imbalance-induced inflammation. Rats were subjected for four weeks to three different dietary regimes: normal (standard food), high-fat (standard food with 30% lard) or food-restricted (70%, 50%, 40% and 40% of the expected food intake in 1st, 2nd, 3rd and 4th week, respectively). Compared to normal-weight controls, starved, but not obese rats had significantly higher levels of proinflammatory cytokines (TNF, IL-1β, IFN-γ) in the blood. When compared to normally fed animals, the hearts of starved and obese animals expressed higher levels of mRNAs encoding proinflammatory mediators (TNF, IL-1β, IL-6, IFN-γ, IL-17, IL-12, iNOS), while mRNA levels of the anti-inflammatory TGF-β remained unchanged. Intracerebroventricular (ICV) injection of ghrelin (1 μg/day) for five consecutive days significantly reduced TNF, IL-1β and IFN-γ levels in the blood of starved rats, as well as TNF, IL-17 and IL-12p40 mRNA expression in the hearts of obese rats. Conversely, ICV ghrelin increased the levels of IFN-γ, IL-17, IL-12p35 and IL-12p40 mRNA in the heart tissue of food-restricted animals. This was associated with an increase of immunosuppressive ACTH/corticosterone production in starved animals and a decrease of the immunostimulatory adipokine leptin both in food-restricted and high-fat groups. Ghrelin activated the energy sensor AMP-activated protein kinase (AMPK) in the hypothalamus and inhibited extracellular signal-regulated kinase (ERK) in the hearts of obese, but not starved rats. Therefore, central ghrelin may play a complex role in energy imbalance-induced inflammation by modulating HPA axis, leptin and AMPK/ERK signaling pathways.
Collapse
Affiliation(s)
- Darko Stevanovic
- Institute of Medical Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yuan MJ, Huang H, Tang YH, Wu G, Gu YW, Chen YJ, Huang CX. Effects of ghrelin on Cx43 regulation and electrical remodeling after myocardial infarction in rats. Peptides 2011; 32:2357-61. [PMID: 22008733 DOI: 10.1016/j.peptides.2011.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/18/2011] [Accepted: 10/03/2011] [Indexed: 11/23/2022]
Abstract
Ghrelin is a novel growth hormone-releasing peptide, which has been shown to exert beneficial effects on ventricular remodeling. In this study, we investigated whether ghrelin could decrease vulnerability to ventricular arrhythmias in rats with myocardial infarction and the possible mechanism. Twenty-four hours after ligation of the anterior descending artery, adult male Sprague-Dawley rats were randomized to ghrelin (100 μg/kg) and saline (control group) for 4 weeks. Sham animals underwent thoracotomy and pericardiotomy, but not LAD ligation. Myocardial endothelin-1 (ET-1) levels were significantly elevated in saline-treated rats at the border zone compared with sham-operated rats. Myocardial connexin43 (Cx43) expression at the border zone was significantly decreased in saline-treated infarcted rats compared with sham-operated rats. Ghrelin significantly decreased the inducibility of ventricular tachyarrhythmias compared with control group. Arrhythmias sores during programmed stimulation in saline-treated rats were significantly higher than scores in those treated with ghrelin. The electrophysiological improvement of fatal ventricular tachyarrhythmias was accompanied with increased immunofluorescence-stained Cx43, myocardial Cx43 protein and mRNA levels in ghrelin treated rats. We also shown that ghrelin significantly decreased tissue ET-1 levels at the infarcted border zone. Thus, ghrelin showed the protective effect on ventricular arrhythmias after myocardial infarction. Although the precise mechanism by which ghrelin modulates the dephosphorylation of Cx43 remains unknown, it is most likely that the ghrelin increased expression of Cx43 through the inhibition of ET-1.
Collapse
Affiliation(s)
- Ming-Jie Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Djordjevic JD, Radak DJ, Mikhailidis DP, Isenović ER. Regulation of Inducible Nitric Oxide Synthase (iNOS) and its Potential Role in Insulin Resistance, Diabetes and Heart Failure. Open Cardiovasc Med J 2011; 5:153-63. [PMID: 21792376 PMCID: PMC3141344 DOI: 10.2174/1874192401105010153] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 02/08/2023] Open
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and extend to almost every cell type and function within the circulation. In mammals 3 distinct isoforms of NOS have been identified: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The important isoform in the regulation of insulin resistance (IR) is iNOS. Understanding the molecular mechanisms regulating the iNOS pathway in normal and hyperglycemic conditions would help to explain some of vascular abnormalities observed in type 2 diabetes mellitus (T2DM). Previous studies have reported increased myocardial iNOS activity and expression in heart failure (HF). This review considers the recent animal studies which focus on the understanding of regulation of iNOS activity/expression and the role of iNOS agonists as potential therapeutic agents in treatment of IR, T2DM and HF.
Collapse
Affiliation(s)
- Sanja S Soskić
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Branislava D Dobutović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Emina M Sudar
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Milan M Obradović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Dragana M Nikolić
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Jelena D Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, P.O.Box S2 Republic of Serbia
| | - Djordje J Radak
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Belgrade University School of Medicine, Belgrade, Serbia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free campus, University College London Medical School, University College London (UCL), Pond Street, London NW3 2QG, UK
| | - Esma R Isenović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| |
Collapse
|